Math and language gender stereotypes: Age and gender differences in implicit biases and explicit beliefs
In a cross-sectional study of youth ages 8-15, we examined implicit and explicit gender stereotypes regarding math and language abilities. We investigated how implicit and explicit stereotypes differ across age and gender groups and whether they are consistent with cultural stereotypes. Participants...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-09, Vol.15 (9), p.e0238230-e0238230 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0238230 |
---|---|
container_issue | 9 |
container_start_page | e0238230 |
container_title | PloS one |
container_volume | 15 |
creator | Vuletich, Heidi A Kurtz-Costes, Beth Cooley, Erin Payne, B Keith |
description | In a cross-sectional study of youth ages 8-15, we examined implicit and explicit gender stereotypes regarding math and language abilities. We investigated how implicit and explicit stereotypes differ across age and gender groups and whether they are consistent with cultural stereotypes. Participants (N = 270) completed the Affect Misattribution Procedure (AMP) and a survey of explicit beliefs. Across all ages, boys showed neither math nor language implicit gender biases, whereas girls implicitly favored girls in both domains. These findings are counter to cultural stereotypes, which favor boys in math. On the explicit measure, both boys' and girls' primary tendency was to favor girls in math and language ability, with the exception of elementary school boys, who rated genders equally. We conclude that objective gender differences in academic success guide differences in children's explicit reports and implicit biases. |
doi_str_mv | 10.1371/journal.pone.0238230 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2440886750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A634831753</galeid><doaj_id>oai_doaj_org_article_2c60dbec89ed4e23b837a0aaf69ded96</doaj_id><sourcerecordid>A634831753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-d6c27b5dc843ce8bf4c92b5955d1a7dc89e3437aae6939fb32fa35d86b8b54ff3</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLgujFjGmSpokXwrD4MbCy4NdtSJOTTpZOMzap7P57053OMpW9kF6kvOc570lOcrLseYGWBamKd1d-6DvVLne-gyXChGOCHmSnhSB4wTAiD4_-T7InIVwhVBLO2OPshGAuOC_pabb5quImV53JW9U1g2ogb6Az0OchQg8-3uwgvM9XSR-hKWactSnaaQi563K33bVOu5jXToUkjSRcHzRoHdjwNHtkVRvg2bSeZT8_ffxx_mVxcfl5fb66WGgmcFwYpnFVl0ZzSjTw2lItcF2KsjSFqpIsgFBSKQVMEGFrgq0ipeGs5nVJrSVn2cu97671QU5NChJTijhnVYkSsd4TxqsruevdVvU30isnbwXfN1L10ekWJNYMmRrGqoYCJjVPpZFSlgkDRrDk9WGqNtRbMBq62Kt2ZjqPdG4jG_9HVrTiAolk8GYy6P3vAUKUWxc0tOk2wA-3-y5wVVJGEvrqH_T-001Uo9IBXGd9qqtHU7lihHJSVOXotbyHSp-BrdPpRVmX9FnC21lCYiJcx0YNIcj192__z17-mrOvj9gNqDZugm-H6HwX5iDdg7r3IfRg75pcIDkOxKEbchwIOQ1ESntxfEF3SYcJIH8BBCkHXQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440886750</pqid></control><display><type>article</type><title>Math and language gender stereotypes: Age and gender differences in implicit biases and explicit beliefs</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Vuletich, Heidi A ; Kurtz-Costes, Beth ; Cooley, Erin ; Payne, B Keith</creator><contributor>Steele, Jennifer</contributor><creatorcontrib>Vuletich, Heidi A ; Kurtz-Costes, Beth ; Cooley, Erin ; Payne, B Keith ; Steele, Jennifer</creatorcontrib><description>In a cross-sectional study of youth ages 8-15, we examined implicit and explicit gender stereotypes regarding math and language abilities. We investigated how implicit and explicit stereotypes differ across age and gender groups and whether they are consistent with cultural stereotypes. Participants (N = 270) completed the Affect Misattribution Procedure (AMP) and a survey of explicit beliefs. Across all ages, boys showed neither math nor language implicit gender biases, whereas girls implicitly favored girls in both domains. These findings are counter to cultural stereotypes, which favor boys in math. On the explicit measure, both boys' and girls' primary tendency was to favor girls in math and language ability, with the exception of elementary school boys, who rated genders equally. We conclude that objective gender differences in academic success guide differences in children's explicit reports and implicit biases.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0238230</identifier><identifier>PMID: 32898854</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adolescent ; Age ; Age Factors ; AMP ; Aptitude ; Biology and Life Sciences ; Boys ; Child ; Children ; Children & youth ; Cross-Sectional Studies ; Demographic aspects ; Egalitarianism ; Female ; Gender aspects ; Gender differences ; Girls ; Human bias ; Humans ; Language ; Language skills ; Male ; Mathematical ability ; Mathematics - education ; Middle schools ; Neurosciences ; People and Places ; Preferences ; Self Concept ; Sex differences ; Sex Factors ; Sexism - statistics & numerical data ; Social Sciences ; STEM education ; Stereotypes ; Stereotyping ; Students - psychology ; Youth</subject><ispartof>PloS one, 2020-09, Vol.15 (9), p.e0238230-e0238230</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Vuletich et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Vuletich et al 2020 Vuletich et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-d6c27b5dc843ce8bf4c92b5955d1a7dc89e3437aae6939fb32fa35d86b8b54ff3</citedby><cites>FETCH-LOGICAL-c692t-d6c27b5dc843ce8bf4c92b5955d1a7dc89e3437aae6939fb32fa35d86b8b54ff3</cites><orcidid>0000-0003-3026-4413 ; 0000-0002-8614-4333</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7478909/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7478909/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32898854$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Steele, Jennifer</contributor><creatorcontrib>Vuletich, Heidi A</creatorcontrib><creatorcontrib>Kurtz-Costes, Beth</creatorcontrib><creatorcontrib>Cooley, Erin</creatorcontrib><creatorcontrib>Payne, B Keith</creatorcontrib><title>Math and language gender stereotypes: Age and gender differences in implicit biases and explicit beliefs</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In a cross-sectional study of youth ages 8-15, we examined implicit and explicit gender stereotypes regarding math and language abilities. We investigated how implicit and explicit stereotypes differ across age and gender groups and whether they are consistent with cultural stereotypes. Participants (N = 270) completed the Affect Misattribution Procedure (AMP) and a survey of explicit beliefs. Across all ages, boys showed neither math nor language implicit gender biases, whereas girls implicitly favored girls in both domains. These findings are counter to cultural stereotypes, which favor boys in math. On the explicit measure, both boys' and girls' primary tendency was to favor girls in math and language ability, with the exception of elementary school boys, who rated genders equally. We conclude that objective gender differences in academic success guide differences in children's explicit reports and implicit biases.</description><subject>Adolescent</subject><subject>Age</subject><subject>Age Factors</subject><subject>AMP</subject><subject>Aptitude</subject><subject>Biology and Life Sciences</subject><subject>Boys</subject><subject>Child</subject><subject>Children</subject><subject>Children & youth</subject><subject>Cross-Sectional Studies</subject><subject>Demographic aspects</subject><subject>Egalitarianism</subject><subject>Female</subject><subject>Gender aspects</subject><subject>Gender differences</subject><subject>Girls</subject><subject>Human bias</subject><subject>Humans</subject><subject>Language</subject><subject>Language skills</subject><subject>Male</subject><subject>Mathematical ability</subject><subject>Mathematics - education</subject><subject>Middle schools</subject><subject>Neurosciences</subject><subject>People and Places</subject><subject>Preferences</subject><subject>Self Concept</subject><subject>Sex differences</subject><subject>Sex Factors</subject><subject>Sexism - statistics & numerical data</subject><subject>Social Sciences</subject><subject>STEM education</subject><subject>Stereotypes</subject><subject>Stereotyping</subject><subject>Students - psychology</subject><subject>Youth</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLgujFjGmSpokXwrD4MbCy4NdtSJOTTpZOMzap7P57053OMpW9kF6kvOc570lOcrLseYGWBamKd1d-6DvVLne-gyXChGOCHmSnhSB4wTAiD4_-T7InIVwhVBLO2OPshGAuOC_pabb5quImV53JW9U1g2ogb6Az0OchQg8-3uwgvM9XSR-hKWactSnaaQi563K33bVOu5jXToUkjSRcHzRoHdjwNHtkVRvg2bSeZT8_ffxx_mVxcfl5fb66WGgmcFwYpnFVl0ZzSjTw2lItcF2KsjSFqpIsgFBSKQVMEGFrgq0ipeGs5nVJrSVn2cu97671QU5NChJTijhnVYkSsd4TxqsruevdVvU30isnbwXfN1L10ekWJNYMmRrGqoYCJjVPpZFSlgkDRrDk9WGqNtRbMBq62Kt2ZjqPdG4jG_9HVrTiAolk8GYy6P3vAUKUWxc0tOk2wA-3-y5wVVJGEvrqH_T-001Uo9IBXGd9qqtHU7lihHJSVOXotbyHSp-BrdPpRVmX9FnC21lCYiJcx0YNIcj192__z17-mrOvj9gNqDZugm-H6HwX5iDdg7r3IfRg75pcIDkOxKEbchwIOQ1ESntxfEF3SYcJIH8BBCkHXQ</recordid><startdate>20200908</startdate><enddate>20200908</enddate><creator>Vuletich, Heidi A</creator><creator>Kurtz-Costes, Beth</creator><creator>Cooley, Erin</creator><creator>Payne, B Keith</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3026-4413</orcidid><orcidid>https://orcid.org/0000-0002-8614-4333</orcidid></search><sort><creationdate>20200908</creationdate><title>Math and language gender stereotypes: Age and gender differences in implicit biases and explicit beliefs</title><author>Vuletich, Heidi A ; Kurtz-Costes, Beth ; Cooley, Erin ; Payne, B Keith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-d6c27b5dc843ce8bf4c92b5955d1a7dc89e3437aae6939fb32fa35d86b8b54ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adolescent</topic><topic>Age</topic><topic>Age Factors</topic><topic>AMP</topic><topic>Aptitude</topic><topic>Biology and Life Sciences</topic><topic>Boys</topic><topic>Child</topic><topic>Children</topic><topic>Children & youth</topic><topic>Cross-Sectional Studies</topic><topic>Demographic aspects</topic><topic>Egalitarianism</topic><topic>Female</topic><topic>Gender aspects</topic><topic>Gender differences</topic><topic>Girls</topic><topic>Human bias</topic><topic>Humans</topic><topic>Language</topic><topic>Language skills</topic><topic>Male</topic><topic>Mathematical ability</topic><topic>Mathematics - education</topic><topic>Middle schools</topic><topic>Neurosciences</topic><topic>People and Places</topic><topic>Preferences</topic><topic>Self Concept</topic><topic>Sex differences</topic><topic>Sex Factors</topic><topic>Sexism - statistics & numerical data</topic><topic>Social Sciences</topic><topic>STEM education</topic><topic>Stereotypes</topic><topic>Stereotyping</topic><topic>Students - psychology</topic><topic>Youth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vuletich, Heidi A</creatorcontrib><creatorcontrib>Kurtz-Costes, Beth</creatorcontrib><creatorcontrib>Cooley, Erin</creatorcontrib><creatorcontrib>Payne, B Keith</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vuletich, Heidi A</au><au>Kurtz-Costes, Beth</au><au>Cooley, Erin</au><au>Payne, B Keith</au><au>Steele, Jennifer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Math and language gender stereotypes: Age and gender differences in implicit biases and explicit beliefs</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-09-08</date><risdate>2020</risdate><volume>15</volume><issue>9</issue><spage>e0238230</spage><epage>e0238230</epage><pages>e0238230-e0238230</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In a cross-sectional study of youth ages 8-15, we examined implicit and explicit gender stereotypes regarding math and language abilities. We investigated how implicit and explicit stereotypes differ across age and gender groups and whether they are consistent with cultural stereotypes. Participants (N = 270) completed the Affect Misattribution Procedure (AMP) and a survey of explicit beliefs. Across all ages, boys showed neither math nor language implicit gender biases, whereas girls implicitly favored girls in both domains. These findings are counter to cultural stereotypes, which favor boys in math. On the explicit measure, both boys' and girls' primary tendency was to favor girls in math and language ability, with the exception of elementary school boys, who rated genders equally. We conclude that objective gender differences in academic success guide differences in children's explicit reports and implicit biases.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32898854</pmid><doi>10.1371/journal.pone.0238230</doi><tpages>e0238230</tpages><orcidid>https://orcid.org/0000-0003-3026-4413</orcidid><orcidid>https://orcid.org/0000-0002-8614-4333</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-09, Vol.15 (9), p.e0238230-e0238230 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2440886750 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adolescent Age Age Factors AMP Aptitude Biology and Life Sciences Boys Child Children Children & youth Cross-Sectional Studies Demographic aspects Egalitarianism Female Gender aspects Gender differences Girls Human bias Humans Language Language skills Male Mathematical ability Mathematics - education Middle schools Neurosciences People and Places Preferences Self Concept Sex differences Sex Factors Sexism - statistics & numerical data Social Sciences STEM education Stereotypes Stereotyping Students - psychology Youth |
title | Math and language gender stereotypes: Age and gender differences in implicit biases and explicit beliefs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A12%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Math%20and%20language%20gender%20stereotypes:%20Age%20and%20gender%20differences%20in%20implicit%20biases%20and%20explicit%20beliefs&rft.jtitle=PloS%20one&rft.au=Vuletich,%20Heidi%20A&rft.date=2020-09-08&rft.volume=15&rft.issue=9&rft.spage=e0238230&rft.epage=e0238230&rft.pages=e0238230-e0238230&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0238230&rft_dat=%3Cgale_plos_%3EA634831753%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440886750&rft_id=info:pmid/32898854&rft_galeid=A634831753&rft_doaj_id=oai_doaj_org_article_2c60dbec89ed4e23b837a0aaf69ded96&rfr_iscdi=true |