Nystose regulates the response of rice roots to cold stress via multiple signaling pathways: A comparative proteomics analysis
Small fructans improve plant tolerance for cold stress. However, the underlying molecular mechanisms are poorly understood. Here, we have demonstrated that the small fructan tetrasaccharide nystose improves the cold stress tolerance of primary rice roots. Roots developed from seeds soaked in nystose...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-09, Vol.15 (9), p.e0238381-e0238381 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0238381 |
---|---|
container_issue | 9 |
container_start_page | e0238381 |
container_title | PloS one |
container_volume | 15 |
creator | Zhang, Zijie Xiao, Wenfei Qiu, Jieren Xin, Ya Liu, Qinpo Chen, Huizhe Fu, Yaping Ma, Huasheng Chen, Wenyue Huang, Yuqin Ruan, Songlin Yan, Jianli |
description | Small fructans improve plant tolerance for cold stress. However, the underlying molecular mechanisms are poorly understood. Here, we have demonstrated that the small fructan tetrasaccharide nystose improves the cold stress tolerance of primary rice roots. Roots developed from seeds soaked in nystose showed lower browning rate, higher root activity, and faster growth compared to seeds soaked in water under chilling stress. Comparative proteomics analysis of nystose-treated and control roots identified a total of 497 differentially expressed proteins. GO classification and KEGG pathway analysis documented that some of the upregulated differentially expressed proteins were implicated in the regulation of serine/threonine protein phosphatase activity, abscisic acid-activated signaling, removal of superoxide radicals, and the response to oxidative stress and defense responses. Western blot analysis indicated that nystose promotes the growth of primary rice roots by increasing the level of RSOsPR10, and the cold stress-induced change in RSOsPR10levelis regulated by jasmonate, salicylic acid, and abscisic acid signaling pathways in rice roots. Furthermore, OsMKK4-dependentmitogen-activated protein kinase signaling cascades may be involved in the nystose-induced cold tolerance of primary rice roots. Together, these results indicate that nystose acts as an immunostimulator of the response to cold stress by multiple signaling pathways. |
doi_str_mv | 10.1371/journal.pone.0238381 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2439970831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7c4a2833f2ef43b6aa7ac5039758b3d0</doaj_id><sourcerecordid>2440469850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-d8a3ee91f79be20b14edb35f072c91d53cd1456f668a7fe9daaac4f8dd65b57b3</originalsourceid><addsrcrecordid>eNptkkuPFCEUhStG44yj_8BEEjduuoWCKigXJpOJj0kmutE1ucWjmw5VlEC16Y2_XcoujWNcAed-nHsgt6qeE7wllJPXhzDHEfx2CqPZ4poKKsiD6pJ0tN60NaYP_9pfVE9SOmDcUNG2j6sLWgtBOlZfVj8-nVIOyaBodrOHbBLK--WUim-Rg0XRqSKEkEspIBW8RikXIKGjAzTMPrvJG5TcrsRx4w5NkPff4ZTeoOuCDxNEyO5o0BRDNmFwKiEo6Cm59LR6ZMEn82xdr6qv7999ufm4ufv84fbm-m6jGkzzRgugxnTE8q43Ne4JM7qnjcW8Vh3RDVWasKa1bSuAW9NpAFDMCq3bpm94T6-qF2ffyYck169Lsma06zgWlBTi9kzoAAc5RTdAPMkATv4SQtxJiNkpbyRXDGpBqa2NZbRvATgsOTveiJ5qXLzert3mfjBamTFH8PdM71dGt5e7cJScccwILwavVoMYvs0mZTm4pIz3MJowL7kZZm0nmqXXy3_Q_7-OnSkVQ0rR2D9hCJbLOP2-JZdxkus40Z921sL3</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439970831</pqid></control><display><type>article</type><title>Nystose regulates the response of rice roots to cold stress via multiple signaling pathways: A comparative proteomics analysis</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed (Medline)</source><source>DOAJ Directory of Open Access Journals</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhang, Zijie ; Xiao, Wenfei ; Qiu, Jieren ; Xin, Ya ; Liu, Qinpo ; Chen, Huizhe ; Fu, Yaping ; Ma, Huasheng ; Chen, Wenyue ; Huang, Yuqin ; Ruan, Songlin ; Yan, Jianli</creator><contributor>Chen, Zhong-Hua</contributor><creatorcontrib>Zhang, Zijie ; Xiao, Wenfei ; Qiu, Jieren ; Xin, Ya ; Liu, Qinpo ; Chen, Huizhe ; Fu, Yaping ; Ma, Huasheng ; Chen, Wenyue ; Huang, Yuqin ; Ruan, Songlin ; Yan, Jianli ; Chen, Zhong-Hua</creatorcontrib><description>Small fructans improve plant tolerance for cold stress. However, the underlying molecular mechanisms are poorly understood. Here, we have demonstrated that the small fructan tetrasaccharide nystose improves the cold stress tolerance of primary rice roots. Roots developed from seeds soaked in nystose showed lower browning rate, higher root activity, and faster growth compared to seeds soaked in water under chilling stress. Comparative proteomics analysis of nystose-treated and control roots identified a total of 497 differentially expressed proteins. GO classification and KEGG pathway analysis documented that some of the upregulated differentially expressed proteins were implicated in the regulation of serine/threonine protein phosphatase activity, abscisic acid-activated signaling, removal of superoxide radicals, and the response to oxidative stress and defense responses. Western blot analysis indicated that nystose promotes the growth of primary rice roots by increasing the level of RSOsPR10, and the cold stress-induced change in RSOsPR10levelis regulated by jasmonate, salicylic acid, and abscisic acid signaling pathways in rice roots. Furthermore, OsMKK4-dependentmitogen-activated protein kinase signaling cascades may be involved in the nystose-induced cold tolerance of primary rice roots. Together, these results indicate that nystose acts as an immunostimulator of the response to cold stress by multiple signaling pathways.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0238381</identifier><identifier>PMID: 32881942</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Abscisic acid ; Agriculture ; Biology and Life Sciences ; Browning ; Carbohydrates ; Cold ; Cold tolerance ; Crop science ; Flowers & plants ; Food science ; Fructans ; Gene expression ; Genomes ; Jasmonic acid ; Kinases ; Laboratories ; Molecular modelling ; Oxidative stress ; Physical Sciences ; Protein kinase ; Protein phosphatase ; Proteins ; Proteomics ; Research and Analysis Methods ; Rice ; Roots ; Salicylic acid ; Seeds ; Serine ; Signal transduction ; Signaling ; Sucrose ; Superoxide ; Supervision ; Threonine</subject><ispartof>PloS one, 2020-09, Vol.15 (9), p.e0238381-e0238381</ispartof><rights>2020 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Zhang et al 2020 Zhang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-d8a3ee91f79be20b14edb35f072c91d53cd1456f668a7fe9daaac4f8dd65b57b3</citedby><cites>FETCH-LOGICAL-c503t-d8a3ee91f79be20b14edb35f072c91d53cd1456f668a7fe9daaac4f8dd65b57b3</cites><orcidid>0000-0003-3010-3134 ; 0000-0003-0608-827X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7470417/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7470417/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids></links><search><contributor>Chen, Zhong-Hua</contributor><creatorcontrib>Zhang, Zijie</creatorcontrib><creatorcontrib>Xiao, Wenfei</creatorcontrib><creatorcontrib>Qiu, Jieren</creatorcontrib><creatorcontrib>Xin, Ya</creatorcontrib><creatorcontrib>Liu, Qinpo</creatorcontrib><creatorcontrib>Chen, Huizhe</creatorcontrib><creatorcontrib>Fu, Yaping</creatorcontrib><creatorcontrib>Ma, Huasheng</creatorcontrib><creatorcontrib>Chen, Wenyue</creatorcontrib><creatorcontrib>Huang, Yuqin</creatorcontrib><creatorcontrib>Ruan, Songlin</creatorcontrib><creatorcontrib>Yan, Jianli</creatorcontrib><title>Nystose regulates the response of rice roots to cold stress via multiple signaling pathways: A comparative proteomics analysis</title><title>PloS one</title><description>Small fructans improve plant tolerance for cold stress. However, the underlying molecular mechanisms are poorly understood. Here, we have demonstrated that the small fructan tetrasaccharide nystose improves the cold stress tolerance of primary rice roots. Roots developed from seeds soaked in nystose showed lower browning rate, higher root activity, and faster growth compared to seeds soaked in water under chilling stress. Comparative proteomics analysis of nystose-treated and control roots identified a total of 497 differentially expressed proteins. GO classification and KEGG pathway analysis documented that some of the upregulated differentially expressed proteins were implicated in the regulation of serine/threonine protein phosphatase activity, abscisic acid-activated signaling, removal of superoxide radicals, and the response to oxidative stress and defense responses. Western blot analysis indicated that nystose promotes the growth of primary rice roots by increasing the level of RSOsPR10, and the cold stress-induced change in RSOsPR10levelis regulated by jasmonate, salicylic acid, and abscisic acid signaling pathways in rice roots. Furthermore, OsMKK4-dependentmitogen-activated protein kinase signaling cascades may be involved in the nystose-induced cold tolerance of primary rice roots. Together, these results indicate that nystose acts as an immunostimulator of the response to cold stress by multiple signaling pathways.</description><subject>Abscisic acid</subject><subject>Agriculture</subject><subject>Biology and Life Sciences</subject><subject>Browning</subject><subject>Carbohydrates</subject><subject>Cold</subject><subject>Cold tolerance</subject><subject>Crop science</subject><subject>Flowers & plants</subject><subject>Food science</subject><subject>Fructans</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Jasmonic acid</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Molecular modelling</subject><subject>Oxidative stress</subject><subject>Physical Sciences</subject><subject>Protein kinase</subject><subject>Protein phosphatase</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Research and Analysis Methods</subject><subject>Rice</subject><subject>Roots</subject><subject>Salicylic acid</subject><subject>Seeds</subject><subject>Serine</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>Sucrose</subject><subject>Superoxide</subject><subject>Supervision</subject><subject>Threonine</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptkkuPFCEUhStG44yj_8BEEjduuoWCKigXJpOJj0kmutE1ucWjmw5VlEC16Y2_XcoujWNcAed-nHsgt6qeE7wllJPXhzDHEfx2CqPZ4poKKsiD6pJ0tN60NaYP_9pfVE9SOmDcUNG2j6sLWgtBOlZfVj8-nVIOyaBodrOHbBLK--WUim-Rg0XRqSKEkEspIBW8RikXIKGjAzTMPrvJG5TcrsRx4w5NkPff4ZTeoOuCDxNEyO5o0BRDNmFwKiEo6Cm59LR6ZMEn82xdr6qv7999ufm4ufv84fbm-m6jGkzzRgugxnTE8q43Ne4JM7qnjcW8Vh3RDVWasKa1bSuAW9NpAFDMCq3bpm94T6-qF2ffyYck169Lsma06zgWlBTi9kzoAAc5RTdAPMkATv4SQtxJiNkpbyRXDGpBqa2NZbRvATgsOTveiJ5qXLzert3mfjBamTFH8PdM71dGt5e7cJScccwILwavVoMYvs0mZTm4pIz3MJowL7kZZm0nmqXXy3_Q_7-OnSkVQ0rR2D9hCJbLOP2-JZdxkus40Z921sL3</recordid><startdate>20200903</startdate><enddate>20200903</enddate><creator>Zhang, Zijie</creator><creator>Xiao, Wenfei</creator><creator>Qiu, Jieren</creator><creator>Xin, Ya</creator><creator>Liu, Qinpo</creator><creator>Chen, Huizhe</creator><creator>Fu, Yaping</creator><creator>Ma, Huasheng</creator><creator>Chen, Wenyue</creator><creator>Huang, Yuqin</creator><creator>Ruan, Songlin</creator><creator>Yan, Jianli</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3010-3134</orcidid><orcidid>https://orcid.org/0000-0003-0608-827X</orcidid></search><sort><creationdate>20200903</creationdate><title>Nystose regulates the response of rice roots to cold stress via multiple signaling pathways: A comparative proteomics analysis</title><author>Zhang, Zijie ; Xiao, Wenfei ; Qiu, Jieren ; Xin, Ya ; Liu, Qinpo ; Chen, Huizhe ; Fu, Yaping ; Ma, Huasheng ; Chen, Wenyue ; Huang, Yuqin ; Ruan, Songlin ; Yan, Jianli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-d8a3ee91f79be20b14edb35f072c91d53cd1456f668a7fe9daaac4f8dd65b57b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abscisic acid</topic><topic>Agriculture</topic><topic>Biology and Life Sciences</topic><topic>Browning</topic><topic>Carbohydrates</topic><topic>Cold</topic><topic>Cold tolerance</topic><topic>Crop science</topic><topic>Flowers & plants</topic><topic>Food science</topic><topic>Fructans</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Jasmonic acid</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Molecular modelling</topic><topic>Oxidative stress</topic><topic>Physical Sciences</topic><topic>Protein kinase</topic><topic>Protein phosphatase</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Research and Analysis Methods</topic><topic>Rice</topic><topic>Roots</topic><topic>Salicylic acid</topic><topic>Seeds</topic><topic>Serine</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>Sucrose</topic><topic>Superoxide</topic><topic>Supervision</topic><topic>Threonine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zijie</creatorcontrib><creatorcontrib>Xiao, Wenfei</creatorcontrib><creatorcontrib>Qiu, Jieren</creatorcontrib><creatorcontrib>Xin, Ya</creatorcontrib><creatorcontrib>Liu, Qinpo</creatorcontrib><creatorcontrib>Chen, Huizhe</creatorcontrib><creatorcontrib>Fu, Yaping</creatorcontrib><creatorcontrib>Ma, Huasheng</creatorcontrib><creatorcontrib>Chen, Wenyue</creatorcontrib><creatorcontrib>Huang, Yuqin</creatorcontrib><creatorcontrib>Ruan, Songlin</creatorcontrib><creatorcontrib>Yan, Jianli</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zijie</au><au>Xiao, Wenfei</au><au>Qiu, Jieren</au><au>Xin, Ya</au><au>Liu, Qinpo</au><au>Chen, Huizhe</au><au>Fu, Yaping</au><au>Ma, Huasheng</au><au>Chen, Wenyue</au><au>Huang, Yuqin</au><au>Ruan, Songlin</au><au>Yan, Jianli</au><au>Chen, Zhong-Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nystose regulates the response of rice roots to cold stress via multiple signaling pathways: A comparative proteomics analysis</atitle><jtitle>PloS one</jtitle><date>2020-09-03</date><risdate>2020</risdate><volume>15</volume><issue>9</issue><spage>e0238381</spage><epage>e0238381</epage><pages>e0238381-e0238381</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Small fructans improve plant tolerance for cold stress. However, the underlying molecular mechanisms are poorly understood. Here, we have demonstrated that the small fructan tetrasaccharide nystose improves the cold stress tolerance of primary rice roots. Roots developed from seeds soaked in nystose showed lower browning rate, higher root activity, and faster growth compared to seeds soaked in water under chilling stress. Comparative proteomics analysis of nystose-treated and control roots identified a total of 497 differentially expressed proteins. GO classification and KEGG pathway analysis documented that some of the upregulated differentially expressed proteins were implicated in the regulation of serine/threonine protein phosphatase activity, abscisic acid-activated signaling, removal of superoxide radicals, and the response to oxidative stress and defense responses. Western blot analysis indicated that nystose promotes the growth of primary rice roots by increasing the level of RSOsPR10, and the cold stress-induced change in RSOsPR10levelis regulated by jasmonate, salicylic acid, and abscisic acid signaling pathways in rice roots. Furthermore, OsMKK4-dependentmitogen-activated protein kinase signaling cascades may be involved in the nystose-induced cold tolerance of primary rice roots. Together, these results indicate that nystose acts as an immunostimulator of the response to cold stress by multiple signaling pathways.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>32881942</pmid><doi>10.1371/journal.pone.0238381</doi><orcidid>https://orcid.org/0000-0003-3010-3134</orcidid><orcidid>https://orcid.org/0000-0003-0608-827X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-09, Vol.15 (9), p.e0238381-e0238381 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2439970831 |
source | Public Library of Science (PLoS) Journals Open Access; PubMed (Medline); DOAJ Directory of Open Access Journals; Free E-Journal (出版社公開部分のみ); Free Full-Text Journals in Chemistry |
subjects | Abscisic acid Agriculture Biology and Life Sciences Browning Carbohydrates Cold Cold tolerance Crop science Flowers & plants Food science Fructans Gene expression Genomes Jasmonic acid Kinases Laboratories Molecular modelling Oxidative stress Physical Sciences Protein kinase Protein phosphatase Proteins Proteomics Research and Analysis Methods Rice Roots Salicylic acid Seeds Serine Signal transduction Signaling Sucrose Superoxide Supervision Threonine |
title | Nystose regulates the response of rice roots to cold stress via multiple signaling pathways: A comparative proteomics analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A38%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nystose%20regulates%20the%20response%20of%20rice%20roots%20to%20cold%20stress%20via%20multiple%20signaling%20pathways:%20A%20comparative%20proteomics%20analysis&rft.jtitle=PloS%20one&rft.au=Zhang,%20Zijie&rft.date=2020-09-03&rft.volume=15&rft.issue=9&rft.spage=e0238381&rft.epage=e0238381&rft.pages=e0238381-e0238381&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0238381&rft_dat=%3Cproquest_plos_%3E2440469850%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439970831&rft_id=info:pmid/32881942&rft_doaj_id=oai_doaj_org_article_7c4a2833f2ef43b6aa7ac5039758b3d0&rfr_iscdi=true |