The roles of replication-transcription conflict in mutagenesis and evolution of genome organization
Replication-transcription conflicts promote mutagenesis and give rise to evolutionary signatures, with fundamental importance to genome stability ranging from bacteria to metastatic cancer cells. This review focuses on the interplay between replication-transcription conflicts and the evolution of ge...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2020-08, Vol.16 (8), p.e1008987 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | e1008987 |
container_title | PLoS genetics |
container_volume | 16 |
creator | Schroeder, Jeremy W Sankar, T Sabari Wang, Jue D Simmons, Lyle A |
description | Replication-transcription conflicts promote mutagenesis and give rise to evolutionary signatures, with fundamental importance to genome stability ranging from bacteria to metastatic cancer cells. This review focuses on the interplay between replication-transcription conflicts and the evolution of gene directionality. In most bacteria, the majority of genes are encoded on the leading strand of replication such that their transcription is co-directional with the direction of DNA replication fork movement. This gene strand bias arises primarily due to negative selection against deleterious consequences of head-on replication-transcription conflict. However, many genes remain head-on. Can head-on orientation provide some benefit? We combine insights from both mechanistic and evolutionary studies, review published work, and analyze gene expression data to evaluate an emerging model that head-on genes are temporal targets for adaptive mutagenesis during stress. We highlight the alternative explanation that genes in the head-on orientation may simply be the result of genomic inversions and relaxed selection acting on nonessential genes. We seek to clarify how the mechanisms of replication-transcription conflict, in concert with other mutagenic mechanisms, balanced by natural selection, have shaped bacterial genome evolution. |
doi_str_mv | 10.1371/journal.pgen.1008987 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2443592186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A634469412</galeid><doaj_id>oai_doaj_org_article_b465f3cc2795484cb30c86c2d7b598f8</doaj_id><sourcerecordid>A634469412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-a45cd36307a2efbf62fd20c8674a3daf40748c41a340fe051616682909b933c83</originalsourceid><addsrcrecordid>eNqVk1trFDEUxwdRbK1-A9EBQfBh1tyTeRFK8bJQLGj1NWQyyW6WmWSbzBT105vdnZYdUFDykMv5nf85nJNTFM8hWEDM4dtNGKNX3WK7Mn4BARC14A-KU0gprjgB5OHR-aR4ktIGAExFzR8XJxgJilHNTwt9vTZlDJ1JZbBlNNvOaTW44KshKp90dNvdrdTB22waSufLfhxUDmqSS6XybWluQzfuqSyRDaE3ZYgr5d2vvdTT4pFVXTLPpv2s-Pbh_fXFp-ry6uPy4vyy0hyxoVKE6hYzDLhCxjaWIdsioAXjROFWWQI4EZpAhQmwBlDIIGMC1aBuaoy1wGfFy4PutgtJTvVJEhGCaY2gYJlYHog2qI3cRter-FMG5eT-ISctVRyc7oxsCKMWa414TYkgusG7VDRqeUNrYXfR3k3RxqY3rTY-V6ybic4t3q3lKtxKTmhuDMgCryaBGG5Gk4a_pDxRK5Wzct6GLKZ7l7Q8Z5gQVhOIMrX4A5VXa3qXe2esy-8zhzczh8wM5sewUmNKcvn1y3-wn_-dvfo-Z18fsWujumGdpq-U5iA5gDqGlKKx91WGQO6G4a5ycjcMchqG7PbiuEP3Tne_H_8GxNsEhg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443592186</pqid></control><display><type>article</type><title>The roles of replication-transcription conflict in mutagenesis and evolution of genome organization</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Schroeder, Jeremy W ; Sankar, T Sabari ; Wang, Jue D ; Simmons, Lyle A</creator><contributor>Levin, Petra Anne</contributor><creatorcontrib>Schroeder, Jeremy W ; Sankar, T Sabari ; Wang, Jue D ; Simmons, Lyle A ; Levin, Petra Anne</creatorcontrib><description>Replication-transcription conflicts promote mutagenesis and give rise to evolutionary signatures, with fundamental importance to genome stability ranging from bacteria to metastatic cancer cells. This review focuses on the interplay between replication-transcription conflicts and the evolution of gene directionality. In most bacteria, the majority of genes are encoded on the leading strand of replication such that their transcription is co-directional with the direction of DNA replication fork movement. This gene strand bias arises primarily due to negative selection against deleterious consequences of head-on replication-transcription conflict. However, many genes remain head-on. Can head-on orientation provide some benefit? We combine insights from both mechanistic and evolutionary studies, review published work, and analyze gene expression data to evaluate an emerging model that head-on genes are temporal targets for adaptive mutagenesis during stress. We highlight the alternative explanation that genes in the head-on orientation may simply be the result of genomic inversions and relaxed selection acting on nonessential genes. We seek to clarify how the mechanisms of replication-transcription conflict, in concert with other mutagenic mechanisms, balanced by natural selection, have shaped bacterial genome evolution.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1008987</identifier><identifier>PMID: 32853297</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Bacteria ; Bacteria - genetics ; Bacteriology ; Bias ; Biology and life sciences ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA replication ; DNA Replication - genetics ; E coli ; Evolution & development ; Evolution, Molecular ; Evolutionary genetics ; Gene expression ; Genes ; Genetic research ; Genome, Bacterial - genetics ; Genomes ; Genomics ; Hypotheses ; Medicine and Health Sciences ; Metastases ; Mutagenesis ; Mutation ; Natural selection ; Negative selection ; Replication ; Research and Analysis Methods ; Review ; Science education ; Selection, Genetic - genetics ; Transcription ; Transcription (Genetics) ; Transcription, Genetic</subject><ispartof>PLoS genetics, 2020-08, Vol.16 (8), p.e1008987</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Schroeder et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Schroeder et al 2020 Schroeder et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-a45cd36307a2efbf62fd20c8674a3daf40748c41a340fe051616682909b933c83</citedby><cites>FETCH-LOGICAL-c726t-a45cd36307a2efbf62fd20c8674a3daf40748c41a340fe051616682909b933c83</cites><orcidid>0000-0003-1503-170X ; 0000-0002-9600-7623 ; 0000-0003-0692-8769 ; 0000-0001-8829-8494</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7451550/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7451550/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32853297$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Levin, Petra Anne</contributor><creatorcontrib>Schroeder, Jeremy W</creatorcontrib><creatorcontrib>Sankar, T Sabari</creatorcontrib><creatorcontrib>Wang, Jue D</creatorcontrib><creatorcontrib>Simmons, Lyle A</creatorcontrib><title>The roles of replication-transcription conflict in mutagenesis and evolution of genome organization</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Replication-transcription conflicts promote mutagenesis and give rise to evolutionary signatures, with fundamental importance to genome stability ranging from bacteria to metastatic cancer cells. This review focuses on the interplay between replication-transcription conflicts and the evolution of gene directionality. In most bacteria, the majority of genes are encoded on the leading strand of replication such that their transcription is co-directional with the direction of DNA replication fork movement. This gene strand bias arises primarily due to negative selection against deleterious consequences of head-on replication-transcription conflict. However, many genes remain head-on. Can head-on orientation provide some benefit? We combine insights from both mechanistic and evolutionary studies, review published work, and analyze gene expression data to evaluate an emerging model that head-on genes are temporal targets for adaptive mutagenesis during stress. We highlight the alternative explanation that genes in the head-on orientation may simply be the result of genomic inversions and relaxed selection acting on nonessential genes. We seek to clarify how the mechanisms of replication-transcription conflict, in concert with other mutagenic mechanisms, balanced by natural selection, have shaped bacterial genome evolution.</description><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>Bacteriology</subject><subject>Bias</subject><subject>Biology and life sciences</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA replication</subject><subject>DNA Replication - genetics</subject><subject>E coli</subject><subject>Evolution & development</subject><subject>Evolution, Molecular</subject><subject>Evolutionary genetics</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic research</subject><subject>Genome, Bacterial - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Hypotheses</subject><subject>Medicine and Health Sciences</subject><subject>Metastases</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Natural selection</subject><subject>Negative selection</subject><subject>Replication</subject><subject>Research and Analysis Methods</subject><subject>Review</subject><subject>Science education</subject><subject>Selection, Genetic - genetics</subject><subject>Transcription</subject><subject>Transcription (Genetics)</subject><subject>Transcription, Genetic</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk1trFDEUxwdRbK1-A9EBQfBh1tyTeRFK8bJQLGj1NWQyyW6WmWSbzBT105vdnZYdUFDykMv5nf85nJNTFM8hWEDM4dtNGKNX3WK7Mn4BARC14A-KU0gprjgB5OHR-aR4ktIGAExFzR8XJxgJilHNTwt9vTZlDJ1JZbBlNNvOaTW44KshKp90dNvdrdTB22waSufLfhxUDmqSS6XybWluQzfuqSyRDaE3ZYgr5d2vvdTT4pFVXTLPpv2s-Pbh_fXFp-ry6uPy4vyy0hyxoVKE6hYzDLhCxjaWIdsioAXjROFWWQI4EZpAhQmwBlDIIGMC1aBuaoy1wGfFy4PutgtJTvVJEhGCaY2gYJlYHog2qI3cRter-FMG5eT-ISctVRyc7oxsCKMWa414TYkgusG7VDRqeUNrYXfR3k3RxqY3rTY-V6ybic4t3q3lKtxKTmhuDMgCryaBGG5Gk4a_pDxRK5Wzct6GLKZ7l7Q8Z5gQVhOIMrX4A5VXa3qXe2esy-8zhzczh8wM5sewUmNKcvn1y3-wn_-dvfo-Z18fsWujumGdpq-U5iA5gDqGlKKx91WGQO6G4a5ycjcMchqG7PbiuEP3Tne_H_8GxNsEhg</recordid><startdate>20200827</startdate><enddate>20200827</enddate><creator>Schroeder, Jeremy W</creator><creator>Sankar, T Sabari</creator><creator>Wang, Jue D</creator><creator>Simmons, Lyle A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1503-170X</orcidid><orcidid>https://orcid.org/0000-0002-9600-7623</orcidid><orcidid>https://orcid.org/0000-0003-0692-8769</orcidid><orcidid>https://orcid.org/0000-0001-8829-8494</orcidid></search><sort><creationdate>20200827</creationdate><title>The roles of replication-transcription conflict in mutagenesis and evolution of genome organization</title><author>Schroeder, Jeremy W ; Sankar, T Sabari ; Wang, Jue D ; Simmons, Lyle A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-a45cd36307a2efbf62fd20c8674a3daf40748c41a340fe051616682909b933c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>Bacteriology</topic><topic>Bias</topic><topic>Biology and life sciences</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA replication</topic><topic>DNA Replication - genetics</topic><topic>E coli</topic><topic>Evolution & development</topic><topic>Evolution, Molecular</topic><topic>Evolutionary genetics</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic research</topic><topic>Genome, Bacterial - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Hypotheses</topic><topic>Medicine and Health Sciences</topic><topic>Metastases</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Natural selection</topic><topic>Negative selection</topic><topic>Replication</topic><topic>Research and Analysis Methods</topic><topic>Review</topic><topic>Science education</topic><topic>Selection, Genetic - genetics</topic><topic>Transcription</topic><topic>Transcription (Genetics)</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schroeder, Jeremy W</creatorcontrib><creatorcontrib>Sankar, T Sabari</creatorcontrib><creatorcontrib>Wang, Jue D</creatorcontrib><creatorcontrib>Simmons, Lyle A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schroeder, Jeremy W</au><au>Sankar, T Sabari</au><au>Wang, Jue D</au><au>Simmons, Lyle A</au><au>Levin, Petra Anne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The roles of replication-transcription conflict in mutagenesis and evolution of genome organization</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2020-08-27</date><risdate>2020</risdate><volume>16</volume><issue>8</issue><spage>e1008987</spage><pages>e1008987-</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Replication-transcription conflicts promote mutagenesis and give rise to evolutionary signatures, with fundamental importance to genome stability ranging from bacteria to metastatic cancer cells. This review focuses on the interplay between replication-transcription conflicts and the evolution of gene directionality. In most bacteria, the majority of genes are encoded on the leading strand of replication such that their transcription is co-directional with the direction of DNA replication fork movement. This gene strand bias arises primarily due to negative selection against deleterious consequences of head-on replication-transcription conflict. However, many genes remain head-on. Can head-on orientation provide some benefit? We combine insights from both mechanistic and evolutionary studies, review published work, and analyze gene expression data to evaluate an emerging model that head-on genes are temporal targets for adaptive mutagenesis during stress. We highlight the alternative explanation that genes in the head-on orientation may simply be the result of genomic inversions and relaxed selection acting on nonessential genes. We seek to clarify how the mechanisms of replication-transcription conflict, in concert with other mutagenic mechanisms, balanced by natural selection, have shaped bacterial genome evolution.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32853297</pmid><doi>10.1371/journal.pgen.1008987</doi><orcidid>https://orcid.org/0000-0003-1503-170X</orcidid><orcidid>https://orcid.org/0000-0002-9600-7623</orcidid><orcidid>https://orcid.org/0000-0003-0692-8769</orcidid><orcidid>https://orcid.org/0000-0001-8829-8494</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2020-08, Vol.16 (8), p.e1008987 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_2443592186 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central |
subjects | Bacteria Bacteria - genetics Bacteriology Bias Biology and life sciences Deoxyribonucleic acid DNA DNA biosynthesis DNA replication DNA Replication - genetics E coli Evolution & development Evolution, Molecular Evolutionary genetics Gene expression Genes Genetic research Genome, Bacterial - genetics Genomes Genomics Hypotheses Medicine and Health Sciences Metastases Mutagenesis Mutation Natural selection Negative selection Replication Research and Analysis Methods Review Science education Selection, Genetic - genetics Transcription Transcription (Genetics) Transcription, Genetic |
title | The roles of replication-transcription conflict in mutagenesis and evolution of genome organization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A20%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20roles%20of%20replication-transcription%20conflict%20in%20mutagenesis%20and%20evolution%20of%20genome%20organization&rft.jtitle=PLoS%20genetics&rft.au=Schroeder,%20Jeremy%20W&rft.date=2020-08-27&rft.volume=16&rft.issue=8&rft.spage=e1008987&rft.pages=e1008987-&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1008987&rft_dat=%3Cgale_plos_%3EA634469412%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2443592186&rft_id=info:pmid/32853297&rft_galeid=A634469412&rft_doaj_id=oai_doaj_org_article_b465f3cc2795484cb30c86c2d7b598f8&rfr_iscdi=true |