Mathematical model and tool to explore shorter multi-drug therapy options for active pulmonary tuberculosis

Standard treatment for active tuberculosis (TB) requires drug treatment with at least four drugs over six months. Shorter-duration therapy would mean less need for strict adherence, and reduced risk of bacterial resistance. A system pharmacology model of TB infection, and drug therapy was developed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2020-08, Vol.16 (8), p.e1008107-e1008107
Hauptverfasser: Fors, John, Strydom, Natasha, Fox, William S, Keizer, Ron J, Savic, Radojka M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1008107
container_issue 8
container_start_page e1008107
container_title PLoS computational biology
container_volume 16
creator Fors, John
Strydom, Natasha
Fox, William S
Keizer, Ron J
Savic, Radojka M
description Standard treatment for active tuberculosis (TB) requires drug treatment with at least four drugs over six months. Shorter-duration therapy would mean less need for strict adherence, and reduced risk of bacterial resistance. A system pharmacology model of TB infection, and drug therapy was developed and used to simulate the outcome of different drug therapy scenarios. The model incorporated human immune response, granuloma lesions, multi-drug antimicrobial chemotherapy, and bacterial resistance. A dynamic population pharmacokinetic/pharmacodynamic (PK/PD) simulation model including rifampin, isoniazid, pyrazinamide, and ethambutol was developed and parameters aligned with previous experimental data. Population therapy outcomes for simulations were found to be generally consistent with summary results from previous clinical trials, for a range of drug dose and duration scenarios. An online tool developed from this model is released as open source software. The TB simulation tool could support analysis of new therapy options, novel drug types, and combinations, incorporating factors such as patient adherence behavior.
doi_str_mv 10.1371/journal.pcbi.1008107
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2443593417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A634243286</galeid><doaj_id>oai_doaj_org_article_da402b95bb604db8899366d79c651b02</doaj_id><sourcerecordid>A634243286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c638t-b6beedc7fd7b55f052283dc158a67e64776bd31b8e4a9ce04c413ca857ed086f3</originalsourceid><addsrcrecordid>eNqVkltrFDEUxwdRbK1-A8GAL_qwazK5zotQipeFquDlOeQ2u6mZyZhkSvvtzbqjuNIXCSSH5Hf--Z_DaZqnCK4R5ujVVZzTqMJ6MtqvEYQCQX6vOUWU4hXHVNz_Kz5pHuV8BWENO_awOcFtpREVp833D6rs3KCKNyqAIVoXgBotKDGGugF3M4WYHMi7mIpLYJhD8Sub5i2oeUlNtyBOxccxgz4moEzx1w5McxjiqNItKLN2ycwhZp8fNw96FbJ7spxnzbe3b75evF9dfnq3uTi_XBmGRVlppp2zhveWa0p7SNtWYGuqXcW4Y4Rzpi1GWjiiOuMgMQRhowTlzkLBenzWPDvoVutZLn3KsiUE0w4TxCuxORA2qis5JT9UrzIqL39dxLSVKtWWBCetIrDVHdWaQWK1EF2HGbO8M4wiDduq9Xr5bdZD9e3GklQ4Ej1-Gf1ObuO15ERAwUUVeLEIpPhjdrnIwWfjQlCji_PeN6a0FYJ3FX3-D3p3dQu1VbUAP_ax_mv2ovKcYVL1WsEqtb6Dqsu6wZs4ut7X-6OEl0cJlSnupmzVnLPcfPn8H-zHY5YcWJNizsn1f3qHoNyP-u8i5X7U5TLq-CcNLPHJ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443593417</pqid></control><display><type>article</type><title>Mathematical model and tool to explore shorter multi-drug therapy options for active pulmonary tuberculosis</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><creator>Fors, John ; Strydom, Natasha ; Fox, William S ; Keizer, Ron J ; Savic, Radojka M</creator><contributor>Gallo, James</contributor><creatorcontrib>Fors, John ; Strydom, Natasha ; Fox, William S ; Keizer, Ron J ; Savic, Radojka M ; Gallo, James</creatorcontrib><description>Standard treatment for active tuberculosis (TB) requires drug treatment with at least four drugs over six months. Shorter-duration therapy would mean less need for strict adherence, and reduced risk of bacterial resistance. A system pharmacology model of TB infection, and drug therapy was developed and used to simulate the outcome of different drug therapy scenarios. The model incorporated human immune response, granuloma lesions, multi-drug antimicrobial chemotherapy, and bacterial resistance. A dynamic population pharmacokinetic/pharmacodynamic (PK/PD) simulation model including rifampin, isoniazid, pyrazinamide, and ethambutol was developed and parameters aligned with previous experimental data. Population therapy outcomes for simulations were found to be generally consistent with summary results from previous clinical trials, for a range of drug dose and duration scenarios. An online tool developed from this model is released as open source software. The TB simulation tool could support analysis of new therapy options, novel drug types, and combinations, incorporating factors such as patient adherence behavior.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1008107</identifier><identifier>PMID: 32810158</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Antiinfectives and antibacterials ; Bacteria ; Bacterial infections ; Bioengineering ; Biology and Life Sciences ; Chemotherapy ; Clinical trials ; Computer simulation ; Dose-response relationship ; Drug dosages ; Drug resistance ; Drug therapy ; Ethambutol ; Granuloma ; Granulomas ; Immune response ; Immune system ; Immunosuppressive agents ; Infections ; Investigations ; Isoniazid ; Mathematical models ; Medicine and Health Sciences ; Open source software ; Pharmacodynamics ; Pharmacokinetics ; Pharmacology ; Pharmacy ; Pyrazinamide ; Research and Analysis Methods ; Rifampin ; Risk management ; Risk reduction ; RNA polymerase ; Simulation ; Software ; Tuberculosis</subject><ispartof>PLoS computational biology, 2020-08, Vol.16 (8), p.e1008107-e1008107</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Fors et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Fors et al 2020 Fors et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c638t-b6beedc7fd7b55f052283dc158a67e64776bd31b8e4a9ce04c413ca857ed086f3</citedby><cites>FETCH-LOGICAL-c638t-b6beedc7fd7b55f052283dc158a67e64776bd31b8e4a9ce04c413ca857ed086f3</cites><orcidid>0000-0003-3143-5579 ; 0000-0002-2460-7056 ; 0000-0002-0929-0783 ; 0000-0002-9002-7113 ; 0000-0002-4058-4333</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7480878/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7480878/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids></links><search><contributor>Gallo, James</contributor><creatorcontrib>Fors, John</creatorcontrib><creatorcontrib>Strydom, Natasha</creatorcontrib><creatorcontrib>Fox, William S</creatorcontrib><creatorcontrib>Keizer, Ron J</creatorcontrib><creatorcontrib>Savic, Radojka M</creatorcontrib><title>Mathematical model and tool to explore shorter multi-drug therapy options for active pulmonary tuberculosis</title><title>PLoS computational biology</title><description>Standard treatment for active tuberculosis (TB) requires drug treatment with at least four drugs over six months. Shorter-duration therapy would mean less need for strict adherence, and reduced risk of bacterial resistance. A system pharmacology model of TB infection, and drug therapy was developed and used to simulate the outcome of different drug therapy scenarios. The model incorporated human immune response, granuloma lesions, multi-drug antimicrobial chemotherapy, and bacterial resistance. A dynamic population pharmacokinetic/pharmacodynamic (PK/PD) simulation model including rifampin, isoniazid, pyrazinamide, and ethambutol was developed and parameters aligned with previous experimental data. Population therapy outcomes for simulations were found to be generally consistent with summary results from previous clinical trials, for a range of drug dose and duration scenarios. An online tool developed from this model is released as open source software. The TB simulation tool could support analysis of new therapy options, novel drug types, and combinations, incorporating factors such as patient adherence behavior.</description><subject>Antiinfectives and antibacterials</subject><subject>Bacteria</subject><subject>Bacterial infections</subject><subject>Bioengineering</subject><subject>Biology and Life Sciences</subject><subject>Chemotherapy</subject><subject>Clinical trials</subject><subject>Computer simulation</subject><subject>Dose-response relationship</subject><subject>Drug dosages</subject><subject>Drug resistance</subject><subject>Drug therapy</subject><subject>Ethambutol</subject><subject>Granuloma</subject><subject>Granulomas</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Immunosuppressive agents</subject><subject>Infections</subject><subject>Investigations</subject><subject>Isoniazid</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Open source software</subject><subject>Pharmacodynamics</subject><subject>Pharmacokinetics</subject><subject>Pharmacology</subject><subject>Pharmacy</subject><subject>Pyrazinamide</subject><subject>Research and Analysis Methods</subject><subject>Rifampin</subject><subject>Risk management</subject><subject>Risk reduction</subject><subject>RNA polymerase</subject><subject>Simulation</subject><subject>Software</subject><subject>Tuberculosis</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkltrFDEUxwdRbK1-A8GAL_qwazK5zotQipeFquDlOeQ2u6mZyZhkSvvtzbqjuNIXCSSH5Hf--Z_DaZqnCK4R5ujVVZzTqMJ6MtqvEYQCQX6vOUWU4hXHVNz_Kz5pHuV8BWENO_awOcFtpREVp833D6rs3KCKNyqAIVoXgBotKDGGugF3M4WYHMi7mIpLYJhD8Sub5i2oeUlNtyBOxccxgz4moEzx1w5McxjiqNItKLN2ycwhZp8fNw96FbJ7spxnzbe3b75evF9dfnq3uTi_XBmGRVlppp2zhveWa0p7SNtWYGuqXcW4Y4Rzpi1GWjiiOuMgMQRhowTlzkLBenzWPDvoVutZLn3KsiUE0w4TxCuxORA2qis5JT9UrzIqL39dxLSVKtWWBCetIrDVHdWaQWK1EF2HGbO8M4wiDduq9Xr5bdZD9e3GklQ4Ej1-Gf1ObuO15ERAwUUVeLEIpPhjdrnIwWfjQlCji_PeN6a0FYJ3FX3-D3p3dQu1VbUAP_ax_mv2ovKcYVL1WsEqtb6Dqsu6wZs4ut7X-6OEl0cJlSnupmzVnLPcfPn8H-zHY5YcWJNizsn1f3qHoNyP-u8i5X7U5TLq-CcNLPHJ</recordid><startdate>20200818</startdate><enddate>20200818</enddate><creator>Fors, John</creator><creator>Strydom, Natasha</creator><creator>Fox, William S</creator><creator>Keizer, Ron J</creator><creator>Savic, Radojka M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3143-5579</orcidid><orcidid>https://orcid.org/0000-0002-2460-7056</orcidid><orcidid>https://orcid.org/0000-0002-0929-0783</orcidid><orcidid>https://orcid.org/0000-0002-9002-7113</orcidid><orcidid>https://orcid.org/0000-0002-4058-4333</orcidid></search><sort><creationdate>20200818</creationdate><title>Mathematical model and tool to explore shorter multi-drug therapy options for active pulmonary tuberculosis</title><author>Fors, John ; Strydom, Natasha ; Fox, William S ; Keizer, Ron J ; Savic, Radojka M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c638t-b6beedc7fd7b55f052283dc158a67e64776bd31b8e4a9ce04c413ca857ed086f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antiinfectives and antibacterials</topic><topic>Bacteria</topic><topic>Bacterial infections</topic><topic>Bioengineering</topic><topic>Biology and Life Sciences</topic><topic>Chemotherapy</topic><topic>Clinical trials</topic><topic>Computer simulation</topic><topic>Dose-response relationship</topic><topic>Drug dosages</topic><topic>Drug resistance</topic><topic>Drug therapy</topic><topic>Ethambutol</topic><topic>Granuloma</topic><topic>Granulomas</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Immunosuppressive agents</topic><topic>Infections</topic><topic>Investigations</topic><topic>Isoniazid</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Open source software</topic><topic>Pharmacodynamics</topic><topic>Pharmacokinetics</topic><topic>Pharmacology</topic><topic>Pharmacy</topic><topic>Pyrazinamide</topic><topic>Research and Analysis Methods</topic><topic>Rifampin</topic><topic>Risk management</topic><topic>Risk reduction</topic><topic>RNA polymerase</topic><topic>Simulation</topic><topic>Software</topic><topic>Tuberculosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fors, John</creatorcontrib><creatorcontrib>Strydom, Natasha</creatorcontrib><creatorcontrib>Fox, William S</creatorcontrib><creatorcontrib>Keizer, Ron J</creatorcontrib><creatorcontrib>Savic, Radojka M</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fors, John</au><au>Strydom, Natasha</au><au>Fox, William S</au><au>Keizer, Ron J</au><au>Savic, Radojka M</au><au>Gallo, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical model and tool to explore shorter multi-drug therapy options for active pulmonary tuberculosis</atitle><jtitle>PLoS computational biology</jtitle><date>2020-08-18</date><risdate>2020</risdate><volume>16</volume><issue>8</issue><spage>e1008107</spage><epage>e1008107</epage><pages>e1008107-e1008107</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Standard treatment for active tuberculosis (TB) requires drug treatment with at least four drugs over six months. Shorter-duration therapy would mean less need for strict adherence, and reduced risk of bacterial resistance. A system pharmacology model of TB infection, and drug therapy was developed and used to simulate the outcome of different drug therapy scenarios. The model incorporated human immune response, granuloma lesions, multi-drug antimicrobial chemotherapy, and bacterial resistance. A dynamic population pharmacokinetic/pharmacodynamic (PK/PD) simulation model including rifampin, isoniazid, pyrazinamide, and ethambutol was developed and parameters aligned with previous experimental data. Population therapy outcomes for simulations were found to be generally consistent with summary results from previous clinical trials, for a range of drug dose and duration scenarios. An online tool developed from this model is released as open source software. The TB simulation tool could support analysis of new therapy options, novel drug types, and combinations, incorporating factors such as patient adherence behavior.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>32810158</pmid><doi>10.1371/journal.pcbi.1008107</doi><orcidid>https://orcid.org/0000-0003-3143-5579</orcidid><orcidid>https://orcid.org/0000-0002-2460-7056</orcidid><orcidid>https://orcid.org/0000-0002-0929-0783</orcidid><orcidid>https://orcid.org/0000-0002-9002-7113</orcidid><orcidid>https://orcid.org/0000-0002-4058-4333</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2020-08, Vol.16 (8), p.e1008107-e1008107
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2443593417
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central
subjects Antiinfectives and antibacterials
Bacteria
Bacterial infections
Bioengineering
Biology and Life Sciences
Chemotherapy
Clinical trials
Computer simulation
Dose-response relationship
Drug dosages
Drug resistance
Drug therapy
Ethambutol
Granuloma
Granulomas
Immune response
Immune system
Immunosuppressive agents
Infections
Investigations
Isoniazid
Mathematical models
Medicine and Health Sciences
Open source software
Pharmacodynamics
Pharmacokinetics
Pharmacology
Pharmacy
Pyrazinamide
Research and Analysis Methods
Rifampin
Risk management
Risk reduction
RNA polymerase
Simulation
Software
Tuberculosis
title Mathematical model and tool to explore shorter multi-drug therapy options for active pulmonary tuberculosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A06%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20model%20and%20tool%20to%20explore%20shorter%20multi-drug%20therapy%20options%20for%20active%20pulmonary%20tuberculosis&rft.jtitle=PLoS%20computational%20biology&rft.au=Fors,%20John&rft.date=2020-08-18&rft.volume=16&rft.issue=8&rft.spage=e1008107&rft.epage=e1008107&rft.pages=e1008107-e1008107&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1008107&rft_dat=%3Cgale_plos_%3EA634243286%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2443593417&rft_id=info:pmid/32810158&rft_galeid=A634243286&rft_doaj_id=oai_doaj_org_article_da402b95bb604db8899366d79c651b02&rfr_iscdi=true