The roles of replication-transcription conflict in mutagenesis and evolution of genome organization

Replication-transcription conflicts promote mutagenesis and give rise to evolutionary signatures, with fundamental importance to genome stability ranging from bacteria to metastatic cancer cells. This review focuses on the interplay between replication-transcription conflicts and the evolution of ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2020-08, Vol.16 (8), p.e1008987
Hauptverfasser: Schroeder, Jeremy W, Sankar, T Sabari, Wang, Jue D, Simmons, Lyle A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page e1008987
container_title PLoS genetics
container_volume 16
creator Schroeder, Jeremy W
Sankar, T Sabari
Wang, Jue D
Simmons, Lyle A
description Replication-transcription conflicts promote mutagenesis and give rise to evolutionary signatures, with fundamental importance to genome stability ranging from bacteria to metastatic cancer cells. This review focuses on the interplay between replication-transcription conflicts and the evolution of gene directionality. In most bacteria, the majority of genes are encoded on the leading strand of replication such that their transcription is co-directional with the direction of DNA replication fork movement. This gene strand bias arises primarily due to negative selection against deleterious consequences of head-on replication-transcription conflict. However, many genes remain head-on. Can head-on orientation provide some benefit? We combine insights from both mechanistic and evolutionary studies, review published work, and analyze gene expression data to evaluate an emerging model that head-on genes are temporal targets for adaptive mutagenesis during stress. We highlight the alternative explanation that genes in the head-on orientation may simply be the result of genomic inversions and relaxed selection acting on nonessential genes. We seek to clarify how the mechanisms of replication-transcription conflict, in concert with other mutagenic mechanisms, balanced by natural selection, have shaped bacterial genome evolution.
doi_str_mv 10.1371/journal.pgen.1008987
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2443592186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A634469412</galeid><doaj_id>oai_doaj_org_article_b465f3cc2795484cb30c86c2d7b598f8</doaj_id><sourcerecordid>A634469412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-a45cd36307a2efbf62fd20c8674a3daf40748c41a340fe051616682909b933c83</originalsourceid><addsrcrecordid>eNqVk1trFDEUxwdRbK1-A9EBQfBh1tyTeRFK8bJQLGj1NWQyyW6WmWSbzBT105vdnZYdUFDykMv5nf85nJNTFM8hWEDM4dtNGKNX3WK7Mn4BARC14A-KU0gprjgB5OHR-aR4ktIGAExFzR8XJxgJilHNTwt9vTZlDJ1JZbBlNNvOaTW44KshKp90dNvdrdTB22waSufLfhxUDmqSS6XybWluQzfuqSyRDaE3ZYgr5d2vvdTT4pFVXTLPpv2s-Pbh_fXFp-ry6uPy4vyy0hyxoVKE6hYzDLhCxjaWIdsioAXjROFWWQI4EZpAhQmwBlDIIGMC1aBuaoy1wGfFy4PutgtJTvVJEhGCaY2gYJlYHog2qI3cRter-FMG5eT-ISctVRyc7oxsCKMWa414TYkgusG7VDRqeUNrYXfR3k3RxqY3rTY-V6ybic4t3q3lKtxKTmhuDMgCryaBGG5Gk4a_pDxRK5Wzct6GLKZ7l7Q8Z5gQVhOIMrX4A5VXa3qXe2esy-8zhzczh8wM5sewUmNKcvn1y3-wn_-dvfo-Z18fsWujumGdpq-U5iA5gDqGlKKx91WGQO6G4a5ycjcMchqG7PbiuEP3Tne_H_8GxNsEhg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443592186</pqid></control><display><type>article</type><title>The roles of replication-transcription conflict in mutagenesis and evolution of genome organization</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Schroeder, Jeremy W ; Sankar, T Sabari ; Wang, Jue D ; Simmons, Lyle A</creator><contributor>Levin, Petra Anne</contributor><creatorcontrib>Schroeder, Jeremy W ; Sankar, T Sabari ; Wang, Jue D ; Simmons, Lyle A ; Levin, Petra Anne</creatorcontrib><description>Replication-transcription conflicts promote mutagenesis and give rise to evolutionary signatures, with fundamental importance to genome stability ranging from bacteria to metastatic cancer cells. This review focuses on the interplay between replication-transcription conflicts and the evolution of gene directionality. In most bacteria, the majority of genes are encoded on the leading strand of replication such that their transcription is co-directional with the direction of DNA replication fork movement. This gene strand bias arises primarily due to negative selection against deleterious consequences of head-on replication-transcription conflict. However, many genes remain head-on. Can head-on orientation provide some benefit? We combine insights from both mechanistic and evolutionary studies, review published work, and analyze gene expression data to evaluate an emerging model that head-on genes are temporal targets for adaptive mutagenesis during stress. We highlight the alternative explanation that genes in the head-on orientation may simply be the result of genomic inversions and relaxed selection acting on nonessential genes. We seek to clarify how the mechanisms of replication-transcription conflict, in concert with other mutagenic mechanisms, balanced by natural selection, have shaped bacterial genome evolution.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1008987</identifier><identifier>PMID: 32853297</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Bacteria ; Bacteria - genetics ; Bacteriology ; Bias ; Biology and life sciences ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA replication ; DNA Replication - genetics ; E coli ; Evolution &amp; development ; Evolution, Molecular ; Evolutionary genetics ; Gene expression ; Genes ; Genetic research ; Genome, Bacterial - genetics ; Genomes ; Genomics ; Hypotheses ; Medicine and Health Sciences ; Metastases ; Mutagenesis ; Mutation ; Natural selection ; Negative selection ; Replication ; Research and Analysis Methods ; Review ; Science education ; Selection, Genetic - genetics ; Transcription ; Transcription (Genetics) ; Transcription, Genetic</subject><ispartof>PLoS genetics, 2020-08, Vol.16 (8), p.e1008987</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Schroeder et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Schroeder et al 2020 Schroeder et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-a45cd36307a2efbf62fd20c8674a3daf40748c41a340fe051616682909b933c83</citedby><cites>FETCH-LOGICAL-c726t-a45cd36307a2efbf62fd20c8674a3daf40748c41a340fe051616682909b933c83</cites><orcidid>0000-0003-1503-170X ; 0000-0002-9600-7623 ; 0000-0003-0692-8769 ; 0000-0001-8829-8494</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7451550/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7451550/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32853297$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Levin, Petra Anne</contributor><creatorcontrib>Schroeder, Jeremy W</creatorcontrib><creatorcontrib>Sankar, T Sabari</creatorcontrib><creatorcontrib>Wang, Jue D</creatorcontrib><creatorcontrib>Simmons, Lyle A</creatorcontrib><title>The roles of replication-transcription conflict in mutagenesis and evolution of genome organization</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Replication-transcription conflicts promote mutagenesis and give rise to evolutionary signatures, with fundamental importance to genome stability ranging from bacteria to metastatic cancer cells. This review focuses on the interplay between replication-transcription conflicts and the evolution of gene directionality. In most bacteria, the majority of genes are encoded on the leading strand of replication such that their transcription is co-directional with the direction of DNA replication fork movement. This gene strand bias arises primarily due to negative selection against deleterious consequences of head-on replication-transcription conflict. However, many genes remain head-on. Can head-on orientation provide some benefit? We combine insights from both mechanistic and evolutionary studies, review published work, and analyze gene expression data to evaluate an emerging model that head-on genes are temporal targets for adaptive mutagenesis during stress. We highlight the alternative explanation that genes in the head-on orientation may simply be the result of genomic inversions and relaxed selection acting on nonessential genes. We seek to clarify how the mechanisms of replication-transcription conflict, in concert with other mutagenic mechanisms, balanced by natural selection, have shaped bacterial genome evolution.</description><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>Bacteriology</subject><subject>Bias</subject><subject>Biology and life sciences</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA replication</subject><subject>DNA Replication - genetics</subject><subject>E coli</subject><subject>Evolution &amp; development</subject><subject>Evolution, Molecular</subject><subject>Evolutionary genetics</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic research</subject><subject>Genome, Bacterial - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Hypotheses</subject><subject>Medicine and Health Sciences</subject><subject>Metastases</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Natural selection</subject><subject>Negative selection</subject><subject>Replication</subject><subject>Research and Analysis Methods</subject><subject>Review</subject><subject>Science education</subject><subject>Selection, Genetic - genetics</subject><subject>Transcription</subject><subject>Transcription (Genetics)</subject><subject>Transcription, Genetic</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk1trFDEUxwdRbK1-A9EBQfBh1tyTeRFK8bJQLGj1NWQyyW6WmWSbzBT105vdnZYdUFDykMv5nf85nJNTFM8hWEDM4dtNGKNX3WK7Mn4BARC14A-KU0gprjgB5OHR-aR4ktIGAExFzR8XJxgJilHNTwt9vTZlDJ1JZbBlNNvOaTW44KshKp90dNvdrdTB22waSufLfhxUDmqSS6XybWluQzfuqSyRDaE3ZYgr5d2vvdTT4pFVXTLPpv2s-Pbh_fXFp-ry6uPy4vyy0hyxoVKE6hYzDLhCxjaWIdsioAXjROFWWQI4EZpAhQmwBlDIIGMC1aBuaoy1wGfFy4PutgtJTvVJEhGCaY2gYJlYHog2qI3cRter-FMG5eT-ISctVRyc7oxsCKMWa414TYkgusG7VDRqeUNrYXfR3k3RxqY3rTY-V6ybic4t3q3lKtxKTmhuDMgCryaBGG5Gk4a_pDxRK5Wzct6GLKZ7l7Q8Z5gQVhOIMrX4A5VXa3qXe2esy-8zhzczh8wM5sewUmNKcvn1y3-wn_-dvfo-Z18fsWujumGdpq-U5iA5gDqGlKKx91WGQO6G4a5ycjcMchqG7PbiuEP3Tne_H_8GxNsEhg</recordid><startdate>20200827</startdate><enddate>20200827</enddate><creator>Schroeder, Jeremy W</creator><creator>Sankar, T Sabari</creator><creator>Wang, Jue D</creator><creator>Simmons, Lyle A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1503-170X</orcidid><orcidid>https://orcid.org/0000-0002-9600-7623</orcidid><orcidid>https://orcid.org/0000-0003-0692-8769</orcidid><orcidid>https://orcid.org/0000-0001-8829-8494</orcidid></search><sort><creationdate>20200827</creationdate><title>The roles of replication-transcription conflict in mutagenesis and evolution of genome organization</title><author>Schroeder, Jeremy W ; Sankar, T Sabari ; Wang, Jue D ; Simmons, Lyle A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-a45cd36307a2efbf62fd20c8674a3daf40748c41a340fe051616682909b933c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>Bacteriology</topic><topic>Bias</topic><topic>Biology and life sciences</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA replication</topic><topic>DNA Replication - genetics</topic><topic>E coli</topic><topic>Evolution &amp; development</topic><topic>Evolution, Molecular</topic><topic>Evolutionary genetics</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic research</topic><topic>Genome, Bacterial - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Hypotheses</topic><topic>Medicine and Health Sciences</topic><topic>Metastases</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Natural selection</topic><topic>Negative selection</topic><topic>Replication</topic><topic>Research and Analysis Methods</topic><topic>Review</topic><topic>Science education</topic><topic>Selection, Genetic - genetics</topic><topic>Transcription</topic><topic>Transcription (Genetics)</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schroeder, Jeremy W</creatorcontrib><creatorcontrib>Sankar, T Sabari</creatorcontrib><creatorcontrib>Wang, Jue D</creatorcontrib><creatorcontrib>Simmons, Lyle A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schroeder, Jeremy W</au><au>Sankar, T Sabari</au><au>Wang, Jue D</au><au>Simmons, Lyle A</au><au>Levin, Petra Anne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The roles of replication-transcription conflict in mutagenesis and evolution of genome organization</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2020-08-27</date><risdate>2020</risdate><volume>16</volume><issue>8</issue><spage>e1008987</spage><pages>e1008987-</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Replication-transcription conflicts promote mutagenesis and give rise to evolutionary signatures, with fundamental importance to genome stability ranging from bacteria to metastatic cancer cells. This review focuses on the interplay between replication-transcription conflicts and the evolution of gene directionality. In most bacteria, the majority of genes are encoded on the leading strand of replication such that their transcription is co-directional with the direction of DNA replication fork movement. This gene strand bias arises primarily due to negative selection against deleterious consequences of head-on replication-transcription conflict. However, many genes remain head-on. Can head-on orientation provide some benefit? We combine insights from both mechanistic and evolutionary studies, review published work, and analyze gene expression data to evaluate an emerging model that head-on genes are temporal targets for adaptive mutagenesis during stress. We highlight the alternative explanation that genes in the head-on orientation may simply be the result of genomic inversions and relaxed selection acting on nonessential genes. We seek to clarify how the mechanisms of replication-transcription conflict, in concert with other mutagenic mechanisms, balanced by natural selection, have shaped bacterial genome evolution.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32853297</pmid><doi>10.1371/journal.pgen.1008987</doi><orcidid>https://orcid.org/0000-0003-1503-170X</orcidid><orcidid>https://orcid.org/0000-0002-9600-7623</orcidid><orcidid>https://orcid.org/0000-0003-0692-8769</orcidid><orcidid>https://orcid.org/0000-0001-8829-8494</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2020-08, Vol.16 (8), p.e1008987
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_2443592186
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central
subjects Bacteria
Bacteria - genetics
Bacteriology
Bias
Biology and life sciences
Deoxyribonucleic acid
DNA
DNA biosynthesis
DNA replication
DNA Replication - genetics
E coli
Evolution & development
Evolution, Molecular
Evolutionary genetics
Gene expression
Genes
Genetic research
Genome, Bacterial - genetics
Genomes
Genomics
Hypotheses
Medicine and Health Sciences
Metastases
Mutagenesis
Mutation
Natural selection
Negative selection
Replication
Research and Analysis Methods
Review
Science education
Selection, Genetic - genetics
Transcription
Transcription (Genetics)
Transcription, Genetic
title The roles of replication-transcription conflict in mutagenesis and evolution of genome organization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A20%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20roles%20of%20replication-transcription%20conflict%20in%20mutagenesis%20and%20evolution%20of%20genome%20organization&rft.jtitle=PLoS%20genetics&rft.au=Schroeder,%20Jeremy%20W&rft.date=2020-08-27&rft.volume=16&rft.issue=8&rft.spage=e1008987&rft.pages=e1008987-&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1008987&rft_dat=%3Cgale_plos_%3EA634469412%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2443592186&rft_id=info:pmid/32853297&rft_galeid=A634469412&rft_doaj_id=oai_doaj_org_article_b465f3cc2795484cb30c86c2d7b598f8&rfr_iscdi=true