Deconvolving the contributions of cell-type heterogeneity on cortical gene expression

Complexity of cell-type composition has created much skepticism surrounding the interpretation of bulk tissue transcriptomic studies. Recent studies have shown that deconvolution algorithms can be applied to computationally estimate cell-type proportions from gene expression data of bulk blood sampl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2020-08, Vol.16 (8), p.e1008120-e1008120
Hauptverfasser: Patrick, Ellis, Taga, Mariko, Ergun, Ayla, Ng, Bernard, Casazza, William, Cimpean, Maria, Yung, Christina, Schneider, Julie A, Bennett, David A, Gaiteri, Chris, De Jager, Philip L, Bradshaw, Elizabeth M, Mostafavi, Sara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1008120
container_issue 8
container_start_page e1008120
container_title PLoS computational biology
container_volume 16
creator Patrick, Ellis
Taga, Mariko
Ergun, Ayla
Ng, Bernard
Casazza, William
Cimpean, Maria
Yung, Christina
Schneider, Julie A
Bennett, David A
Gaiteri, Chris
De Jager, Philip L
Bradshaw, Elizabeth M
Mostafavi, Sara
description Complexity of cell-type composition has created much skepticism surrounding the interpretation of bulk tissue transcriptomic studies. Recent studies have shown that deconvolution algorithms can be applied to computationally estimate cell-type proportions from gene expression data of bulk blood samples, but their performance when applied to brain tissue is unclear. Here, we have generated an immunohistochemistry (IHC) dataset for five major cell-types from brain tissue of 70 individuals, who also have bulk cortical gene expression data. With the IHC data as the benchmark, this resource enables quantitative assessment of deconvolution algorithms for brain tissue. We apply existing deconvolution algorithms to brain tissue by using marker sets derived from human brain single cell and cell-sorted RNA-seq data. We show that these algorithms can indeed produce informative estimates of constituent cell-type proportions. In fact, neuronal subpopulations can also be estimated from bulk brain tissue samples. Further, we show that including the cell-type proportion estimates as confounding factors is important for reducing false associations between Alzheimer's disease phenotypes and gene expression. Lastly, we demonstrate that using more accurate marker sets can substantially improve statistical power in detecting cell-type specific expression quantitative trait loci (eQTLs).
doi_str_mv 10.1371/journal.pcbi.1008120
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2443591931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A634243927</galeid><doaj_id>oai_doaj_org_article_1295a6be968d4bca9402b6f0eb7ffac0</doaj_id><sourcerecordid>A634243927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-e35f337e2eaf63eb6b3afe5ecbd40c4f508cc997e9b007c7b61c819aa917b48d3</originalsourceid><addsrcrecordid>eNqVkkFv1DAQhSMEoqXwDxBE4gKHLHZsx_EFqSoFVqpAAnq2bGec9SobL3ay6v77OmxadVEvKAc74-89ZyYvy15jtMCE449rP4ZedYut0W6BEapxiZ5kp5gxUnDC6qcP9ifZixjXCKWtqJ5nJ6SsERWEnWbXn8H4fue7nevbfFhBnl6H4PQ4ON_H3NvcQNcVw34L-QoGCL6FHtywz32f2DA4o7p8quVwsw0QY9K9zJ5Z1UV4Na9n2fWXy98X34qrH1-XF-dXhakqPBRAmCWEQwnKVgR0pYmywMDohiJDLUO1MUJwEBohbriusKmxUEpgrmndkLPs7cF32_ko54lEWVJKmMCC4EQsD0Tj1Vpug9uosJdeOfm34EMr1dRDBxKXgqlKg6jqhmqjBEWlriwCza1VBiWvT_Nto95AYyANSnVHpscnvVvJ1u8kpwwLLpLB-9kg-D8jxEFuXJzGq3rw4_TdhOGaY14n9N0_6OPdzVSrUgOutz7dayZTeV4RmvxEyRO1eIRKTwMbl343WJfqR4IPR4IpEnAztGqMUS5__fwP9vsxSw-sCT7GAPZ-dhjJKdR3Tcop1HIOdZK9eTj3e9FdisktCkj0aw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443591931</pqid></control><display><type>article</type><title>Deconvolving the contributions of cell-type heterogeneity on cortical gene expression</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Patrick, Ellis ; Taga, Mariko ; Ergun, Ayla ; Ng, Bernard ; Casazza, William ; Cimpean, Maria ; Yung, Christina ; Schneider, Julie A ; Bennett, David A ; Gaiteri, Chris ; De Jager, Philip L ; Bradshaw, Elizabeth M ; Mostafavi, Sara</creator><contributor>Nie, Qing</contributor><creatorcontrib>Patrick, Ellis ; Taga, Mariko ; Ergun, Ayla ; Ng, Bernard ; Casazza, William ; Cimpean, Maria ; Yung, Christina ; Schneider, Julie A ; Bennett, David A ; Gaiteri, Chris ; De Jager, Philip L ; Bradshaw, Elizabeth M ; Mostafavi, Sara ; Nie, Qing</creatorcontrib><description>Complexity of cell-type composition has created much skepticism surrounding the interpretation of bulk tissue transcriptomic studies. Recent studies have shown that deconvolution algorithms can be applied to computationally estimate cell-type proportions from gene expression data of bulk blood samples, but their performance when applied to brain tissue is unclear. Here, we have generated an immunohistochemistry (IHC) dataset for five major cell-types from brain tissue of 70 individuals, who also have bulk cortical gene expression data. With the IHC data as the benchmark, this resource enables quantitative assessment of deconvolution algorithms for brain tissue. We apply existing deconvolution algorithms to brain tissue by using marker sets derived from human brain single cell and cell-sorted RNA-seq data. We show that these algorithms can indeed produce informative estimates of constituent cell-type proportions. In fact, neuronal subpopulations can also be estimated from bulk brain tissue samples. Further, we show that including the cell-type proportion estimates as confounding factors is important for reducing false associations between Alzheimer's disease phenotypes and gene expression. Lastly, we demonstrate that using more accurate marker sets can substantially improve statistical power in detecting cell-type specific expression quantitative trait loci (eQTLs).</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1008120</identifier><identifier>PMID: 32804935</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Alzheimer's disease ; Biology and Life Sciences ; Biomarkers ; Brain ; Brain - cytology ; Brain - metabolism ; Brain research ; Bulk sampling ; Computational Biology ; Datasets ; Deconvolution ; Dementia ; Departments ; Disease ; Estimates ; Gene expression ; Gene Expression Profiling - methods ; Gene mapping ; Genetic aspects ; Heterogeneity ; Humans ; Immunohistochemistry ; Medicine ; Medicine and Health Sciences ; Neurodegenerative diseases ; Neurology ; Observations ; Organ Specificity - genetics ; Phenotype ; Phenotypes ; Physical Sciences ; Quantitative trait loci ; Quantitative Trait Loci - genetics ; R&amp;D ; Research &amp; development ; Research and Analysis Methods ; Ribonucleic acid ; RNA ; Sequence Analysis, RNA - methods ; Single-Cell Analysis ; Statistical methods ; Subpopulations ; Supervision ; Tissues ; Transcriptome - genetics ; Transcriptomics</subject><ispartof>PLoS computational biology, 2020-08, Vol.16 (8), p.e1008120-e1008120</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Patrick et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Patrick et al 2020 Patrick et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-e35f337e2eaf63eb6b3afe5ecbd40c4f508cc997e9b007c7b61c819aa917b48d3</citedby><cites>FETCH-LOGICAL-c661t-e35f337e2eaf63eb6b3afe5ecbd40c4f508cc997e9b007c7b61c819aa917b48d3</cites><orcidid>0000-0003-4698-1177 ; 0000-0002-6766-4325 ; 0000-0002-4636-4710 ; 0000-0002-8057-2505 ; 0000-0002-5253-4747 ; 0000-0002-7934-1259 ; 0000-0003-3735-2643 ; 0000-0002-8688-3873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7451979/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7451979/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32804935$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Nie, Qing</contributor><creatorcontrib>Patrick, Ellis</creatorcontrib><creatorcontrib>Taga, Mariko</creatorcontrib><creatorcontrib>Ergun, Ayla</creatorcontrib><creatorcontrib>Ng, Bernard</creatorcontrib><creatorcontrib>Casazza, William</creatorcontrib><creatorcontrib>Cimpean, Maria</creatorcontrib><creatorcontrib>Yung, Christina</creatorcontrib><creatorcontrib>Schneider, Julie A</creatorcontrib><creatorcontrib>Bennett, David A</creatorcontrib><creatorcontrib>Gaiteri, Chris</creatorcontrib><creatorcontrib>De Jager, Philip L</creatorcontrib><creatorcontrib>Bradshaw, Elizabeth M</creatorcontrib><creatorcontrib>Mostafavi, Sara</creatorcontrib><title>Deconvolving the contributions of cell-type heterogeneity on cortical gene expression</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Complexity of cell-type composition has created much skepticism surrounding the interpretation of bulk tissue transcriptomic studies. Recent studies have shown that deconvolution algorithms can be applied to computationally estimate cell-type proportions from gene expression data of bulk blood samples, but their performance when applied to brain tissue is unclear. Here, we have generated an immunohistochemistry (IHC) dataset for five major cell-types from brain tissue of 70 individuals, who also have bulk cortical gene expression data. With the IHC data as the benchmark, this resource enables quantitative assessment of deconvolution algorithms for brain tissue. We apply existing deconvolution algorithms to brain tissue by using marker sets derived from human brain single cell and cell-sorted RNA-seq data. We show that these algorithms can indeed produce informative estimates of constituent cell-type proportions. In fact, neuronal subpopulations can also be estimated from bulk brain tissue samples. Further, we show that including the cell-type proportion estimates as confounding factors is important for reducing false associations between Alzheimer's disease phenotypes and gene expression. Lastly, we demonstrate that using more accurate marker sets can substantially improve statistical power in detecting cell-type specific expression quantitative trait loci (eQTLs).</description><subject>Algorithms</subject><subject>Alzheimer's disease</subject><subject>Biology and Life Sciences</subject><subject>Biomarkers</subject><subject>Brain</subject><subject>Brain - cytology</subject><subject>Brain - metabolism</subject><subject>Brain research</subject><subject>Bulk sampling</subject><subject>Computational Biology</subject><subject>Datasets</subject><subject>Deconvolution</subject><subject>Dementia</subject><subject>Departments</subject><subject>Disease</subject><subject>Estimates</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene mapping</subject><subject>Genetic aspects</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Neurodegenerative diseases</subject><subject>Neurology</subject><subject>Observations</subject><subject>Organ Specificity - genetics</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Physical Sciences</subject><subject>Quantitative trait loci</subject><subject>Quantitative Trait Loci - genetics</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>Research and Analysis Methods</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Sequence Analysis, RNA - methods</subject><subject>Single-Cell Analysis</subject><subject>Statistical methods</subject><subject>Subpopulations</subject><subject>Supervision</subject><subject>Tissues</subject><subject>Transcriptome - genetics</subject><subject>Transcriptomics</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkkFv1DAQhSMEoqXwDxBE4gKHLHZsx_EFqSoFVqpAAnq2bGec9SobL3ay6v77OmxadVEvKAc74-89ZyYvy15jtMCE449rP4ZedYut0W6BEapxiZ5kp5gxUnDC6qcP9ifZixjXCKWtqJ5nJ6SsERWEnWbXn8H4fue7nevbfFhBnl6H4PQ4ON_H3NvcQNcVw34L-QoGCL6FHtywz32f2DA4o7p8quVwsw0QY9K9zJ5Z1UV4Na9n2fWXy98X34qrH1-XF-dXhakqPBRAmCWEQwnKVgR0pYmywMDohiJDLUO1MUJwEBohbriusKmxUEpgrmndkLPs7cF32_ko54lEWVJKmMCC4EQsD0Tj1Vpug9uosJdeOfm34EMr1dRDBxKXgqlKg6jqhmqjBEWlriwCza1VBiWvT_Nto95AYyANSnVHpscnvVvJ1u8kpwwLLpLB-9kg-D8jxEFuXJzGq3rw4_TdhOGaY14n9N0_6OPdzVSrUgOutz7dayZTeV4RmvxEyRO1eIRKTwMbl343WJfqR4IPR4IpEnAztGqMUS5__fwP9vsxSw-sCT7GAPZ-dhjJKdR3Tcop1HIOdZK9eTj3e9FdisktCkj0aw</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Patrick, Ellis</creator><creator>Taga, Mariko</creator><creator>Ergun, Ayla</creator><creator>Ng, Bernard</creator><creator>Casazza, William</creator><creator>Cimpean, Maria</creator><creator>Yung, Christina</creator><creator>Schneider, Julie A</creator><creator>Bennett, David A</creator><creator>Gaiteri, Chris</creator><creator>De Jager, Philip L</creator><creator>Bradshaw, Elizabeth M</creator><creator>Mostafavi, Sara</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4698-1177</orcidid><orcidid>https://orcid.org/0000-0002-6766-4325</orcidid><orcidid>https://orcid.org/0000-0002-4636-4710</orcidid><orcidid>https://orcid.org/0000-0002-8057-2505</orcidid><orcidid>https://orcid.org/0000-0002-5253-4747</orcidid><orcidid>https://orcid.org/0000-0002-7934-1259</orcidid><orcidid>https://orcid.org/0000-0003-3735-2643</orcidid><orcidid>https://orcid.org/0000-0002-8688-3873</orcidid></search><sort><creationdate>20200801</creationdate><title>Deconvolving the contributions of cell-type heterogeneity on cortical gene expression</title><author>Patrick, Ellis ; Taga, Mariko ; Ergun, Ayla ; Ng, Bernard ; Casazza, William ; Cimpean, Maria ; Yung, Christina ; Schneider, Julie A ; Bennett, David A ; Gaiteri, Chris ; De Jager, Philip L ; Bradshaw, Elizabeth M ; Mostafavi, Sara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-e35f337e2eaf63eb6b3afe5ecbd40c4f508cc997e9b007c7b61c819aa917b48d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Alzheimer's disease</topic><topic>Biology and Life Sciences</topic><topic>Biomarkers</topic><topic>Brain</topic><topic>Brain - cytology</topic><topic>Brain - metabolism</topic><topic>Brain research</topic><topic>Bulk sampling</topic><topic>Computational Biology</topic><topic>Datasets</topic><topic>Deconvolution</topic><topic>Dementia</topic><topic>Departments</topic><topic>Disease</topic><topic>Estimates</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene mapping</topic><topic>Genetic aspects</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Neurodegenerative diseases</topic><topic>Neurology</topic><topic>Observations</topic><topic>Organ Specificity - genetics</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Physical Sciences</topic><topic>Quantitative trait loci</topic><topic>Quantitative Trait Loci - genetics</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>Research and Analysis Methods</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Sequence Analysis, RNA - methods</topic><topic>Single-Cell Analysis</topic><topic>Statistical methods</topic><topic>Subpopulations</topic><topic>Supervision</topic><topic>Tissues</topic><topic>Transcriptome - genetics</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patrick, Ellis</creatorcontrib><creatorcontrib>Taga, Mariko</creatorcontrib><creatorcontrib>Ergun, Ayla</creatorcontrib><creatorcontrib>Ng, Bernard</creatorcontrib><creatorcontrib>Casazza, William</creatorcontrib><creatorcontrib>Cimpean, Maria</creatorcontrib><creatorcontrib>Yung, Christina</creatorcontrib><creatorcontrib>Schneider, Julie A</creatorcontrib><creatorcontrib>Bennett, David A</creatorcontrib><creatorcontrib>Gaiteri, Chris</creatorcontrib><creatorcontrib>De Jager, Philip L</creatorcontrib><creatorcontrib>Bradshaw, Elizabeth M</creatorcontrib><creatorcontrib>Mostafavi, Sara</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patrick, Ellis</au><au>Taga, Mariko</au><au>Ergun, Ayla</au><au>Ng, Bernard</au><au>Casazza, William</au><au>Cimpean, Maria</au><au>Yung, Christina</au><au>Schneider, Julie A</au><au>Bennett, David A</au><au>Gaiteri, Chris</au><au>De Jager, Philip L</au><au>Bradshaw, Elizabeth M</au><au>Mostafavi, Sara</au><au>Nie, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deconvolving the contributions of cell-type heterogeneity on cortical gene expression</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>16</volume><issue>8</issue><spage>e1008120</spage><epage>e1008120</epage><pages>e1008120-e1008120</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Complexity of cell-type composition has created much skepticism surrounding the interpretation of bulk tissue transcriptomic studies. Recent studies have shown that deconvolution algorithms can be applied to computationally estimate cell-type proportions from gene expression data of bulk blood samples, but their performance when applied to brain tissue is unclear. Here, we have generated an immunohistochemistry (IHC) dataset for five major cell-types from brain tissue of 70 individuals, who also have bulk cortical gene expression data. With the IHC data as the benchmark, this resource enables quantitative assessment of deconvolution algorithms for brain tissue. We apply existing deconvolution algorithms to brain tissue by using marker sets derived from human brain single cell and cell-sorted RNA-seq data. We show that these algorithms can indeed produce informative estimates of constituent cell-type proportions. In fact, neuronal subpopulations can also be estimated from bulk brain tissue samples. Further, we show that including the cell-type proportion estimates as confounding factors is important for reducing false associations between Alzheimer's disease phenotypes and gene expression. Lastly, we demonstrate that using more accurate marker sets can substantially improve statistical power in detecting cell-type specific expression quantitative trait loci (eQTLs).</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32804935</pmid><doi>10.1371/journal.pcbi.1008120</doi><orcidid>https://orcid.org/0000-0003-4698-1177</orcidid><orcidid>https://orcid.org/0000-0002-6766-4325</orcidid><orcidid>https://orcid.org/0000-0002-4636-4710</orcidid><orcidid>https://orcid.org/0000-0002-8057-2505</orcidid><orcidid>https://orcid.org/0000-0002-5253-4747</orcidid><orcidid>https://orcid.org/0000-0002-7934-1259</orcidid><orcidid>https://orcid.org/0000-0003-3735-2643</orcidid><orcidid>https://orcid.org/0000-0002-8688-3873</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2020-08, Vol.16 (8), p.e1008120-e1008120
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2443591931
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central
subjects Algorithms
Alzheimer's disease
Biology and Life Sciences
Biomarkers
Brain
Brain - cytology
Brain - metabolism
Brain research
Bulk sampling
Computational Biology
Datasets
Deconvolution
Dementia
Departments
Disease
Estimates
Gene expression
Gene Expression Profiling - methods
Gene mapping
Genetic aspects
Heterogeneity
Humans
Immunohistochemistry
Medicine
Medicine and Health Sciences
Neurodegenerative diseases
Neurology
Observations
Organ Specificity - genetics
Phenotype
Phenotypes
Physical Sciences
Quantitative trait loci
Quantitative Trait Loci - genetics
R&D
Research & development
Research and Analysis Methods
Ribonucleic acid
RNA
Sequence Analysis, RNA - methods
Single-Cell Analysis
Statistical methods
Subpopulations
Supervision
Tissues
Transcriptome - genetics
Transcriptomics
title Deconvolving the contributions of cell-type heterogeneity on cortical gene expression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A06%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deconvolving%20the%20contributions%20of%20cell-type%20heterogeneity%20on%20cortical%20gene%20expression&rft.jtitle=PLoS%20computational%20biology&rft.au=Patrick,%20Ellis&rft.date=2020-08-01&rft.volume=16&rft.issue=8&rft.spage=e1008120&rft.epage=e1008120&rft.pages=e1008120-e1008120&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1008120&rft_dat=%3Cgale_plos_%3EA634243927%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2443591931&rft_id=info:pmid/32804935&rft_galeid=A634243927&rft_doaj_id=oai_doaj_org_article_1295a6be968d4bca9402b6f0eb7ffac0&rfr_iscdi=true