Deconvolving the contributions of cell-type heterogeneity on cortical gene expression
Complexity of cell-type composition has created much skepticism surrounding the interpretation of bulk tissue transcriptomic studies. Recent studies have shown that deconvolution algorithms can be applied to computationally estimate cell-type proportions from gene expression data of bulk blood sampl...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2020-08, Vol.16 (8), p.e1008120-e1008120 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1008120 |
---|---|
container_issue | 8 |
container_start_page | e1008120 |
container_title | PLoS computational biology |
container_volume | 16 |
creator | Patrick, Ellis Taga, Mariko Ergun, Ayla Ng, Bernard Casazza, William Cimpean, Maria Yung, Christina Schneider, Julie A Bennett, David A Gaiteri, Chris De Jager, Philip L Bradshaw, Elizabeth M Mostafavi, Sara |
description | Complexity of cell-type composition has created much skepticism surrounding the interpretation of bulk tissue transcriptomic studies. Recent studies have shown that deconvolution algorithms can be applied to computationally estimate cell-type proportions from gene expression data of bulk blood samples, but their performance when applied to brain tissue is unclear. Here, we have generated an immunohistochemistry (IHC) dataset for five major cell-types from brain tissue of 70 individuals, who also have bulk cortical gene expression data. With the IHC data as the benchmark, this resource enables quantitative assessment of deconvolution algorithms for brain tissue. We apply existing deconvolution algorithms to brain tissue by using marker sets derived from human brain single cell and cell-sorted RNA-seq data. We show that these algorithms can indeed produce informative estimates of constituent cell-type proportions. In fact, neuronal subpopulations can also be estimated from bulk brain tissue samples. Further, we show that including the cell-type proportion estimates as confounding factors is important for reducing false associations between Alzheimer's disease phenotypes and gene expression. Lastly, we demonstrate that using more accurate marker sets can substantially improve statistical power in detecting cell-type specific expression quantitative trait loci (eQTLs). |
doi_str_mv | 10.1371/journal.pcbi.1008120 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2443591931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A634243927</galeid><doaj_id>oai_doaj_org_article_1295a6be968d4bca9402b6f0eb7ffac0</doaj_id><sourcerecordid>A634243927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-e35f337e2eaf63eb6b3afe5ecbd40c4f508cc997e9b007c7b61c819aa917b48d3</originalsourceid><addsrcrecordid>eNqVkkFv1DAQhSMEoqXwDxBE4gKHLHZsx_EFqSoFVqpAAnq2bGec9SobL3ay6v77OmxadVEvKAc74-89ZyYvy15jtMCE449rP4ZedYut0W6BEapxiZ5kp5gxUnDC6qcP9ifZixjXCKWtqJ5nJ6SsERWEnWbXn8H4fue7nevbfFhBnl6H4PQ4ON_H3NvcQNcVw34L-QoGCL6FHtywz32f2DA4o7p8quVwsw0QY9K9zJ5Z1UV4Na9n2fWXy98X34qrH1-XF-dXhakqPBRAmCWEQwnKVgR0pYmywMDohiJDLUO1MUJwEBohbriusKmxUEpgrmndkLPs7cF32_ko54lEWVJKmMCC4EQsD0Tj1Vpug9uosJdeOfm34EMr1dRDBxKXgqlKg6jqhmqjBEWlriwCza1VBiWvT_Nto95AYyANSnVHpscnvVvJ1u8kpwwLLpLB-9kg-D8jxEFuXJzGq3rw4_TdhOGaY14n9N0_6OPdzVSrUgOutz7dayZTeV4RmvxEyRO1eIRKTwMbl343WJfqR4IPR4IpEnAztGqMUS5__fwP9vsxSw-sCT7GAPZ-dhjJKdR3Tcop1HIOdZK9eTj3e9FdisktCkj0aw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443591931</pqid></control><display><type>article</type><title>Deconvolving the contributions of cell-type heterogeneity on cortical gene expression</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Patrick, Ellis ; Taga, Mariko ; Ergun, Ayla ; Ng, Bernard ; Casazza, William ; Cimpean, Maria ; Yung, Christina ; Schneider, Julie A ; Bennett, David A ; Gaiteri, Chris ; De Jager, Philip L ; Bradshaw, Elizabeth M ; Mostafavi, Sara</creator><contributor>Nie, Qing</contributor><creatorcontrib>Patrick, Ellis ; Taga, Mariko ; Ergun, Ayla ; Ng, Bernard ; Casazza, William ; Cimpean, Maria ; Yung, Christina ; Schneider, Julie A ; Bennett, David A ; Gaiteri, Chris ; De Jager, Philip L ; Bradshaw, Elizabeth M ; Mostafavi, Sara ; Nie, Qing</creatorcontrib><description>Complexity of cell-type composition has created much skepticism surrounding the interpretation of bulk tissue transcriptomic studies. Recent studies have shown that deconvolution algorithms can be applied to computationally estimate cell-type proportions from gene expression data of bulk blood samples, but their performance when applied to brain tissue is unclear. Here, we have generated an immunohistochemistry (IHC) dataset for five major cell-types from brain tissue of 70 individuals, who also have bulk cortical gene expression data. With the IHC data as the benchmark, this resource enables quantitative assessment of deconvolution algorithms for brain tissue. We apply existing deconvolution algorithms to brain tissue by using marker sets derived from human brain single cell and cell-sorted RNA-seq data. We show that these algorithms can indeed produce informative estimates of constituent cell-type proportions. In fact, neuronal subpopulations can also be estimated from bulk brain tissue samples. Further, we show that including the cell-type proportion estimates as confounding factors is important for reducing false associations between Alzheimer's disease phenotypes and gene expression. Lastly, we demonstrate that using more accurate marker sets can substantially improve statistical power in detecting cell-type specific expression quantitative trait loci (eQTLs).</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1008120</identifier><identifier>PMID: 32804935</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Alzheimer's disease ; Biology and Life Sciences ; Biomarkers ; Brain ; Brain - cytology ; Brain - metabolism ; Brain research ; Bulk sampling ; Computational Biology ; Datasets ; Deconvolution ; Dementia ; Departments ; Disease ; Estimates ; Gene expression ; Gene Expression Profiling - methods ; Gene mapping ; Genetic aspects ; Heterogeneity ; Humans ; Immunohistochemistry ; Medicine ; Medicine and Health Sciences ; Neurodegenerative diseases ; Neurology ; Observations ; Organ Specificity - genetics ; Phenotype ; Phenotypes ; Physical Sciences ; Quantitative trait loci ; Quantitative Trait Loci - genetics ; R&D ; Research & development ; Research and Analysis Methods ; Ribonucleic acid ; RNA ; Sequence Analysis, RNA - methods ; Single-Cell Analysis ; Statistical methods ; Subpopulations ; Supervision ; Tissues ; Transcriptome - genetics ; Transcriptomics</subject><ispartof>PLoS computational biology, 2020-08, Vol.16 (8), p.e1008120-e1008120</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Patrick et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Patrick et al 2020 Patrick et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-e35f337e2eaf63eb6b3afe5ecbd40c4f508cc997e9b007c7b61c819aa917b48d3</citedby><cites>FETCH-LOGICAL-c661t-e35f337e2eaf63eb6b3afe5ecbd40c4f508cc997e9b007c7b61c819aa917b48d3</cites><orcidid>0000-0003-4698-1177 ; 0000-0002-6766-4325 ; 0000-0002-4636-4710 ; 0000-0002-8057-2505 ; 0000-0002-5253-4747 ; 0000-0002-7934-1259 ; 0000-0003-3735-2643 ; 0000-0002-8688-3873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7451979/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7451979/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32804935$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Nie, Qing</contributor><creatorcontrib>Patrick, Ellis</creatorcontrib><creatorcontrib>Taga, Mariko</creatorcontrib><creatorcontrib>Ergun, Ayla</creatorcontrib><creatorcontrib>Ng, Bernard</creatorcontrib><creatorcontrib>Casazza, William</creatorcontrib><creatorcontrib>Cimpean, Maria</creatorcontrib><creatorcontrib>Yung, Christina</creatorcontrib><creatorcontrib>Schneider, Julie A</creatorcontrib><creatorcontrib>Bennett, David A</creatorcontrib><creatorcontrib>Gaiteri, Chris</creatorcontrib><creatorcontrib>De Jager, Philip L</creatorcontrib><creatorcontrib>Bradshaw, Elizabeth M</creatorcontrib><creatorcontrib>Mostafavi, Sara</creatorcontrib><title>Deconvolving the contributions of cell-type heterogeneity on cortical gene expression</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Complexity of cell-type composition has created much skepticism surrounding the interpretation of bulk tissue transcriptomic studies. Recent studies have shown that deconvolution algorithms can be applied to computationally estimate cell-type proportions from gene expression data of bulk blood samples, but their performance when applied to brain tissue is unclear. Here, we have generated an immunohistochemistry (IHC) dataset for five major cell-types from brain tissue of 70 individuals, who also have bulk cortical gene expression data. With the IHC data as the benchmark, this resource enables quantitative assessment of deconvolution algorithms for brain tissue. We apply existing deconvolution algorithms to brain tissue by using marker sets derived from human brain single cell and cell-sorted RNA-seq data. We show that these algorithms can indeed produce informative estimates of constituent cell-type proportions. In fact, neuronal subpopulations can also be estimated from bulk brain tissue samples. Further, we show that including the cell-type proportion estimates as confounding factors is important for reducing false associations between Alzheimer's disease phenotypes and gene expression. Lastly, we demonstrate that using more accurate marker sets can substantially improve statistical power in detecting cell-type specific expression quantitative trait loci (eQTLs).</description><subject>Algorithms</subject><subject>Alzheimer's disease</subject><subject>Biology and Life Sciences</subject><subject>Biomarkers</subject><subject>Brain</subject><subject>Brain - cytology</subject><subject>Brain - metabolism</subject><subject>Brain research</subject><subject>Bulk sampling</subject><subject>Computational Biology</subject><subject>Datasets</subject><subject>Deconvolution</subject><subject>Dementia</subject><subject>Departments</subject><subject>Disease</subject><subject>Estimates</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene mapping</subject><subject>Genetic aspects</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Neurodegenerative diseases</subject><subject>Neurology</subject><subject>Observations</subject><subject>Organ Specificity - genetics</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Physical Sciences</subject><subject>Quantitative trait loci</subject><subject>Quantitative Trait Loci - genetics</subject><subject>R&D</subject><subject>Research & development</subject><subject>Research and Analysis Methods</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Sequence Analysis, RNA - methods</subject><subject>Single-Cell Analysis</subject><subject>Statistical methods</subject><subject>Subpopulations</subject><subject>Supervision</subject><subject>Tissues</subject><subject>Transcriptome - genetics</subject><subject>Transcriptomics</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkkFv1DAQhSMEoqXwDxBE4gKHLHZsx_EFqSoFVqpAAnq2bGec9SobL3ay6v77OmxadVEvKAc74-89ZyYvy15jtMCE449rP4ZedYut0W6BEapxiZ5kp5gxUnDC6qcP9ifZixjXCKWtqJ5nJ6SsERWEnWbXn8H4fue7nevbfFhBnl6H4PQ4ON_H3NvcQNcVw34L-QoGCL6FHtywz32f2DA4o7p8quVwsw0QY9K9zJ5Z1UV4Na9n2fWXy98X34qrH1-XF-dXhakqPBRAmCWEQwnKVgR0pYmywMDohiJDLUO1MUJwEBohbriusKmxUEpgrmndkLPs7cF32_ko54lEWVJKmMCC4EQsD0Tj1Vpug9uosJdeOfm34EMr1dRDBxKXgqlKg6jqhmqjBEWlriwCza1VBiWvT_Nto95AYyANSnVHpscnvVvJ1u8kpwwLLpLB-9kg-D8jxEFuXJzGq3rw4_TdhOGaY14n9N0_6OPdzVSrUgOutz7dayZTeV4RmvxEyRO1eIRKTwMbl343WJfqR4IPR4IpEnAztGqMUS5__fwP9vsxSw-sCT7GAPZ-dhjJKdR3Tcop1HIOdZK9eTj3e9FdisktCkj0aw</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Patrick, Ellis</creator><creator>Taga, Mariko</creator><creator>Ergun, Ayla</creator><creator>Ng, Bernard</creator><creator>Casazza, William</creator><creator>Cimpean, Maria</creator><creator>Yung, Christina</creator><creator>Schneider, Julie A</creator><creator>Bennett, David A</creator><creator>Gaiteri, Chris</creator><creator>De Jager, Philip L</creator><creator>Bradshaw, Elizabeth M</creator><creator>Mostafavi, Sara</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4698-1177</orcidid><orcidid>https://orcid.org/0000-0002-6766-4325</orcidid><orcidid>https://orcid.org/0000-0002-4636-4710</orcidid><orcidid>https://orcid.org/0000-0002-8057-2505</orcidid><orcidid>https://orcid.org/0000-0002-5253-4747</orcidid><orcidid>https://orcid.org/0000-0002-7934-1259</orcidid><orcidid>https://orcid.org/0000-0003-3735-2643</orcidid><orcidid>https://orcid.org/0000-0002-8688-3873</orcidid></search><sort><creationdate>20200801</creationdate><title>Deconvolving the contributions of cell-type heterogeneity on cortical gene expression</title><author>Patrick, Ellis ; Taga, Mariko ; Ergun, Ayla ; Ng, Bernard ; Casazza, William ; Cimpean, Maria ; Yung, Christina ; Schneider, Julie A ; Bennett, David A ; Gaiteri, Chris ; De Jager, Philip L ; Bradshaw, Elizabeth M ; Mostafavi, Sara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-e35f337e2eaf63eb6b3afe5ecbd40c4f508cc997e9b007c7b61c819aa917b48d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Alzheimer's disease</topic><topic>Biology and Life Sciences</topic><topic>Biomarkers</topic><topic>Brain</topic><topic>Brain - cytology</topic><topic>Brain - metabolism</topic><topic>Brain research</topic><topic>Bulk sampling</topic><topic>Computational Biology</topic><topic>Datasets</topic><topic>Deconvolution</topic><topic>Dementia</topic><topic>Departments</topic><topic>Disease</topic><topic>Estimates</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene mapping</topic><topic>Genetic aspects</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Neurodegenerative diseases</topic><topic>Neurology</topic><topic>Observations</topic><topic>Organ Specificity - genetics</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Physical Sciences</topic><topic>Quantitative trait loci</topic><topic>Quantitative Trait Loci - genetics</topic><topic>R&D</topic><topic>Research & development</topic><topic>Research and Analysis Methods</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Sequence Analysis, RNA - methods</topic><topic>Single-Cell Analysis</topic><topic>Statistical methods</topic><topic>Subpopulations</topic><topic>Supervision</topic><topic>Tissues</topic><topic>Transcriptome - genetics</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patrick, Ellis</creatorcontrib><creatorcontrib>Taga, Mariko</creatorcontrib><creatorcontrib>Ergun, Ayla</creatorcontrib><creatorcontrib>Ng, Bernard</creatorcontrib><creatorcontrib>Casazza, William</creatorcontrib><creatorcontrib>Cimpean, Maria</creatorcontrib><creatorcontrib>Yung, Christina</creatorcontrib><creatorcontrib>Schneider, Julie A</creatorcontrib><creatorcontrib>Bennett, David A</creatorcontrib><creatorcontrib>Gaiteri, Chris</creatorcontrib><creatorcontrib>De Jager, Philip L</creatorcontrib><creatorcontrib>Bradshaw, Elizabeth M</creatorcontrib><creatorcontrib>Mostafavi, Sara</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patrick, Ellis</au><au>Taga, Mariko</au><au>Ergun, Ayla</au><au>Ng, Bernard</au><au>Casazza, William</au><au>Cimpean, Maria</au><au>Yung, Christina</au><au>Schneider, Julie A</au><au>Bennett, David A</au><au>Gaiteri, Chris</au><au>De Jager, Philip L</au><au>Bradshaw, Elizabeth M</au><au>Mostafavi, Sara</au><au>Nie, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deconvolving the contributions of cell-type heterogeneity on cortical gene expression</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>16</volume><issue>8</issue><spage>e1008120</spage><epage>e1008120</epage><pages>e1008120-e1008120</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Complexity of cell-type composition has created much skepticism surrounding the interpretation of bulk tissue transcriptomic studies. Recent studies have shown that deconvolution algorithms can be applied to computationally estimate cell-type proportions from gene expression data of bulk blood samples, but their performance when applied to brain tissue is unclear. Here, we have generated an immunohistochemistry (IHC) dataset for five major cell-types from brain tissue of 70 individuals, who also have bulk cortical gene expression data. With the IHC data as the benchmark, this resource enables quantitative assessment of deconvolution algorithms for brain tissue. We apply existing deconvolution algorithms to brain tissue by using marker sets derived from human brain single cell and cell-sorted RNA-seq data. We show that these algorithms can indeed produce informative estimates of constituent cell-type proportions. In fact, neuronal subpopulations can also be estimated from bulk brain tissue samples. Further, we show that including the cell-type proportion estimates as confounding factors is important for reducing false associations between Alzheimer's disease phenotypes and gene expression. Lastly, we demonstrate that using more accurate marker sets can substantially improve statistical power in detecting cell-type specific expression quantitative trait loci (eQTLs).</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32804935</pmid><doi>10.1371/journal.pcbi.1008120</doi><orcidid>https://orcid.org/0000-0003-4698-1177</orcidid><orcidid>https://orcid.org/0000-0002-6766-4325</orcidid><orcidid>https://orcid.org/0000-0002-4636-4710</orcidid><orcidid>https://orcid.org/0000-0002-8057-2505</orcidid><orcidid>https://orcid.org/0000-0002-5253-4747</orcidid><orcidid>https://orcid.org/0000-0002-7934-1259</orcidid><orcidid>https://orcid.org/0000-0003-3735-2643</orcidid><orcidid>https://orcid.org/0000-0002-8688-3873</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2020-08, Vol.16 (8), p.e1008120-e1008120 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2443591931 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central |
subjects | Algorithms Alzheimer's disease Biology and Life Sciences Biomarkers Brain Brain - cytology Brain - metabolism Brain research Bulk sampling Computational Biology Datasets Deconvolution Dementia Departments Disease Estimates Gene expression Gene Expression Profiling - methods Gene mapping Genetic aspects Heterogeneity Humans Immunohistochemistry Medicine Medicine and Health Sciences Neurodegenerative diseases Neurology Observations Organ Specificity - genetics Phenotype Phenotypes Physical Sciences Quantitative trait loci Quantitative Trait Loci - genetics R&D Research & development Research and Analysis Methods Ribonucleic acid RNA Sequence Analysis, RNA - methods Single-Cell Analysis Statistical methods Subpopulations Supervision Tissues Transcriptome - genetics Transcriptomics |
title | Deconvolving the contributions of cell-type heterogeneity on cortical gene expression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A06%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deconvolving%20the%20contributions%20of%20cell-type%20heterogeneity%20on%20cortical%20gene%20expression&rft.jtitle=PLoS%20computational%20biology&rft.au=Patrick,%20Ellis&rft.date=2020-08-01&rft.volume=16&rft.issue=8&rft.spage=e1008120&rft.epage=e1008120&rft.pages=e1008120-e1008120&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1008120&rft_dat=%3Cgale_plos_%3EA634243927%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2443591931&rft_id=info:pmid/32804935&rft_galeid=A634243927&rft_doaj_id=oai_doaj_org_article_1295a6be968d4bca9402b6f0eb7ffac0&rfr_iscdi=true |