Differences in the growth rate and immune strategies of farmed and wild mallard populations

Individuals reared in captivity are exposed to distinct selection pressures and evolutionary processes causing genetic and phenotypic divergence from wild populations. Consequently, restocking with farmed individuals may represent a considerable risk for the fitness of free-living populations. Suppo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-08, Vol.15 (8), p.e0236583-e0236583
Hauptverfasser: Svobodova, Jana, Pinkasova, Hana, Hyrsl, Pavel, Dvorackova, Monika, Zita, Lukas, Kreisinger, Jakub
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0236583
container_issue 8
container_start_page e0236583
container_title PloS one
container_volume 15
creator Svobodova, Jana
Pinkasova, Hana
Hyrsl, Pavel
Dvorackova, Monika
Zita, Lukas
Kreisinger, Jakub
description Individuals reared in captivity are exposed to distinct selection pressures and evolutionary processes causing genetic and phenotypic divergence from wild populations. Consequently, restocking with farmed individuals may represent a considerable risk for the fitness of free-living populations. Supportive breeding on a massive scale has been established in many European countries to increase hunting opportunities for the most common duck species, the mallard (Anas platyrhynchos). It has previously been shown that mallards from breeding facilities differ genetically from wild populations and there is some indication of morphological differences. Using a common-garden experiment, we tested for differences in growth parameters between free-living populations and individuals from breeding facilities during the first 20 days of post-hatching development, a critical phase for survival in free-living populations. In addition, we compared their immune function by assessing two haematological parameters, H/L ratio and immature erythrocyte frequency, and plasma complement activity. Our data show that farmed ducklings exhibit larger morphological parameters, a higher growth rates, and higher complement activity. In haematological parameters, we observed high dynamic changes in duckling ontogeny in relation to their morphological parameters. In conclusion, our data demonstrate pronounced phenotype divergence between farmed and wild mallard populations that can be genetically determined. We argue that this divergence can directly or indirectly affect fitness of farmed individuals introduced to the breeding population as well as fitness of farmed x wild hybrids.
doi_str_mv 10.1371/journal.pone.0236583
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2438960928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A634041633</galeid><doaj_id>oai_doaj_org_article_ed4db3166e504b75996b5530eb9f3083</doaj_id><sourcerecordid>A634041633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c669t-b0b19c14db4b6e80a420a277391468cb7b3d858a0cd3a3cab0688e769717819a3</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6DwQLgujFjEnT5uNGWNavgYUFv268CEl62snQNt0kdfXfm5mpspW9kFwknDx5z8mbnCx7itEaE4Zf79zkB9WtRzfAGhWEVpzcy06xIMWKFojcv7U-yR6FsEOoIpzSh9kJKdKMWXWafX9rmwY8DAZCboc8biFvvbuJ29yrCLka6tz2_TRAHuI-0toEuiZvlO-hPuzf2K7Oe9V1ytf56MapU9G6ITzOHjSqC_Bkns-yr-_ffbn4uLq8-rC5OL9cGUpFXGmksTC4rHWpKXCkygKpgjEicEm50UyTmldcIVMTRYzSiHIOjAqGGcdCkbPs2VF37FyQsy9BFiXhgiJR8ERsjkTt1E6O3vbK_5JOWXkION9K5aM1HUioUyEEUwoVKjWrhKC6qggCLRqCOElab-Zsk04OGBiSL91CdLkz2K1s3Q_JyvRCqEwCL2cB764nCFH2NhhI9g3gpkPdgpKKIZbQ5_-gd99uplqVLmCHxqW8Zi8qzykpUYkp2de9voNKo4bemvSJGpviiwOvFgcSE-FnbNUUgtx8_vT_7NW3JfviFrsF1cVtcN10-DNLsDyCxrsQPDR_TcZI7nvgjxty3wNy7gHyG2WP9nY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438960928</pqid></control><display><type>article</type><title>Differences in the growth rate and immune strategies of farmed and wild mallard populations</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Svobodova, Jana ; Pinkasova, Hana ; Hyrsl, Pavel ; Dvorackova, Monika ; Zita, Lukas ; Kreisinger, Jakub</creator><contributor>Ruiz-Rodriguez, Magdalena</contributor><creatorcontrib>Svobodova, Jana ; Pinkasova, Hana ; Hyrsl, Pavel ; Dvorackova, Monika ; Zita, Lukas ; Kreisinger, Jakub ; Ruiz-Rodriguez, Magdalena</creatorcontrib><description>Individuals reared in captivity are exposed to distinct selection pressures and evolutionary processes causing genetic and phenotypic divergence from wild populations. Consequently, restocking with farmed individuals may represent a considerable risk for the fitness of free-living populations. Supportive breeding on a massive scale has been established in many European countries to increase hunting opportunities for the most common duck species, the mallard (Anas platyrhynchos). It has previously been shown that mallards from breeding facilities differ genetically from wild populations and there is some indication of morphological differences. Using a common-garden experiment, we tested for differences in growth parameters between free-living populations and individuals from breeding facilities during the first 20 days of post-hatching development, a critical phase for survival in free-living populations. In addition, we compared their immune function by assessing two haematological parameters, H/L ratio and immature erythrocyte frequency, and plasma complement activity. Our data show that farmed ducklings exhibit larger morphological parameters, a higher growth rates, and higher complement activity. In haematological parameters, we observed high dynamic changes in duckling ontogeny in relation to their morphological parameters. In conclusion, our data demonstrate pronounced phenotype divergence between farmed and wild mallard populations that can be genetically determined. We argue that this divergence can directly or indirectly affect fitness of farmed individuals introduced to the breeding population as well as fitness of farmed x wild hybrids.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0236583</identifier><identifier>PMID: 32866175</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Anas platyrhynchos ; Aquatic birds ; Biology and Life Sciences ; Breeding ; Captivity ; Comparative analysis ; Divergence ; Ducks ; Eggs ; Environmental science ; Erythrocytes ; Experiments ; Fitness ; Genetic diversity ; Genotype &amp; phenotype ; Growth ; Growth rate ; Hatching ; Health aspects ; Hematology ; Humidity ; Hunting ; Hybrids ; Immune response ; Life sciences ; Livestock ; Medicine and Health Sciences ; Ontogeny ; Parameters ; Phenotypes ; Population genetics ; Populations ; Poultry farming ; Reproductive fitness ; Research and Analysis Methods ; Veterinary immunology ; Veterinary research ; Wildlife ; Wildlife management ; Zoology</subject><ispartof>PloS one, 2020-08, Vol.15 (8), p.e0236583-e0236583</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Svobodová et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Svobodová et al 2020 Svobodová et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c669t-b0b19c14db4b6e80a420a277391468cb7b3d858a0cd3a3cab0688e769717819a3</citedby><cites>FETCH-LOGICAL-c669t-b0b19c14db4b6e80a420a277391468cb7b3d858a0cd3a3cab0688e769717819a3</cites><orcidid>0000-0001-6161-4899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7458304/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7458304/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids></links><search><contributor>Ruiz-Rodriguez, Magdalena</contributor><creatorcontrib>Svobodova, Jana</creatorcontrib><creatorcontrib>Pinkasova, Hana</creatorcontrib><creatorcontrib>Hyrsl, Pavel</creatorcontrib><creatorcontrib>Dvorackova, Monika</creatorcontrib><creatorcontrib>Zita, Lukas</creatorcontrib><creatorcontrib>Kreisinger, Jakub</creatorcontrib><title>Differences in the growth rate and immune strategies of farmed and wild mallard populations</title><title>PloS one</title><description>Individuals reared in captivity are exposed to distinct selection pressures and evolutionary processes causing genetic and phenotypic divergence from wild populations. Consequently, restocking with farmed individuals may represent a considerable risk for the fitness of free-living populations. Supportive breeding on a massive scale has been established in many European countries to increase hunting opportunities for the most common duck species, the mallard (Anas platyrhynchos). It has previously been shown that mallards from breeding facilities differ genetically from wild populations and there is some indication of morphological differences. Using a common-garden experiment, we tested for differences in growth parameters between free-living populations and individuals from breeding facilities during the first 20 days of post-hatching development, a critical phase for survival in free-living populations. In addition, we compared their immune function by assessing two haematological parameters, H/L ratio and immature erythrocyte frequency, and plasma complement activity. Our data show that farmed ducklings exhibit larger morphological parameters, a higher growth rates, and higher complement activity. In haematological parameters, we observed high dynamic changes in duckling ontogeny in relation to their morphological parameters. In conclusion, our data demonstrate pronounced phenotype divergence between farmed and wild mallard populations that can be genetically determined. We argue that this divergence can directly or indirectly affect fitness of farmed individuals introduced to the breeding population as well as fitness of farmed x wild hybrids.</description><subject>Anas platyrhynchos</subject><subject>Aquatic birds</subject><subject>Biology and Life Sciences</subject><subject>Breeding</subject><subject>Captivity</subject><subject>Comparative analysis</subject><subject>Divergence</subject><subject>Ducks</subject><subject>Eggs</subject><subject>Environmental science</subject><subject>Erythrocytes</subject><subject>Experiments</subject><subject>Fitness</subject><subject>Genetic diversity</subject><subject>Genotype &amp; phenotype</subject><subject>Growth</subject><subject>Growth rate</subject><subject>Hatching</subject><subject>Health aspects</subject><subject>Hematology</subject><subject>Humidity</subject><subject>Hunting</subject><subject>Hybrids</subject><subject>Immune response</subject><subject>Life sciences</subject><subject>Livestock</subject><subject>Medicine and Health Sciences</subject><subject>Ontogeny</subject><subject>Parameters</subject><subject>Phenotypes</subject><subject>Population genetics</subject><subject>Populations</subject><subject>Poultry farming</subject><subject>Reproductive fitness</subject><subject>Research and Analysis Methods</subject><subject>Veterinary immunology</subject><subject>Veterinary research</subject><subject>Wildlife</subject><subject>Wildlife management</subject><subject>Zoology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6DwQLgujFjEnT5uNGWNavgYUFv268CEl62snQNt0kdfXfm5mpspW9kFwknDx5z8mbnCx7itEaE4Zf79zkB9WtRzfAGhWEVpzcy06xIMWKFojcv7U-yR6FsEOoIpzSh9kJKdKMWXWafX9rmwY8DAZCboc8biFvvbuJ29yrCLka6tz2_TRAHuI-0toEuiZvlO-hPuzf2K7Oe9V1ytf56MapU9G6ITzOHjSqC_Bkns-yr-_ffbn4uLq8-rC5OL9cGUpFXGmksTC4rHWpKXCkygKpgjEicEm50UyTmldcIVMTRYzSiHIOjAqGGcdCkbPs2VF37FyQsy9BFiXhgiJR8ERsjkTt1E6O3vbK_5JOWXkION9K5aM1HUioUyEEUwoVKjWrhKC6qggCLRqCOElab-Zsk04OGBiSL91CdLkz2K1s3Q_JyvRCqEwCL2cB764nCFH2NhhI9g3gpkPdgpKKIZbQ5_-gd99uplqVLmCHxqW8Zi8qzykpUYkp2de9voNKo4bemvSJGpviiwOvFgcSE-FnbNUUgtx8_vT_7NW3JfviFrsF1cVtcN10-DNLsDyCxrsQPDR_TcZI7nvgjxty3wNy7gHyG2WP9nY</recordid><startdate>20200831</startdate><enddate>20200831</enddate><creator>Svobodova, Jana</creator><creator>Pinkasova, Hana</creator><creator>Hyrsl, Pavel</creator><creator>Dvorackova, Monika</creator><creator>Zita, Lukas</creator><creator>Kreisinger, Jakub</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6161-4899</orcidid></search><sort><creationdate>20200831</creationdate><title>Differences in the growth rate and immune strategies of farmed and wild mallard populations</title><author>Svobodova, Jana ; Pinkasova, Hana ; Hyrsl, Pavel ; Dvorackova, Monika ; Zita, Lukas ; Kreisinger, Jakub</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c669t-b0b19c14db4b6e80a420a277391468cb7b3d858a0cd3a3cab0688e769717819a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anas platyrhynchos</topic><topic>Aquatic birds</topic><topic>Biology and Life Sciences</topic><topic>Breeding</topic><topic>Captivity</topic><topic>Comparative analysis</topic><topic>Divergence</topic><topic>Ducks</topic><topic>Eggs</topic><topic>Environmental science</topic><topic>Erythrocytes</topic><topic>Experiments</topic><topic>Fitness</topic><topic>Genetic diversity</topic><topic>Genotype &amp; phenotype</topic><topic>Growth</topic><topic>Growth rate</topic><topic>Hatching</topic><topic>Health aspects</topic><topic>Hematology</topic><topic>Humidity</topic><topic>Hunting</topic><topic>Hybrids</topic><topic>Immune response</topic><topic>Life sciences</topic><topic>Livestock</topic><topic>Medicine and Health Sciences</topic><topic>Ontogeny</topic><topic>Parameters</topic><topic>Phenotypes</topic><topic>Population genetics</topic><topic>Populations</topic><topic>Poultry farming</topic><topic>Reproductive fitness</topic><topic>Research and Analysis Methods</topic><topic>Veterinary immunology</topic><topic>Veterinary research</topic><topic>Wildlife</topic><topic>Wildlife management</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Svobodova, Jana</creatorcontrib><creatorcontrib>Pinkasova, Hana</creatorcontrib><creatorcontrib>Hyrsl, Pavel</creatorcontrib><creatorcontrib>Dvorackova, Monika</creatorcontrib><creatorcontrib>Zita, Lukas</creatorcontrib><creatorcontrib>Kreisinger, Jakub</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Svobodova, Jana</au><au>Pinkasova, Hana</au><au>Hyrsl, Pavel</au><au>Dvorackova, Monika</au><au>Zita, Lukas</au><au>Kreisinger, Jakub</au><au>Ruiz-Rodriguez, Magdalena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differences in the growth rate and immune strategies of farmed and wild mallard populations</atitle><jtitle>PloS one</jtitle><date>2020-08-31</date><risdate>2020</risdate><volume>15</volume><issue>8</issue><spage>e0236583</spage><epage>e0236583</epage><pages>e0236583-e0236583</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Individuals reared in captivity are exposed to distinct selection pressures and evolutionary processes causing genetic and phenotypic divergence from wild populations. Consequently, restocking with farmed individuals may represent a considerable risk for the fitness of free-living populations. Supportive breeding on a massive scale has been established in many European countries to increase hunting opportunities for the most common duck species, the mallard (Anas platyrhynchos). It has previously been shown that mallards from breeding facilities differ genetically from wild populations and there is some indication of morphological differences. Using a common-garden experiment, we tested for differences in growth parameters between free-living populations and individuals from breeding facilities during the first 20 days of post-hatching development, a critical phase for survival in free-living populations. In addition, we compared their immune function by assessing two haematological parameters, H/L ratio and immature erythrocyte frequency, and plasma complement activity. Our data show that farmed ducklings exhibit larger morphological parameters, a higher growth rates, and higher complement activity. In haematological parameters, we observed high dynamic changes in duckling ontogeny in relation to their morphological parameters. In conclusion, our data demonstrate pronounced phenotype divergence between farmed and wild mallard populations that can be genetically determined. We argue that this divergence can directly or indirectly affect fitness of farmed individuals introduced to the breeding population as well as fitness of farmed x wild hybrids.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>32866175</pmid><doi>10.1371/journal.pone.0236583</doi><tpages>e0236583</tpages><orcidid>https://orcid.org/0000-0001-6161-4899</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-08, Vol.15 (8), p.e0236583-e0236583
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2438960928
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Anas platyrhynchos
Aquatic birds
Biology and Life Sciences
Breeding
Captivity
Comparative analysis
Divergence
Ducks
Eggs
Environmental science
Erythrocytes
Experiments
Fitness
Genetic diversity
Genotype & phenotype
Growth
Growth rate
Hatching
Health aspects
Hematology
Humidity
Hunting
Hybrids
Immune response
Life sciences
Livestock
Medicine and Health Sciences
Ontogeny
Parameters
Phenotypes
Population genetics
Populations
Poultry farming
Reproductive fitness
Research and Analysis Methods
Veterinary immunology
Veterinary research
Wildlife
Wildlife management
Zoology
title Differences in the growth rate and immune strategies of farmed and wild mallard populations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A09%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differences%20in%20the%20growth%20rate%20and%20immune%20strategies%20of%20farmed%20and%20wild%20mallard%20populations&rft.jtitle=PloS%20one&rft.au=Svobodova,%20Jana&rft.date=2020-08-31&rft.volume=15&rft.issue=8&rft.spage=e0236583&rft.epage=e0236583&rft.pages=e0236583-e0236583&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0236583&rft_dat=%3Cgale_plos_%3EA634041633%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438960928&rft_id=info:pmid/32866175&rft_galeid=A634041633&rft_doaj_id=oai_doaj_org_article_ed4db3166e504b75996b5530eb9f3083&rfr_iscdi=true