Extent and context dependence of pleiotropy revealed by high-throughput single-cell phenotyping
Pleiotropy-when a single mutation affects multiple traits-is a controversial topic with far-reaching implications. Pleiotropy plays a central role in debates about how complex traits evolve and whether biological systems are modular or are organized such that every gene has the potential to affect m...
Gespeichert in:
Veröffentlicht in: | PLoS biology 2020-08, Vol.18 (8), p.e3000836-e3000836 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e3000836 |
---|---|
container_issue | 8 |
container_start_page | e3000836 |
container_title | PLoS biology |
container_volume | 18 |
creator | Geiler-Samerotte, Kerry A Li, Shuang Lazaris, Charalampos Taylor, Austin Ziv, Naomi Ramjeawan, Chelsea Paaby, Annalise B Siegal, Mark L |
description | Pleiotropy-when a single mutation affects multiple traits-is a controversial topic with far-reaching implications. Pleiotropy plays a central role in debates about how complex traits evolve and whether biological systems are modular or are organized such that every gene has the potential to affect many traits. Pleiotropy is also critical to initiatives in evolutionary medicine that seek to trap infectious microbes or tumors by selecting for mutations that encourage growth in some conditions at the expense of others. Research in these fields, and others, would benefit from understanding the extent to which pleiotropy reflects inherent relationships among phenotypes that correlate no matter the perturbation (vertical pleiotropy). Alternatively, pleiotropy may result from genetic changes that impose correlations between otherwise independent traits (horizontal pleiotropy). We distinguish these possibilities by using clonal populations of yeast cells to quantify the inherent relationships between single-cell morphological features. Then, we demonstrate how often these relationships underlie vertical pleiotropy and how often these relationships are modified by genetic variants (quantitative trait loci [QTL]) acting via horizontal pleiotropy. Our comprehensive screen measures thousands of pairwise trait correlations across hundreds of thousands of yeast cells and reveals ample evidence of both vertical and horizontal pleiotropy. Additionally, we observe that the correlations between traits can change with the environment, genetic background, and cell-cycle position. These changing dependencies suggest a nuanced view of pleiotropy: biological systems demonstrate limited pleiotropy in any given context, but across contexts (e.g., across diverse environments and genetic backgrounds) each genetic change has the potential to influence a larger number of traits. Our method suggests that exploiting pleiotropy for applications in evolutionary medicine would benefit from focusing on traits with correlations that are less dependent on context. |
doi_str_mv | 10.1371/journal.pbio.3000836 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2443592508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A634243366</galeid><doaj_id>oai_doaj_org_article_f62f70967c0042e8a01595a81a1fb8d5</doaj_id><sourcerecordid>A634243366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c695t-892b538f7a3ad26fb74053e09e84db9f3fe5919f19bc3371b783925222981c013</originalsourceid><addsrcrecordid>eNqVk01v1DAQhiMEomXhHyCIxAUOWfyZ2BekqiqwUkUlvq6Wk4wTr7JxsJOq--9x2LTqoh5AOSSaPPPa885MkrzEaI1pgd9v3eR73a2H0ro1RQgJmj9KTjFnPCuE4I_vfZ8kz0LYIkSIJOJpckKJQEyy_DRRFzcj9GOq-zqtXD_CzZjWMEBfQ19B6kw6dGDd6N2wTz1cg-6gTst92tqmzcbWu6lph2lMg-2bDrIKui4dWujduB9i6HnyxOguwIvlvUp-fLz4fv45u7z6tDk_u8yqXPIxE5KUnApTaKprkpuyYIhTQBIEq0tpqAEusTRYlhWN1ZeFoJJwEgsSuEKYrpLXB92hc0Et3gRFGKM8gtGcVbI5ELXTWzV4u9N-r5y26k_A-UZpP9qqA2VyYgok86JCiBEQGmEuuRZYY1OKmketD8tpU7mDuooOet0diR7_6W2rGnetCsaxFLPA20XAu18ThFHtbJi90z24ab435VjkOZERffMX-nB1C9XEBinbm9gyXc2i6iynLOrRPI_U-gEqPjXsbGw_GBvjRwnvjhKWEWn0FILafPv6H-yXf2evfh6z7MBW3oXgwdz5jJGaV-HWEDWvglpWIaa9ut-ju6Tb2ae_AQmXAzo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443592508</pqid></control><display><type>article</type><title>Extent and context dependence of pleiotropy revealed by high-throughput single-cell phenotyping</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Geiler-Samerotte, Kerry A ; Li, Shuang ; Lazaris, Charalampos ; Taylor, Austin ; Ziv, Naomi ; Ramjeawan, Chelsea ; Paaby, Annalise B ; Siegal, Mark L</creator><contributor>Pál, Csaba</contributor><creatorcontrib>Geiler-Samerotte, Kerry A ; Li, Shuang ; Lazaris, Charalampos ; Taylor, Austin ; Ziv, Naomi ; Ramjeawan, Chelsea ; Paaby, Annalise B ; Siegal, Mark L ; Pál, Csaba</creatorcontrib><description>Pleiotropy-when a single mutation affects multiple traits-is a controversial topic with far-reaching implications. Pleiotropy plays a central role in debates about how complex traits evolve and whether biological systems are modular or are organized such that every gene has the potential to affect many traits. Pleiotropy is also critical to initiatives in evolutionary medicine that seek to trap infectious microbes or tumors by selecting for mutations that encourage growth in some conditions at the expense of others. Research in these fields, and others, would benefit from understanding the extent to which pleiotropy reflects inherent relationships among phenotypes that correlate no matter the perturbation (vertical pleiotropy). Alternatively, pleiotropy may result from genetic changes that impose correlations between otherwise independent traits (horizontal pleiotropy). We distinguish these possibilities by using clonal populations of yeast cells to quantify the inherent relationships between single-cell morphological features. Then, we demonstrate how often these relationships underlie vertical pleiotropy and how often these relationships are modified by genetic variants (quantitative trait loci [QTL]) acting via horizontal pleiotropy. Our comprehensive screen measures thousands of pairwise trait correlations across hundreds of thousands of yeast cells and reveals ample evidence of both vertical and horizontal pleiotropy. Additionally, we observe that the correlations between traits can change with the environment, genetic background, and cell-cycle position. These changing dependencies suggest a nuanced view of pleiotropy: biological systems demonstrate limited pleiotropy in any given context, but across contexts (e.g., across diverse environments and genetic backgrounds) each genetic change has the potential to influence a larger number of traits. Our method suggests that exploiting pleiotropy for applications in evolutionary medicine would benefit from focusing on traits with correlations that are less dependent on context.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.3000836</identifier><identifier>PMID: 32804946</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biological Evolution ; Biology ; Biology and Life Sciences ; Cardiovascular disease ; Cell Cycle - genetics ; Cell division ; Clone Cells ; Context ; Correlation analysis ; Evolution ; Gene mapping ; Genes ; Genetic diversity ; Genetic Pleiotropy ; Genetic research ; Genetic screening ; Genetic variance ; Genetic Variation ; Genomics ; Genotype & phenotype ; High-Throughput Screening Assays ; Influence ; Medicine ; Methods ; Methods and Resources ; Models, Genetic ; Modular systems ; Morphology ; Multifactorial Inheritance ; Mutation ; Perturbation ; Phenotype ; Phenotypes ; Phenotyping ; Phenylketonuria ; Pleiotropy ; Quantitative Trait Loci ; Research and Analysis Methods ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth & development ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Single-Cell Analysis ; Tumors ; Yeast ; Yeasts</subject><ispartof>PLoS biology, 2020-08, Vol.18 (8), p.e3000836-e3000836</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Geiler-Samerotte et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Geiler-Samerotte et al 2020 Geiler-Samerotte et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c695t-892b538f7a3ad26fb74053e09e84db9f3fe5919f19bc3371b783925222981c013</citedby><cites>FETCH-LOGICAL-c695t-892b538f7a3ad26fb74053e09e84db9f3fe5919f19bc3371b783925222981c013</cites><orcidid>0000-0002-7345-8288 ; 0000-0003-1299-5335 ; 0000-0003-1422-047X ; 0000-0001-6930-2988 ; 0000-0003-4666-2192 ; 0000-0003-4658-9765</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7451985/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7451985/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32804946$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Pál, Csaba</contributor><creatorcontrib>Geiler-Samerotte, Kerry A</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Lazaris, Charalampos</creatorcontrib><creatorcontrib>Taylor, Austin</creatorcontrib><creatorcontrib>Ziv, Naomi</creatorcontrib><creatorcontrib>Ramjeawan, Chelsea</creatorcontrib><creatorcontrib>Paaby, Annalise B</creatorcontrib><creatorcontrib>Siegal, Mark L</creatorcontrib><title>Extent and context dependence of pleiotropy revealed by high-throughput single-cell phenotyping</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Pleiotropy-when a single mutation affects multiple traits-is a controversial topic with far-reaching implications. Pleiotropy plays a central role in debates about how complex traits evolve and whether biological systems are modular or are organized such that every gene has the potential to affect many traits. Pleiotropy is also critical to initiatives in evolutionary medicine that seek to trap infectious microbes or tumors by selecting for mutations that encourage growth in some conditions at the expense of others. Research in these fields, and others, would benefit from understanding the extent to which pleiotropy reflects inherent relationships among phenotypes that correlate no matter the perturbation (vertical pleiotropy). Alternatively, pleiotropy may result from genetic changes that impose correlations between otherwise independent traits (horizontal pleiotropy). We distinguish these possibilities by using clonal populations of yeast cells to quantify the inherent relationships between single-cell morphological features. Then, we demonstrate how often these relationships underlie vertical pleiotropy and how often these relationships are modified by genetic variants (quantitative trait loci [QTL]) acting via horizontal pleiotropy. Our comprehensive screen measures thousands of pairwise trait correlations across hundreds of thousands of yeast cells and reveals ample evidence of both vertical and horizontal pleiotropy. Additionally, we observe that the correlations between traits can change with the environment, genetic background, and cell-cycle position. These changing dependencies suggest a nuanced view of pleiotropy: biological systems demonstrate limited pleiotropy in any given context, but across contexts (e.g., across diverse environments and genetic backgrounds) each genetic change has the potential to influence a larger number of traits. Our method suggests that exploiting pleiotropy for applications in evolutionary medicine would benefit from focusing on traits with correlations that are less dependent on context.</description><subject>Biological Evolution</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Cardiovascular disease</subject><subject>Cell Cycle - genetics</subject><subject>Cell division</subject><subject>Clone Cells</subject><subject>Context</subject><subject>Correlation analysis</subject><subject>Evolution</subject><subject>Gene mapping</subject><subject>Genes</subject><subject>Genetic diversity</subject><subject>Genetic Pleiotropy</subject><subject>Genetic research</subject><subject>Genetic screening</subject><subject>Genetic variance</subject><subject>Genetic Variation</subject><subject>Genomics</subject><subject>Genotype & phenotype</subject><subject>High-Throughput Screening Assays</subject><subject>Influence</subject><subject>Medicine</subject><subject>Methods</subject><subject>Methods and Resources</subject><subject>Models, Genetic</subject><subject>Modular systems</subject><subject>Morphology</subject><subject>Multifactorial Inheritance</subject><subject>Mutation</subject><subject>Perturbation</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Phenotyping</subject><subject>Phenylketonuria</subject><subject>Pleiotropy</subject><subject>Quantitative Trait Loci</subject><subject>Research and Analysis Methods</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth & development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Single-Cell Analysis</subject><subject>Tumors</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk01v1DAQhiMEomXhHyCIxAUOWfyZ2BekqiqwUkUlvq6Wk4wTr7JxsJOq--9x2LTqoh5AOSSaPPPa885MkrzEaI1pgd9v3eR73a2H0ro1RQgJmj9KTjFnPCuE4I_vfZ8kz0LYIkSIJOJpckKJQEyy_DRRFzcj9GOq-zqtXD_CzZjWMEBfQ19B6kw6dGDd6N2wTz1cg-6gTst92tqmzcbWu6lph2lMg-2bDrIKui4dWujduB9i6HnyxOguwIvlvUp-fLz4fv45u7z6tDk_u8yqXPIxE5KUnApTaKprkpuyYIhTQBIEq0tpqAEusTRYlhWN1ZeFoJJwEgsSuEKYrpLXB92hc0Et3gRFGKM8gtGcVbI5ELXTWzV4u9N-r5y26k_A-UZpP9qqA2VyYgok86JCiBEQGmEuuRZYY1OKmketD8tpU7mDuooOet0diR7_6W2rGnetCsaxFLPA20XAu18ThFHtbJi90z24ab435VjkOZERffMX-nB1C9XEBinbm9gyXc2i6iynLOrRPI_U-gEqPjXsbGw_GBvjRwnvjhKWEWn0FILafPv6H-yXf2evfh6z7MBW3oXgwdz5jJGaV-HWEDWvglpWIaa9ut-ju6Tb2ae_AQmXAzo</recordid><startdate>20200817</startdate><enddate>20200817</enddate><creator>Geiler-Samerotte, Kerry A</creator><creator>Li, Shuang</creator><creator>Lazaris, Charalampos</creator><creator>Taylor, Austin</creator><creator>Ziv, Naomi</creator><creator>Ramjeawan, Chelsea</creator><creator>Paaby, Annalise B</creator><creator>Siegal, Mark L</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0002-7345-8288</orcidid><orcidid>https://orcid.org/0000-0003-1299-5335</orcidid><orcidid>https://orcid.org/0000-0003-1422-047X</orcidid><orcidid>https://orcid.org/0000-0001-6930-2988</orcidid><orcidid>https://orcid.org/0000-0003-4666-2192</orcidid><orcidid>https://orcid.org/0000-0003-4658-9765</orcidid></search><sort><creationdate>20200817</creationdate><title>Extent and context dependence of pleiotropy revealed by high-throughput single-cell phenotyping</title><author>Geiler-Samerotte, Kerry A ; Li, Shuang ; Lazaris, Charalampos ; Taylor, Austin ; Ziv, Naomi ; Ramjeawan, Chelsea ; Paaby, Annalise B ; Siegal, Mark L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c695t-892b538f7a3ad26fb74053e09e84db9f3fe5919f19bc3371b783925222981c013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biological Evolution</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Cardiovascular disease</topic><topic>Cell Cycle - genetics</topic><topic>Cell division</topic><topic>Clone Cells</topic><topic>Context</topic><topic>Correlation analysis</topic><topic>Evolution</topic><topic>Gene mapping</topic><topic>Genes</topic><topic>Genetic diversity</topic><topic>Genetic Pleiotropy</topic><topic>Genetic research</topic><topic>Genetic screening</topic><topic>Genetic variance</topic><topic>Genetic Variation</topic><topic>Genomics</topic><topic>Genotype & phenotype</topic><topic>High-Throughput Screening Assays</topic><topic>Influence</topic><topic>Medicine</topic><topic>Methods</topic><topic>Methods and Resources</topic><topic>Models, Genetic</topic><topic>Modular systems</topic><topic>Morphology</topic><topic>Multifactorial Inheritance</topic><topic>Mutation</topic><topic>Perturbation</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Phenotyping</topic><topic>Phenylketonuria</topic><topic>Pleiotropy</topic><topic>Quantitative Trait Loci</topic><topic>Research and Analysis Methods</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth & development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Single-Cell Analysis</topic><topic>Tumors</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geiler-Samerotte, Kerry A</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Lazaris, Charalampos</creatorcontrib><creatorcontrib>Taylor, Austin</creatorcontrib><creatorcontrib>Ziv, Naomi</creatorcontrib><creatorcontrib>Ramjeawan, Chelsea</creatorcontrib><creatorcontrib>Paaby, Annalise B</creatorcontrib><creatorcontrib>Siegal, Mark L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geiler-Samerotte, Kerry A</au><au>Li, Shuang</au><au>Lazaris, Charalampos</au><au>Taylor, Austin</au><au>Ziv, Naomi</au><au>Ramjeawan, Chelsea</au><au>Paaby, Annalise B</au><au>Siegal, Mark L</au><au>Pál, Csaba</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extent and context dependence of pleiotropy revealed by high-throughput single-cell phenotyping</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2020-08-17</date><risdate>2020</risdate><volume>18</volume><issue>8</issue><spage>e3000836</spage><epage>e3000836</epage><pages>e3000836-e3000836</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Pleiotropy-when a single mutation affects multiple traits-is a controversial topic with far-reaching implications. Pleiotropy plays a central role in debates about how complex traits evolve and whether biological systems are modular or are organized such that every gene has the potential to affect many traits. Pleiotropy is also critical to initiatives in evolutionary medicine that seek to trap infectious microbes or tumors by selecting for mutations that encourage growth in some conditions at the expense of others. Research in these fields, and others, would benefit from understanding the extent to which pleiotropy reflects inherent relationships among phenotypes that correlate no matter the perturbation (vertical pleiotropy). Alternatively, pleiotropy may result from genetic changes that impose correlations between otherwise independent traits (horizontal pleiotropy). We distinguish these possibilities by using clonal populations of yeast cells to quantify the inherent relationships between single-cell morphological features. Then, we demonstrate how often these relationships underlie vertical pleiotropy and how often these relationships are modified by genetic variants (quantitative trait loci [QTL]) acting via horizontal pleiotropy. Our comprehensive screen measures thousands of pairwise trait correlations across hundreds of thousands of yeast cells and reveals ample evidence of both vertical and horizontal pleiotropy. Additionally, we observe that the correlations between traits can change with the environment, genetic background, and cell-cycle position. These changing dependencies suggest a nuanced view of pleiotropy: biological systems demonstrate limited pleiotropy in any given context, but across contexts (e.g., across diverse environments and genetic backgrounds) each genetic change has the potential to influence a larger number of traits. Our method suggests that exploiting pleiotropy for applications in evolutionary medicine would benefit from focusing on traits with correlations that are less dependent on context.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32804946</pmid><doi>10.1371/journal.pbio.3000836</doi><orcidid>https://orcid.org/0000-0002-7345-8288</orcidid><orcidid>https://orcid.org/0000-0003-1299-5335</orcidid><orcidid>https://orcid.org/0000-0003-1422-047X</orcidid><orcidid>https://orcid.org/0000-0001-6930-2988</orcidid><orcidid>https://orcid.org/0000-0003-4666-2192</orcidid><orcidid>https://orcid.org/0000-0003-4658-9765</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-7885 |
ispartof | PLoS biology, 2020-08, Vol.18 (8), p.e3000836-e3000836 |
issn | 1545-7885 1544-9173 1545-7885 |
language | eng |
recordid | cdi_plos_journals_2443592508 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Biological Evolution Biology Biology and Life Sciences Cardiovascular disease Cell Cycle - genetics Cell division Clone Cells Context Correlation analysis Evolution Gene mapping Genes Genetic diversity Genetic Pleiotropy Genetic research Genetic screening Genetic variance Genetic Variation Genomics Genotype & phenotype High-Throughput Screening Assays Influence Medicine Methods Methods and Resources Models, Genetic Modular systems Morphology Multifactorial Inheritance Mutation Perturbation Phenotype Phenotypes Phenotyping Phenylketonuria Pleiotropy Quantitative Trait Loci Research and Analysis Methods Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - growth & development Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Single-Cell Analysis Tumors Yeast Yeasts |
title | Extent and context dependence of pleiotropy revealed by high-throughput single-cell phenotyping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A19%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extent%20and%20context%20dependence%20of%20pleiotropy%20revealed%20by%20high-throughput%20single-cell%20phenotyping&rft.jtitle=PLoS%20biology&rft.au=Geiler-Samerotte,%20Kerry%20A&rft.date=2020-08-17&rft.volume=18&rft.issue=8&rft.spage=e3000836&rft.epage=e3000836&rft.pages=e3000836-e3000836&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.3000836&rft_dat=%3Cgale_plos_%3EA634243366%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2443592508&rft_id=info:pmid/32804946&rft_galeid=A634243366&rft_doaj_id=oai_doaj_org_article_f62f70967c0042e8a01595a81a1fb8d5&rfr_iscdi=true |