Mathematical model and tool to explore shorter multi-drug therapy options for active pulmonary tuberculosis
Standard treatment for active tuberculosis (TB) requires drug treatment with at least four drugs over six months. Shorter-duration therapy would mean less need for strict adherence, and reduced risk of bacterial resistance. A system pharmacology model of TB infection, and drug therapy was developed...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2020-08, Vol.16 (8), p.e1008107-e1008107 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1008107 |
---|---|
container_issue | 8 |
container_start_page | e1008107 |
container_title | PLoS computational biology |
container_volume | 16 |
creator | Fors, John Strydom, Natasha Fox, William S Keizer, Ron J Savic, Radojka M |
description | Standard treatment for active tuberculosis (TB) requires drug treatment with at least four drugs over six months. Shorter-duration therapy would mean less need for strict adherence, and reduced risk of bacterial resistance. A system pharmacology model of TB infection, and drug therapy was developed and used to simulate the outcome of different drug therapy scenarios. The model incorporated human immune response, granuloma lesions, multi-drug antimicrobial chemotherapy, and bacterial resistance. A dynamic population pharmacokinetic/pharmacodynamic (PK/PD) simulation model including rifampin, isoniazid, pyrazinamide, and ethambutol was developed and parameters aligned with previous experimental data. Population therapy outcomes for simulations were found to be generally consistent with summary results from previous clinical trials, for a range of drug dose and duration scenarios. An online tool developed from this model is released as open source software. The TB simulation tool could support analysis of new therapy options, novel drug types, and combinations, incorporating factors such as patient adherence behavior. |
doi_str_mv | 10.1371/journal.pcbi.1008107 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2443593417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A634243286</galeid><doaj_id>oai_doaj_org_article_da402b95bb604db8899366d79c651b02</doaj_id><sourcerecordid>A634243286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c638t-b6beedc7fd7b55f052283dc158a67e64776bd31b8e4a9ce04c413ca857ed086f3</originalsourceid><addsrcrecordid>eNqVkltrFDEUxwdRbK1-A8GAL_qwazK5zotQipeFquDlOeQ2u6mZyZhkSvvtzbqjuNIXCSSH5Hf--Z_DaZqnCK4R5ujVVZzTqMJ6MtqvEYQCQX6vOUWU4hXHVNz_Kz5pHuV8BWENO_awOcFtpREVp833D6rs3KCKNyqAIVoXgBotKDGGugF3M4WYHMi7mIpLYJhD8Sub5i2oeUlNtyBOxccxgz4moEzx1w5McxjiqNItKLN2ycwhZp8fNw96FbJ7spxnzbe3b75evF9dfnq3uTi_XBmGRVlppp2zhveWa0p7SNtWYGuqXcW4Y4Rzpi1GWjiiOuMgMQRhowTlzkLBenzWPDvoVutZLn3KsiUE0w4TxCuxORA2qis5JT9UrzIqL39dxLSVKtWWBCetIrDVHdWaQWK1EF2HGbO8M4wiDduq9Xr5bdZD9e3GklQ4Ej1-Gf1ObuO15ERAwUUVeLEIpPhjdrnIwWfjQlCji_PeN6a0FYJ3FX3-D3p3dQu1VbUAP_ax_mv2ovKcYVL1WsEqtb6Dqsu6wZs4ut7X-6OEl0cJlSnupmzVnLPcfPn8H-zHY5YcWJNizsn1f3qHoNyP-u8i5X7U5TLq-CcNLPHJ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443593417</pqid></control><display><type>article</type><title>Mathematical model and tool to explore shorter multi-drug therapy options for active pulmonary tuberculosis</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><creator>Fors, John ; Strydom, Natasha ; Fox, William S ; Keizer, Ron J ; Savic, Radojka M</creator><contributor>Gallo, James</contributor><creatorcontrib>Fors, John ; Strydom, Natasha ; Fox, William S ; Keizer, Ron J ; Savic, Radojka M ; Gallo, James</creatorcontrib><description>Standard treatment for active tuberculosis (TB) requires drug treatment with at least four drugs over six months. Shorter-duration therapy would mean less need for strict adherence, and reduced risk of bacterial resistance. A system pharmacology model of TB infection, and drug therapy was developed and used to simulate the outcome of different drug therapy scenarios. The model incorporated human immune response, granuloma lesions, multi-drug antimicrobial chemotherapy, and bacterial resistance. A dynamic population pharmacokinetic/pharmacodynamic (PK/PD) simulation model including rifampin, isoniazid, pyrazinamide, and ethambutol was developed and parameters aligned with previous experimental data. Population therapy outcomes for simulations were found to be generally consistent with summary results from previous clinical trials, for a range of drug dose and duration scenarios. An online tool developed from this model is released as open source software. The TB simulation tool could support analysis of new therapy options, novel drug types, and combinations, incorporating factors such as patient adherence behavior.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1008107</identifier><identifier>PMID: 32810158</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Antiinfectives and antibacterials ; Bacteria ; Bacterial infections ; Bioengineering ; Biology and Life Sciences ; Chemotherapy ; Clinical trials ; Computer simulation ; Dose-response relationship ; Drug dosages ; Drug resistance ; Drug therapy ; Ethambutol ; Granuloma ; Granulomas ; Immune response ; Immune system ; Immunosuppressive agents ; Infections ; Investigations ; Isoniazid ; Mathematical models ; Medicine and Health Sciences ; Open source software ; Pharmacodynamics ; Pharmacokinetics ; Pharmacology ; Pharmacy ; Pyrazinamide ; Research and Analysis Methods ; Rifampin ; Risk management ; Risk reduction ; RNA polymerase ; Simulation ; Software ; Tuberculosis</subject><ispartof>PLoS computational biology, 2020-08, Vol.16 (8), p.e1008107-e1008107</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Fors et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Fors et al 2020 Fors et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c638t-b6beedc7fd7b55f052283dc158a67e64776bd31b8e4a9ce04c413ca857ed086f3</citedby><cites>FETCH-LOGICAL-c638t-b6beedc7fd7b55f052283dc158a67e64776bd31b8e4a9ce04c413ca857ed086f3</cites><orcidid>0000-0003-3143-5579 ; 0000-0002-2460-7056 ; 0000-0002-0929-0783 ; 0000-0002-9002-7113 ; 0000-0002-4058-4333</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7480878/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7480878/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids></links><search><contributor>Gallo, James</contributor><creatorcontrib>Fors, John</creatorcontrib><creatorcontrib>Strydom, Natasha</creatorcontrib><creatorcontrib>Fox, William S</creatorcontrib><creatorcontrib>Keizer, Ron J</creatorcontrib><creatorcontrib>Savic, Radojka M</creatorcontrib><title>Mathematical model and tool to explore shorter multi-drug therapy options for active pulmonary tuberculosis</title><title>PLoS computational biology</title><description>Standard treatment for active tuberculosis (TB) requires drug treatment with at least four drugs over six months. Shorter-duration therapy would mean less need for strict adherence, and reduced risk of bacterial resistance. A system pharmacology model of TB infection, and drug therapy was developed and used to simulate the outcome of different drug therapy scenarios. The model incorporated human immune response, granuloma lesions, multi-drug antimicrobial chemotherapy, and bacterial resistance. A dynamic population pharmacokinetic/pharmacodynamic (PK/PD) simulation model including rifampin, isoniazid, pyrazinamide, and ethambutol was developed and parameters aligned with previous experimental data. Population therapy outcomes for simulations were found to be generally consistent with summary results from previous clinical trials, for a range of drug dose and duration scenarios. An online tool developed from this model is released as open source software. The TB simulation tool could support analysis of new therapy options, novel drug types, and combinations, incorporating factors such as patient adherence behavior.</description><subject>Antiinfectives and antibacterials</subject><subject>Bacteria</subject><subject>Bacterial infections</subject><subject>Bioengineering</subject><subject>Biology and Life Sciences</subject><subject>Chemotherapy</subject><subject>Clinical trials</subject><subject>Computer simulation</subject><subject>Dose-response relationship</subject><subject>Drug dosages</subject><subject>Drug resistance</subject><subject>Drug therapy</subject><subject>Ethambutol</subject><subject>Granuloma</subject><subject>Granulomas</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Immunosuppressive agents</subject><subject>Infections</subject><subject>Investigations</subject><subject>Isoniazid</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Open source software</subject><subject>Pharmacodynamics</subject><subject>Pharmacokinetics</subject><subject>Pharmacology</subject><subject>Pharmacy</subject><subject>Pyrazinamide</subject><subject>Research and Analysis Methods</subject><subject>Rifampin</subject><subject>Risk management</subject><subject>Risk reduction</subject><subject>RNA polymerase</subject><subject>Simulation</subject><subject>Software</subject><subject>Tuberculosis</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkltrFDEUxwdRbK1-A8GAL_qwazK5zotQipeFquDlOeQ2u6mZyZhkSvvtzbqjuNIXCSSH5Hf--Z_DaZqnCK4R5ujVVZzTqMJ6MtqvEYQCQX6vOUWU4hXHVNz_Kz5pHuV8BWENO_awOcFtpREVp833D6rs3KCKNyqAIVoXgBotKDGGugF3M4WYHMi7mIpLYJhD8Sub5i2oeUlNtyBOxccxgz4moEzx1w5McxjiqNItKLN2ycwhZp8fNw96FbJ7spxnzbe3b75evF9dfnq3uTi_XBmGRVlppp2zhveWa0p7SNtWYGuqXcW4Y4Rzpi1GWjiiOuMgMQRhowTlzkLBenzWPDvoVutZLn3KsiUE0w4TxCuxORA2qis5JT9UrzIqL39dxLSVKtWWBCetIrDVHdWaQWK1EF2HGbO8M4wiDduq9Xr5bdZD9e3GklQ4Ej1-Gf1ObuO15ERAwUUVeLEIpPhjdrnIwWfjQlCji_PeN6a0FYJ3FX3-D3p3dQu1VbUAP_ax_mv2ovKcYVL1WsEqtb6Dqsu6wZs4ut7X-6OEl0cJlSnupmzVnLPcfPn8H-zHY5YcWJNizsn1f3qHoNyP-u8i5X7U5TLq-CcNLPHJ</recordid><startdate>20200818</startdate><enddate>20200818</enddate><creator>Fors, John</creator><creator>Strydom, Natasha</creator><creator>Fox, William S</creator><creator>Keizer, Ron J</creator><creator>Savic, Radojka M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3143-5579</orcidid><orcidid>https://orcid.org/0000-0002-2460-7056</orcidid><orcidid>https://orcid.org/0000-0002-0929-0783</orcidid><orcidid>https://orcid.org/0000-0002-9002-7113</orcidid><orcidid>https://orcid.org/0000-0002-4058-4333</orcidid></search><sort><creationdate>20200818</creationdate><title>Mathematical model and tool to explore shorter multi-drug therapy options for active pulmonary tuberculosis</title><author>Fors, John ; Strydom, Natasha ; Fox, William S ; Keizer, Ron J ; Savic, Radojka M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c638t-b6beedc7fd7b55f052283dc158a67e64776bd31b8e4a9ce04c413ca857ed086f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antiinfectives and antibacterials</topic><topic>Bacteria</topic><topic>Bacterial infections</topic><topic>Bioengineering</topic><topic>Biology and Life Sciences</topic><topic>Chemotherapy</topic><topic>Clinical trials</topic><topic>Computer simulation</topic><topic>Dose-response relationship</topic><topic>Drug dosages</topic><topic>Drug resistance</topic><topic>Drug therapy</topic><topic>Ethambutol</topic><topic>Granuloma</topic><topic>Granulomas</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Immunosuppressive agents</topic><topic>Infections</topic><topic>Investigations</topic><topic>Isoniazid</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Open source software</topic><topic>Pharmacodynamics</topic><topic>Pharmacokinetics</topic><topic>Pharmacology</topic><topic>Pharmacy</topic><topic>Pyrazinamide</topic><topic>Research and Analysis Methods</topic><topic>Rifampin</topic><topic>Risk management</topic><topic>Risk reduction</topic><topic>RNA polymerase</topic><topic>Simulation</topic><topic>Software</topic><topic>Tuberculosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fors, John</creatorcontrib><creatorcontrib>Strydom, Natasha</creatorcontrib><creatorcontrib>Fox, William S</creatorcontrib><creatorcontrib>Keizer, Ron J</creatorcontrib><creatorcontrib>Savic, Radojka M</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fors, John</au><au>Strydom, Natasha</au><au>Fox, William S</au><au>Keizer, Ron J</au><au>Savic, Radojka M</au><au>Gallo, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical model and tool to explore shorter multi-drug therapy options for active pulmonary tuberculosis</atitle><jtitle>PLoS computational biology</jtitle><date>2020-08-18</date><risdate>2020</risdate><volume>16</volume><issue>8</issue><spage>e1008107</spage><epage>e1008107</epage><pages>e1008107-e1008107</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Standard treatment for active tuberculosis (TB) requires drug treatment with at least four drugs over six months. Shorter-duration therapy would mean less need for strict adherence, and reduced risk of bacterial resistance. A system pharmacology model of TB infection, and drug therapy was developed and used to simulate the outcome of different drug therapy scenarios. The model incorporated human immune response, granuloma lesions, multi-drug antimicrobial chemotherapy, and bacterial resistance. A dynamic population pharmacokinetic/pharmacodynamic (PK/PD) simulation model including rifampin, isoniazid, pyrazinamide, and ethambutol was developed and parameters aligned with previous experimental data. Population therapy outcomes for simulations were found to be generally consistent with summary results from previous clinical trials, for a range of drug dose and duration scenarios. An online tool developed from this model is released as open source software. The TB simulation tool could support analysis of new therapy options, novel drug types, and combinations, incorporating factors such as patient adherence behavior.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>32810158</pmid><doi>10.1371/journal.pcbi.1008107</doi><orcidid>https://orcid.org/0000-0003-3143-5579</orcidid><orcidid>https://orcid.org/0000-0002-2460-7056</orcidid><orcidid>https://orcid.org/0000-0002-0929-0783</orcidid><orcidid>https://orcid.org/0000-0002-9002-7113</orcidid><orcidid>https://orcid.org/0000-0002-4058-4333</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2020-08, Vol.16 (8), p.e1008107-e1008107 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2443593417 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central |
subjects | Antiinfectives and antibacterials Bacteria Bacterial infections Bioengineering Biology and Life Sciences Chemotherapy Clinical trials Computer simulation Dose-response relationship Drug dosages Drug resistance Drug therapy Ethambutol Granuloma Granulomas Immune response Immune system Immunosuppressive agents Infections Investigations Isoniazid Mathematical models Medicine and Health Sciences Open source software Pharmacodynamics Pharmacokinetics Pharmacology Pharmacy Pyrazinamide Research and Analysis Methods Rifampin Risk management Risk reduction RNA polymerase Simulation Software Tuberculosis |
title | Mathematical model and tool to explore shorter multi-drug therapy options for active pulmonary tuberculosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A06%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20model%20and%20tool%20to%20explore%20shorter%20multi-drug%20therapy%20options%20for%20active%20pulmonary%20tuberculosis&rft.jtitle=PLoS%20computational%20biology&rft.au=Fors,%20John&rft.date=2020-08-18&rft.volume=16&rft.issue=8&rft.spage=e1008107&rft.epage=e1008107&rft.pages=e1008107-e1008107&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1008107&rft_dat=%3Cgale_plos_%3EA634243286%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2443593417&rft_id=info:pmid/32810158&rft_galeid=A634243286&rft_doaj_id=oai_doaj_org_article_da402b95bb604db8899366d79c651b02&rfr_iscdi=true |