Downy Mildew effector HaRxL21 interacts with the transcriptional repressor TOPLESS to promote pathogen susceptibility

Hyaloperonospora arabidopsidis (Hpa) is an oomycete pathogen causing Arabidopsis downy mildew. Effector proteins secreted from the pathogen into the plant play key roles in promoting infection by suppressing plant immunity and manipulating the host to the pathogen's advantage. One class of oomy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens 2020-08, Vol.16 (8), p.e1008835-e1008835
Hauptverfasser: Harvey, Sarah, Kumari, Priyanka, Lapin, Dmitry, Griebel, Thomas, Hickman, Richard, Guo, Wenbin, Zhang, Runxuan, Parker, Jane E, Beynon, Jim, Denby, Katherine, Steinbrenner, Jens
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1008835
container_issue 8
container_start_page e1008835
container_title PLoS pathogens
container_volume 16
creator Harvey, Sarah
Kumari, Priyanka
Lapin, Dmitry
Griebel, Thomas
Hickman, Richard
Guo, Wenbin
Zhang, Runxuan
Parker, Jane E
Beynon, Jim
Denby, Katherine
Steinbrenner, Jens
description Hyaloperonospora arabidopsidis (Hpa) is an oomycete pathogen causing Arabidopsis downy mildew. Effector proteins secreted from the pathogen into the plant play key roles in promoting infection by suppressing plant immunity and manipulating the host to the pathogen's advantage. One class of oomycete effectors share a conserved 'RxLR' motif critical for their translocation into the host cell. Here we characterize the interaction between an RxLR effector, HaRxL21 (RxL21), and the Arabidopsis transcriptional co-repressor Topless (TPL). We establish that RxL21 and TPL interact via an EAR motif at the C-terminus of the effector, mimicking the host plant mechanism for recruiting TPL to sites of transcriptional repression. We show that this motif, and hence interaction with TPL, is necessary for the virulence function of the effector. Furthermore, we provide evidence that RxL21 uses the interaction with TPL, and its close relative TPL-related 1, to repress plant immunity and enhance host susceptibility to both biotrophic and necrotrophic pathogens.
doi_str_mv 10.1371/journal.ppat.1008835
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2443590267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A634243305</galeid><doaj_id>oai_doaj_org_article_f6e6956f72e3411cb4edfe26e85c2e1d</doaj_id><sourcerecordid>A634243305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c712t-1ba1e6fa1fb40a0ec5ea322dc47a55465a128326663442966933591d165aaa303</originalsourceid><addsrcrecordid>eNqVks1uEzEUhUcIREvhDRBYYgOLBP_PZINUlUIjBYqasrYcz3XiaDIebA9t3h6HTKsGdYO8sGV_51zfo1sUrwkeE1aSj2vfh1Y3467TaUwwriomnhTHRAg2KlnJnz44HxUvYlxjzAkj8nlxxGhZCSrYcdF_9jftFn1zTQ03CKwFk3xAF_rqdkYJcm2CoE2K6MalFUorQCnoNprguuR8ro8CdAFizKLryx-z8_kcJY-64Dc-Acp_W_kltCj20UCWLFzj0vZl8czqJsKrYT8pfn45vz67GM0uv07PTmcjUxKaRmShCUiriV1wrDEYAZpRWhteaiG4FJrQilEpJeOcTqScMCYmpCb5RWuG2Unxdu_bNT6qIbGoKOeZw1SWmZjuidrrteqC2-iwVV479ffCh6XSITnTgLIS5ERIW1JgnBCz4FBboBIqYSiQOnt9Gqr1iw3UBtqcVXNgevjSupVa-t-q5FxWlcgG7weD4H_1EJPauBxb0-gWfL_7N-NYTGhJMvruH_Tx7gZqqXMDrrU-1zU7U3WaM8t-DO_Kjh-h8qph44xvwbp8fyD4cCDITILbtNR9jGo6v_oP9vshy_esCT7GAPY-O4LVbujvmlS7oVfD0GfZm4e534vuppz9Adk5_ao</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443590267</pqid></control><display><type>article</type><title>Downy Mildew effector HaRxL21 interacts with the transcriptional repressor TOPLESS to promote pathogen susceptibility</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Harvey, Sarah ; Kumari, Priyanka ; Lapin, Dmitry ; Griebel, Thomas ; Hickman, Richard ; Guo, Wenbin ; Zhang, Runxuan ; Parker, Jane E ; Beynon, Jim ; Denby, Katherine ; Steinbrenner, Jens</creator><contributor>Wang, Yuanchao</contributor><creatorcontrib>Harvey, Sarah ; Kumari, Priyanka ; Lapin, Dmitry ; Griebel, Thomas ; Hickman, Richard ; Guo, Wenbin ; Zhang, Runxuan ; Parker, Jane E ; Beynon, Jim ; Denby, Katherine ; Steinbrenner, Jens ; Wang, Yuanchao</creatorcontrib><description>Hyaloperonospora arabidopsidis (Hpa) is an oomycete pathogen causing Arabidopsis downy mildew. Effector proteins secreted from the pathogen into the plant play key roles in promoting infection by suppressing plant immunity and manipulating the host to the pathogen's advantage. One class of oomycete effectors share a conserved 'RxLR' motif critical for their translocation into the host cell. Here we characterize the interaction between an RxLR effector, HaRxL21 (RxL21), and the Arabidopsis transcriptional co-repressor Topless (TPL). We establish that RxL21 and TPL interact via an EAR motif at the C-terminus of the effector, mimicking the host plant mechanism for recruiting TPL to sites of transcriptional repression. We show that this motif, and hence interaction with TPL, is necessary for the virulence function of the effector. Furthermore, we provide evidence that RxL21 uses the interaction with TPL, and its close relative TPL-related 1, to repress plant immunity and enhance host susceptibility to both biotrophic and necrotrophic pathogens.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1008835</identifier><identifier>PMID: 32785253</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Airborne microorganisms ; Amino acids ; Arabidopsis ; Arabidopsis - immunology ; Arabidopsis - microbiology ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Binding sites ; Biology ; Biology and Life Sciences ; C-Terminus ; Cellular proteins ; Diseases and pests ; Downy mildew ; Funding ; Gene Expression Regulation, Plant ; Gene silencing ; Genetic aspects ; Genomes ; Host plants ; Host-Pathogen Interactions - immunology ; Immunity ; Infections ; Medicine and Health Sciences ; Mimicry ; Oomycetes - physiology ; Pathogens ; Peptides ; Physiology ; Plant Diseases - immunology ; Plant Diseases - microbiology ; Plant hardiness ; Plant immunity ; Plant Immunity - immunology ; Plant sciences ; Properties ; Proteins ; Research and Analysis Methods ; Supervision ; Translocation ; Virulence ; Virulence Factors - genetics ; Virulence Factors - metabolism</subject><ispartof>PLoS pathogens, 2020-08, Vol.16 (8), p.e1008835-e1008835</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Harvey et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Harvey et al 2020 Harvey et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c712t-1ba1e6fa1fb40a0ec5ea322dc47a55465a128326663442966933591d165aaa303</citedby><cites>FETCH-LOGICAL-c712t-1ba1e6fa1fb40a0ec5ea322dc47a55465a128326663442966933591d165aaa303</cites><orcidid>0000-0002-3600-6493 ; 0000-0002-1829-6044 ; 0000-0002-4542-7740 ; 0000-0003-1008-2268 ; 0000-0001-7558-765X ; 0000-0001-9591-3950 ; 0000-0002-4700-6480 ; 0000-0002-1855-3215 ; 0000-0002-7857-6814</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7446885/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7446885/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32785253$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wang, Yuanchao</contributor><creatorcontrib>Harvey, Sarah</creatorcontrib><creatorcontrib>Kumari, Priyanka</creatorcontrib><creatorcontrib>Lapin, Dmitry</creatorcontrib><creatorcontrib>Griebel, Thomas</creatorcontrib><creatorcontrib>Hickman, Richard</creatorcontrib><creatorcontrib>Guo, Wenbin</creatorcontrib><creatorcontrib>Zhang, Runxuan</creatorcontrib><creatorcontrib>Parker, Jane E</creatorcontrib><creatorcontrib>Beynon, Jim</creatorcontrib><creatorcontrib>Denby, Katherine</creatorcontrib><creatorcontrib>Steinbrenner, Jens</creatorcontrib><title>Downy Mildew effector HaRxL21 interacts with the transcriptional repressor TOPLESS to promote pathogen susceptibility</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Hyaloperonospora arabidopsidis (Hpa) is an oomycete pathogen causing Arabidopsis downy mildew. Effector proteins secreted from the pathogen into the plant play key roles in promoting infection by suppressing plant immunity and manipulating the host to the pathogen's advantage. One class of oomycete effectors share a conserved 'RxLR' motif critical for their translocation into the host cell. Here we characterize the interaction between an RxLR effector, HaRxL21 (RxL21), and the Arabidopsis transcriptional co-repressor Topless (TPL). We establish that RxL21 and TPL interact via an EAR motif at the C-terminus of the effector, mimicking the host plant mechanism for recruiting TPL to sites of transcriptional repression. We show that this motif, and hence interaction with TPL, is necessary for the virulence function of the effector. Furthermore, we provide evidence that RxL21 uses the interaction with TPL, and its close relative TPL-related 1, to repress plant immunity and enhance host susceptibility to both biotrophic and necrotrophic pathogens.</description><subject>Airborne microorganisms</subject><subject>Amino acids</subject><subject>Arabidopsis</subject><subject>Arabidopsis - immunology</subject><subject>Arabidopsis - microbiology</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Binding sites</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>C-Terminus</subject><subject>Cellular proteins</subject><subject>Diseases and pests</subject><subject>Downy mildew</subject><subject>Funding</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene silencing</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Host plants</subject><subject>Host-Pathogen Interactions - immunology</subject><subject>Immunity</subject><subject>Infections</subject><subject>Medicine and Health Sciences</subject><subject>Mimicry</subject><subject>Oomycetes - physiology</subject><subject>Pathogens</subject><subject>Peptides</subject><subject>Physiology</subject><subject>Plant Diseases - immunology</subject><subject>Plant Diseases - microbiology</subject><subject>Plant hardiness</subject><subject>Plant immunity</subject><subject>Plant Immunity - immunology</subject><subject>Plant sciences</subject><subject>Properties</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Supervision</subject><subject>Translocation</subject><subject>Virulence</subject><subject>Virulence Factors - genetics</subject><subject>Virulence Factors - metabolism</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVks1uEzEUhUcIREvhDRBYYgOLBP_PZINUlUIjBYqasrYcz3XiaDIebA9t3h6HTKsGdYO8sGV_51zfo1sUrwkeE1aSj2vfh1Y3467TaUwwriomnhTHRAg2KlnJnz44HxUvYlxjzAkj8nlxxGhZCSrYcdF_9jftFn1zTQ03CKwFk3xAF_rqdkYJcm2CoE2K6MalFUorQCnoNprguuR8ro8CdAFizKLryx-z8_kcJY-64Dc-Acp_W_kltCj20UCWLFzj0vZl8czqJsKrYT8pfn45vz67GM0uv07PTmcjUxKaRmShCUiriV1wrDEYAZpRWhteaiG4FJrQilEpJeOcTqScMCYmpCb5RWuG2Unxdu_bNT6qIbGoKOeZw1SWmZjuidrrteqC2-iwVV479ffCh6XSITnTgLIS5ERIW1JgnBCz4FBboBIqYSiQOnt9Gqr1iw3UBtqcVXNgevjSupVa-t-q5FxWlcgG7weD4H_1EJPauBxb0-gWfL_7N-NYTGhJMvruH_Tx7gZqqXMDrrU-1zU7U3WaM8t-DO_Kjh-h8qph44xvwbp8fyD4cCDITILbtNR9jGo6v_oP9vshy_esCT7GAPY-O4LVbujvmlS7oVfD0GfZm4e534vuppz9Adk5_ao</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Harvey, Sarah</creator><creator>Kumari, Priyanka</creator><creator>Lapin, Dmitry</creator><creator>Griebel, Thomas</creator><creator>Hickman, Richard</creator><creator>Guo, Wenbin</creator><creator>Zhang, Runxuan</creator><creator>Parker, Jane E</creator><creator>Beynon, Jim</creator><creator>Denby, Katherine</creator><creator>Steinbrenner, Jens</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3600-6493</orcidid><orcidid>https://orcid.org/0000-0002-1829-6044</orcidid><orcidid>https://orcid.org/0000-0002-4542-7740</orcidid><orcidid>https://orcid.org/0000-0003-1008-2268</orcidid><orcidid>https://orcid.org/0000-0001-7558-765X</orcidid><orcidid>https://orcid.org/0000-0001-9591-3950</orcidid><orcidid>https://orcid.org/0000-0002-4700-6480</orcidid><orcidid>https://orcid.org/0000-0002-1855-3215</orcidid><orcidid>https://orcid.org/0000-0002-7857-6814</orcidid></search><sort><creationdate>20200801</creationdate><title>Downy Mildew effector HaRxL21 interacts with the transcriptional repressor TOPLESS to promote pathogen susceptibility</title><author>Harvey, Sarah ; Kumari, Priyanka ; Lapin, Dmitry ; Griebel, Thomas ; Hickman, Richard ; Guo, Wenbin ; Zhang, Runxuan ; Parker, Jane E ; Beynon, Jim ; Denby, Katherine ; Steinbrenner, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c712t-1ba1e6fa1fb40a0ec5ea322dc47a55465a128326663442966933591d165aaa303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Airborne microorganisms</topic><topic>Amino acids</topic><topic>Arabidopsis</topic><topic>Arabidopsis - immunology</topic><topic>Arabidopsis - microbiology</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Binding sites</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>C-Terminus</topic><topic>Cellular proteins</topic><topic>Diseases and pests</topic><topic>Downy mildew</topic><topic>Funding</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene silencing</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Host plants</topic><topic>Host-Pathogen Interactions - immunology</topic><topic>Immunity</topic><topic>Infections</topic><topic>Medicine and Health Sciences</topic><topic>Mimicry</topic><topic>Oomycetes - physiology</topic><topic>Pathogens</topic><topic>Peptides</topic><topic>Physiology</topic><topic>Plant Diseases - immunology</topic><topic>Plant Diseases - microbiology</topic><topic>Plant hardiness</topic><topic>Plant immunity</topic><topic>Plant Immunity - immunology</topic><topic>Plant sciences</topic><topic>Properties</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Supervision</topic><topic>Translocation</topic><topic>Virulence</topic><topic>Virulence Factors - genetics</topic><topic>Virulence Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harvey, Sarah</creatorcontrib><creatorcontrib>Kumari, Priyanka</creatorcontrib><creatorcontrib>Lapin, Dmitry</creatorcontrib><creatorcontrib>Griebel, Thomas</creatorcontrib><creatorcontrib>Hickman, Richard</creatorcontrib><creatorcontrib>Guo, Wenbin</creatorcontrib><creatorcontrib>Zhang, Runxuan</creatorcontrib><creatorcontrib>Parker, Jane E</creatorcontrib><creatorcontrib>Beynon, Jim</creatorcontrib><creatorcontrib>Denby, Katherine</creatorcontrib><creatorcontrib>Steinbrenner, Jens</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harvey, Sarah</au><au>Kumari, Priyanka</au><au>Lapin, Dmitry</au><au>Griebel, Thomas</au><au>Hickman, Richard</au><au>Guo, Wenbin</au><au>Zhang, Runxuan</au><au>Parker, Jane E</au><au>Beynon, Jim</au><au>Denby, Katherine</au><au>Steinbrenner, Jens</au><au>Wang, Yuanchao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Downy Mildew effector HaRxL21 interacts with the transcriptional repressor TOPLESS to promote pathogen susceptibility</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>16</volume><issue>8</issue><spage>e1008835</spage><epage>e1008835</epage><pages>e1008835-e1008835</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Hyaloperonospora arabidopsidis (Hpa) is an oomycete pathogen causing Arabidopsis downy mildew. Effector proteins secreted from the pathogen into the plant play key roles in promoting infection by suppressing plant immunity and manipulating the host to the pathogen's advantage. One class of oomycete effectors share a conserved 'RxLR' motif critical for their translocation into the host cell. Here we characterize the interaction between an RxLR effector, HaRxL21 (RxL21), and the Arabidopsis transcriptional co-repressor Topless (TPL). We establish that RxL21 and TPL interact via an EAR motif at the C-terminus of the effector, mimicking the host plant mechanism for recruiting TPL to sites of transcriptional repression. We show that this motif, and hence interaction with TPL, is necessary for the virulence function of the effector. Furthermore, we provide evidence that RxL21 uses the interaction with TPL, and its close relative TPL-related 1, to repress plant immunity and enhance host susceptibility to both biotrophic and necrotrophic pathogens.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32785253</pmid><doi>10.1371/journal.ppat.1008835</doi><orcidid>https://orcid.org/0000-0002-3600-6493</orcidid><orcidid>https://orcid.org/0000-0002-1829-6044</orcidid><orcidid>https://orcid.org/0000-0002-4542-7740</orcidid><orcidid>https://orcid.org/0000-0003-1008-2268</orcidid><orcidid>https://orcid.org/0000-0001-7558-765X</orcidid><orcidid>https://orcid.org/0000-0001-9591-3950</orcidid><orcidid>https://orcid.org/0000-0002-4700-6480</orcidid><orcidid>https://orcid.org/0000-0002-1855-3215</orcidid><orcidid>https://orcid.org/0000-0002-7857-6814</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7374
ispartof PLoS pathogens, 2020-08, Vol.16 (8), p.e1008835-e1008835
issn 1553-7374
1553-7366
1553-7374
language eng
recordid cdi_plos_journals_2443590267
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Public Library of Science (PLoS); PubMed Central
subjects Airborne microorganisms
Amino acids
Arabidopsis
Arabidopsis - immunology
Arabidopsis - microbiology
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Binding sites
Biology
Biology and Life Sciences
C-Terminus
Cellular proteins
Diseases and pests
Downy mildew
Funding
Gene Expression Regulation, Plant
Gene silencing
Genetic aspects
Genomes
Host plants
Host-Pathogen Interactions - immunology
Immunity
Infections
Medicine and Health Sciences
Mimicry
Oomycetes - physiology
Pathogens
Peptides
Physiology
Plant Diseases - immunology
Plant Diseases - microbiology
Plant hardiness
Plant immunity
Plant Immunity - immunology
Plant sciences
Properties
Proteins
Research and Analysis Methods
Supervision
Translocation
Virulence
Virulence Factors - genetics
Virulence Factors - metabolism
title Downy Mildew effector HaRxL21 interacts with the transcriptional repressor TOPLESS to promote pathogen susceptibility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T17%3A24%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Downy%20Mildew%20effector%20HaRxL21%20interacts%20with%20the%20transcriptional%20repressor%20TOPLESS%20to%20promote%20pathogen%20susceptibility&rft.jtitle=PLoS%20pathogens&rft.au=Harvey,%20Sarah&rft.date=2020-08-01&rft.volume=16&rft.issue=8&rft.spage=e1008835&rft.epage=e1008835&rft.pages=e1008835-e1008835&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1008835&rft_dat=%3Cgale_plos_%3EA634243305%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2443590267&rft_id=info:pmid/32785253&rft_galeid=A634243305&rft_doaj_id=oai_doaj_org_article_f6e6956f72e3411cb4edfe26e85c2e1d&rfr_iscdi=true