Extent and context dependence of pleiotropy revealed by high-throughput single-cell phenotyping

Pleiotropy-when a single mutation affects multiple traits-is a controversial topic with far-reaching implications. Pleiotropy plays a central role in debates about how complex traits evolve and whether biological systems are modular or are organized such that every gene has the potential to affect m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS biology 2020-08, Vol.18 (8), p.e3000836-e3000836
Hauptverfasser: Geiler-Samerotte, Kerry A, Li, Shuang, Lazaris, Charalampos, Taylor, Austin, Ziv, Naomi, Ramjeawan, Chelsea, Paaby, Annalise B, Siegal, Mark L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e3000836
container_issue 8
container_start_page e3000836
container_title PLoS biology
container_volume 18
creator Geiler-Samerotte, Kerry A
Li, Shuang
Lazaris, Charalampos
Taylor, Austin
Ziv, Naomi
Ramjeawan, Chelsea
Paaby, Annalise B
Siegal, Mark L
description Pleiotropy-when a single mutation affects multiple traits-is a controversial topic with far-reaching implications. Pleiotropy plays a central role in debates about how complex traits evolve and whether biological systems are modular or are organized such that every gene has the potential to affect many traits. Pleiotropy is also critical to initiatives in evolutionary medicine that seek to trap infectious microbes or tumors by selecting for mutations that encourage growth in some conditions at the expense of others. Research in these fields, and others, would benefit from understanding the extent to which pleiotropy reflects inherent relationships among phenotypes that correlate no matter the perturbation (vertical pleiotropy). Alternatively, pleiotropy may result from genetic changes that impose correlations between otherwise independent traits (horizontal pleiotropy). We distinguish these possibilities by using clonal populations of yeast cells to quantify the inherent relationships between single-cell morphological features. Then, we demonstrate how often these relationships underlie vertical pleiotropy and how often these relationships are modified by genetic variants (quantitative trait loci [QTL]) acting via horizontal pleiotropy. Our comprehensive screen measures thousands of pairwise trait correlations across hundreds of thousands of yeast cells and reveals ample evidence of both vertical and horizontal pleiotropy. Additionally, we observe that the correlations between traits can change with the environment, genetic background, and cell-cycle position. These changing dependencies suggest a nuanced view of pleiotropy: biological systems demonstrate limited pleiotropy in any given context, but across contexts (e.g., across diverse environments and genetic backgrounds) each genetic change has the potential to influence a larger number of traits. Our method suggests that exploiting pleiotropy for applications in evolutionary medicine would benefit from focusing on traits with correlations that are less dependent on context.
doi_str_mv 10.1371/journal.pbio.3000836
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2443592508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A634243366</galeid><doaj_id>oai_doaj_org_article_f62f70967c0042e8a01595a81a1fb8d5</doaj_id><sourcerecordid>A634243366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c695t-892b538f7a3ad26fb74053e09e84db9f3fe5919f19bc3371b783925222981c013</originalsourceid><addsrcrecordid>eNqVk01v1DAQhiMEomXhHyCIxAUOWfyZ2BekqiqwUkUlvq6Wk4wTr7JxsJOq--9x2LTqoh5AOSSaPPPa885MkrzEaI1pgd9v3eR73a2H0ro1RQgJmj9KTjFnPCuE4I_vfZ8kz0LYIkSIJOJpckKJQEyy_DRRFzcj9GOq-zqtXD_CzZjWMEBfQ19B6kw6dGDd6N2wTz1cg-6gTst92tqmzcbWu6lph2lMg-2bDrIKui4dWujduB9i6HnyxOguwIvlvUp-fLz4fv45u7z6tDk_u8yqXPIxE5KUnApTaKprkpuyYIhTQBIEq0tpqAEusTRYlhWN1ZeFoJJwEgsSuEKYrpLXB92hc0Et3gRFGKM8gtGcVbI5ELXTWzV4u9N-r5y26k_A-UZpP9qqA2VyYgok86JCiBEQGmEuuRZYY1OKmketD8tpU7mDuooOet0diR7_6W2rGnetCsaxFLPA20XAu18ThFHtbJi90z24ab435VjkOZERffMX-nB1C9XEBinbm9gyXc2i6iynLOrRPI_U-gEqPjXsbGw_GBvjRwnvjhKWEWn0FILafPv6H-yXf2evfh6z7MBW3oXgwdz5jJGaV-HWEDWvglpWIaa9ut-ju6Tb2ae_AQmXAzo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443592508</pqid></control><display><type>article</type><title>Extent and context dependence of pleiotropy revealed by high-throughput single-cell phenotyping</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Geiler-Samerotte, Kerry A ; Li, Shuang ; Lazaris, Charalampos ; Taylor, Austin ; Ziv, Naomi ; Ramjeawan, Chelsea ; Paaby, Annalise B ; Siegal, Mark L</creator><contributor>Pál, Csaba</contributor><creatorcontrib>Geiler-Samerotte, Kerry A ; Li, Shuang ; Lazaris, Charalampos ; Taylor, Austin ; Ziv, Naomi ; Ramjeawan, Chelsea ; Paaby, Annalise B ; Siegal, Mark L ; Pál, Csaba</creatorcontrib><description>Pleiotropy-when a single mutation affects multiple traits-is a controversial topic with far-reaching implications. Pleiotropy plays a central role in debates about how complex traits evolve and whether biological systems are modular or are organized such that every gene has the potential to affect many traits. Pleiotropy is also critical to initiatives in evolutionary medicine that seek to trap infectious microbes or tumors by selecting for mutations that encourage growth in some conditions at the expense of others. Research in these fields, and others, would benefit from understanding the extent to which pleiotropy reflects inherent relationships among phenotypes that correlate no matter the perturbation (vertical pleiotropy). Alternatively, pleiotropy may result from genetic changes that impose correlations between otherwise independent traits (horizontal pleiotropy). We distinguish these possibilities by using clonal populations of yeast cells to quantify the inherent relationships between single-cell morphological features. Then, we demonstrate how often these relationships underlie vertical pleiotropy and how often these relationships are modified by genetic variants (quantitative trait loci [QTL]) acting via horizontal pleiotropy. Our comprehensive screen measures thousands of pairwise trait correlations across hundreds of thousands of yeast cells and reveals ample evidence of both vertical and horizontal pleiotropy. Additionally, we observe that the correlations between traits can change with the environment, genetic background, and cell-cycle position. These changing dependencies suggest a nuanced view of pleiotropy: biological systems demonstrate limited pleiotropy in any given context, but across contexts (e.g., across diverse environments and genetic backgrounds) each genetic change has the potential to influence a larger number of traits. Our method suggests that exploiting pleiotropy for applications in evolutionary medicine would benefit from focusing on traits with correlations that are less dependent on context.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.3000836</identifier><identifier>PMID: 32804946</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biological Evolution ; Biology ; Biology and Life Sciences ; Cardiovascular disease ; Cell Cycle - genetics ; Cell division ; Clone Cells ; Context ; Correlation analysis ; Evolution ; Gene mapping ; Genes ; Genetic diversity ; Genetic Pleiotropy ; Genetic research ; Genetic screening ; Genetic variance ; Genetic Variation ; Genomics ; Genotype &amp; phenotype ; High-Throughput Screening Assays ; Influence ; Medicine ; Methods ; Methods and Resources ; Models, Genetic ; Modular systems ; Morphology ; Multifactorial Inheritance ; Mutation ; Perturbation ; Phenotype ; Phenotypes ; Phenotyping ; Phenylketonuria ; Pleiotropy ; Quantitative Trait Loci ; Research and Analysis Methods ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth &amp; development ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Single-Cell Analysis ; Tumors ; Yeast ; Yeasts</subject><ispartof>PLoS biology, 2020-08, Vol.18 (8), p.e3000836-e3000836</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Geiler-Samerotte et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Geiler-Samerotte et al 2020 Geiler-Samerotte et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c695t-892b538f7a3ad26fb74053e09e84db9f3fe5919f19bc3371b783925222981c013</citedby><cites>FETCH-LOGICAL-c695t-892b538f7a3ad26fb74053e09e84db9f3fe5919f19bc3371b783925222981c013</cites><orcidid>0000-0002-7345-8288 ; 0000-0003-1299-5335 ; 0000-0003-1422-047X ; 0000-0001-6930-2988 ; 0000-0003-4666-2192 ; 0000-0003-4658-9765</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7451985/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7451985/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32804946$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Pál, Csaba</contributor><creatorcontrib>Geiler-Samerotte, Kerry A</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Lazaris, Charalampos</creatorcontrib><creatorcontrib>Taylor, Austin</creatorcontrib><creatorcontrib>Ziv, Naomi</creatorcontrib><creatorcontrib>Ramjeawan, Chelsea</creatorcontrib><creatorcontrib>Paaby, Annalise B</creatorcontrib><creatorcontrib>Siegal, Mark L</creatorcontrib><title>Extent and context dependence of pleiotropy revealed by high-throughput single-cell phenotyping</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Pleiotropy-when a single mutation affects multiple traits-is a controversial topic with far-reaching implications. Pleiotropy plays a central role in debates about how complex traits evolve and whether biological systems are modular or are organized such that every gene has the potential to affect many traits. Pleiotropy is also critical to initiatives in evolutionary medicine that seek to trap infectious microbes or tumors by selecting for mutations that encourage growth in some conditions at the expense of others. Research in these fields, and others, would benefit from understanding the extent to which pleiotropy reflects inherent relationships among phenotypes that correlate no matter the perturbation (vertical pleiotropy). Alternatively, pleiotropy may result from genetic changes that impose correlations between otherwise independent traits (horizontal pleiotropy). We distinguish these possibilities by using clonal populations of yeast cells to quantify the inherent relationships between single-cell morphological features. Then, we demonstrate how often these relationships underlie vertical pleiotropy and how often these relationships are modified by genetic variants (quantitative trait loci [QTL]) acting via horizontal pleiotropy. Our comprehensive screen measures thousands of pairwise trait correlations across hundreds of thousands of yeast cells and reveals ample evidence of both vertical and horizontal pleiotropy. Additionally, we observe that the correlations between traits can change with the environment, genetic background, and cell-cycle position. These changing dependencies suggest a nuanced view of pleiotropy: biological systems demonstrate limited pleiotropy in any given context, but across contexts (e.g., across diverse environments and genetic backgrounds) each genetic change has the potential to influence a larger number of traits. Our method suggests that exploiting pleiotropy for applications in evolutionary medicine would benefit from focusing on traits with correlations that are less dependent on context.</description><subject>Biological Evolution</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Cardiovascular disease</subject><subject>Cell Cycle - genetics</subject><subject>Cell division</subject><subject>Clone Cells</subject><subject>Context</subject><subject>Correlation analysis</subject><subject>Evolution</subject><subject>Gene mapping</subject><subject>Genes</subject><subject>Genetic diversity</subject><subject>Genetic Pleiotropy</subject><subject>Genetic research</subject><subject>Genetic screening</subject><subject>Genetic variance</subject><subject>Genetic Variation</subject><subject>Genomics</subject><subject>Genotype &amp; phenotype</subject><subject>High-Throughput Screening Assays</subject><subject>Influence</subject><subject>Medicine</subject><subject>Methods</subject><subject>Methods and Resources</subject><subject>Models, Genetic</subject><subject>Modular systems</subject><subject>Morphology</subject><subject>Multifactorial Inheritance</subject><subject>Mutation</subject><subject>Perturbation</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Phenotyping</subject><subject>Phenylketonuria</subject><subject>Pleiotropy</subject><subject>Quantitative Trait Loci</subject><subject>Research and Analysis Methods</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Single-Cell Analysis</subject><subject>Tumors</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk01v1DAQhiMEomXhHyCIxAUOWfyZ2BekqiqwUkUlvq6Wk4wTr7JxsJOq--9x2LTqoh5AOSSaPPPa885MkrzEaI1pgd9v3eR73a2H0ro1RQgJmj9KTjFnPCuE4I_vfZ8kz0LYIkSIJOJpckKJQEyy_DRRFzcj9GOq-zqtXD_CzZjWMEBfQ19B6kw6dGDd6N2wTz1cg-6gTst92tqmzcbWu6lph2lMg-2bDrIKui4dWujduB9i6HnyxOguwIvlvUp-fLz4fv45u7z6tDk_u8yqXPIxE5KUnApTaKprkpuyYIhTQBIEq0tpqAEusTRYlhWN1ZeFoJJwEgsSuEKYrpLXB92hc0Et3gRFGKM8gtGcVbI5ELXTWzV4u9N-r5y26k_A-UZpP9qqA2VyYgok86JCiBEQGmEuuRZYY1OKmketD8tpU7mDuooOet0diR7_6W2rGnetCsaxFLPA20XAu18ThFHtbJi90z24ab435VjkOZERffMX-nB1C9XEBinbm9gyXc2i6iynLOrRPI_U-gEqPjXsbGw_GBvjRwnvjhKWEWn0FILafPv6H-yXf2evfh6z7MBW3oXgwdz5jJGaV-HWEDWvglpWIaa9ut-ju6Tb2ae_AQmXAzo</recordid><startdate>20200817</startdate><enddate>20200817</enddate><creator>Geiler-Samerotte, Kerry A</creator><creator>Li, Shuang</creator><creator>Lazaris, Charalampos</creator><creator>Taylor, Austin</creator><creator>Ziv, Naomi</creator><creator>Ramjeawan, Chelsea</creator><creator>Paaby, Annalise B</creator><creator>Siegal, Mark L</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0002-7345-8288</orcidid><orcidid>https://orcid.org/0000-0003-1299-5335</orcidid><orcidid>https://orcid.org/0000-0003-1422-047X</orcidid><orcidid>https://orcid.org/0000-0001-6930-2988</orcidid><orcidid>https://orcid.org/0000-0003-4666-2192</orcidid><orcidid>https://orcid.org/0000-0003-4658-9765</orcidid></search><sort><creationdate>20200817</creationdate><title>Extent and context dependence of pleiotropy revealed by high-throughput single-cell phenotyping</title><author>Geiler-Samerotte, Kerry A ; Li, Shuang ; Lazaris, Charalampos ; Taylor, Austin ; Ziv, Naomi ; Ramjeawan, Chelsea ; Paaby, Annalise B ; Siegal, Mark L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c695t-892b538f7a3ad26fb74053e09e84db9f3fe5919f19bc3371b783925222981c013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biological Evolution</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Cardiovascular disease</topic><topic>Cell Cycle - genetics</topic><topic>Cell division</topic><topic>Clone Cells</topic><topic>Context</topic><topic>Correlation analysis</topic><topic>Evolution</topic><topic>Gene mapping</topic><topic>Genes</topic><topic>Genetic diversity</topic><topic>Genetic Pleiotropy</topic><topic>Genetic research</topic><topic>Genetic screening</topic><topic>Genetic variance</topic><topic>Genetic Variation</topic><topic>Genomics</topic><topic>Genotype &amp; phenotype</topic><topic>High-Throughput Screening Assays</topic><topic>Influence</topic><topic>Medicine</topic><topic>Methods</topic><topic>Methods and Resources</topic><topic>Models, Genetic</topic><topic>Modular systems</topic><topic>Morphology</topic><topic>Multifactorial Inheritance</topic><topic>Mutation</topic><topic>Perturbation</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Phenotyping</topic><topic>Phenylketonuria</topic><topic>Pleiotropy</topic><topic>Quantitative Trait Loci</topic><topic>Research and Analysis Methods</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Single-Cell Analysis</topic><topic>Tumors</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geiler-Samerotte, Kerry A</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Lazaris, Charalampos</creatorcontrib><creatorcontrib>Taylor, Austin</creatorcontrib><creatorcontrib>Ziv, Naomi</creatorcontrib><creatorcontrib>Ramjeawan, Chelsea</creatorcontrib><creatorcontrib>Paaby, Annalise B</creatorcontrib><creatorcontrib>Siegal, Mark L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geiler-Samerotte, Kerry A</au><au>Li, Shuang</au><au>Lazaris, Charalampos</au><au>Taylor, Austin</au><au>Ziv, Naomi</au><au>Ramjeawan, Chelsea</au><au>Paaby, Annalise B</au><au>Siegal, Mark L</au><au>Pál, Csaba</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extent and context dependence of pleiotropy revealed by high-throughput single-cell phenotyping</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2020-08-17</date><risdate>2020</risdate><volume>18</volume><issue>8</issue><spage>e3000836</spage><epage>e3000836</epage><pages>e3000836-e3000836</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Pleiotropy-when a single mutation affects multiple traits-is a controversial topic with far-reaching implications. Pleiotropy plays a central role in debates about how complex traits evolve and whether biological systems are modular or are organized such that every gene has the potential to affect many traits. Pleiotropy is also critical to initiatives in evolutionary medicine that seek to trap infectious microbes or tumors by selecting for mutations that encourage growth in some conditions at the expense of others. Research in these fields, and others, would benefit from understanding the extent to which pleiotropy reflects inherent relationships among phenotypes that correlate no matter the perturbation (vertical pleiotropy). Alternatively, pleiotropy may result from genetic changes that impose correlations between otherwise independent traits (horizontal pleiotropy). We distinguish these possibilities by using clonal populations of yeast cells to quantify the inherent relationships between single-cell morphological features. Then, we demonstrate how often these relationships underlie vertical pleiotropy and how often these relationships are modified by genetic variants (quantitative trait loci [QTL]) acting via horizontal pleiotropy. Our comprehensive screen measures thousands of pairwise trait correlations across hundreds of thousands of yeast cells and reveals ample evidence of both vertical and horizontal pleiotropy. Additionally, we observe that the correlations between traits can change with the environment, genetic background, and cell-cycle position. These changing dependencies suggest a nuanced view of pleiotropy: biological systems demonstrate limited pleiotropy in any given context, but across contexts (e.g., across diverse environments and genetic backgrounds) each genetic change has the potential to influence a larger number of traits. Our method suggests that exploiting pleiotropy for applications in evolutionary medicine would benefit from focusing on traits with correlations that are less dependent on context.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32804946</pmid><doi>10.1371/journal.pbio.3000836</doi><orcidid>https://orcid.org/0000-0002-7345-8288</orcidid><orcidid>https://orcid.org/0000-0003-1299-5335</orcidid><orcidid>https://orcid.org/0000-0003-1422-047X</orcidid><orcidid>https://orcid.org/0000-0001-6930-2988</orcidid><orcidid>https://orcid.org/0000-0003-4666-2192</orcidid><orcidid>https://orcid.org/0000-0003-4658-9765</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-7885
ispartof PLoS biology, 2020-08, Vol.18 (8), p.e3000836-e3000836
issn 1545-7885
1544-9173
1545-7885
language eng
recordid cdi_plos_journals_2443592508
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Biological Evolution
Biology
Biology and Life Sciences
Cardiovascular disease
Cell Cycle - genetics
Cell division
Clone Cells
Context
Correlation analysis
Evolution
Gene mapping
Genes
Genetic diversity
Genetic Pleiotropy
Genetic research
Genetic screening
Genetic variance
Genetic Variation
Genomics
Genotype & phenotype
High-Throughput Screening Assays
Influence
Medicine
Methods
Methods and Resources
Models, Genetic
Modular systems
Morphology
Multifactorial Inheritance
Mutation
Perturbation
Phenotype
Phenotypes
Phenotyping
Phenylketonuria
Pleiotropy
Quantitative Trait Loci
Research and Analysis Methods
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - growth & development
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Single-Cell Analysis
Tumors
Yeast
Yeasts
title Extent and context dependence of pleiotropy revealed by high-throughput single-cell phenotyping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A19%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extent%20and%20context%20dependence%20of%20pleiotropy%20revealed%20by%20high-throughput%20single-cell%20phenotyping&rft.jtitle=PLoS%20biology&rft.au=Geiler-Samerotte,%20Kerry%20A&rft.date=2020-08-17&rft.volume=18&rft.issue=8&rft.spage=e3000836&rft.epage=e3000836&rft.pages=e3000836-e3000836&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.3000836&rft_dat=%3Cgale_plos_%3EA634243366%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2443592508&rft_id=info:pmid/32804946&rft_galeid=A634243366&rft_doaj_id=oai_doaj_org_article_f62f70967c0042e8a01595a81a1fb8d5&rfr_iscdi=true