The role of disulfide bonds in a Solanum tuberosum saposin-like protein investigated using molecular dynamics

The Solanum tuberosum plant specific insert (StPSI) has a defensive role in potato plants, with the requirements of acidic pH and anionic lipids. The StPSI contains a set of three highly conserved disulfide bonds that bridge the protein's helical domains. Removal of these bonds leads to enhance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-08, Vol.15 (8), p.e0237884-e0237884
Hauptverfasser: Dupuis, John H, Wang, Shenlin, Song, Chen, Yada, Rickey Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0237884
container_issue 8
container_start_page e0237884
container_title PloS one
container_volume 15
creator Dupuis, John H
Wang, Shenlin
Song, Chen
Yada, Rickey Y
description The Solanum tuberosum plant specific insert (StPSI) has a defensive role in potato plants, with the requirements of acidic pH and anionic lipids. The StPSI contains a set of three highly conserved disulfide bonds that bridge the protein's helical domains. Removal of these bonds leads to enhanced membrane interactions. This work examined the effects of their sequential removal, both individually and in combination, using all-atom molecular dynamics to elucidate the role of disulfide linkages in maintaining overall protein tertiary structure. The tertiary structure was found to remain stable at both acidic (active) and neutral (inactive) pH despite the removal of disulfide linkages. The findings include how the dimer structure is stabilized and the impact on secondary structure on a residue-basis as a function of disulfide bond removal. The StPSI possesses an extensive network of inter-monomer hydrophobic interactions and intra-monomer hydrogen bonds, which is likely the key to the stability of the StPSI by stabilizing local secondary structure and the tertiary saposin-fold, leading to a robust association between monomers, regardless of the disulfide bond state. Removal of disulfide bonds did not significantly impact secondary structure, nor lead to quaternary structural changes. Instead, disulfide bond removal induces regions of amino acids with relatively higher or lower variation in secondary structure, relative to when all the disulfide bonds are intact. Although disulfide bonds are not required to preserve overall secondary structure, they may have an important role in maintaining a less plastic structure within plant cells in order to regulate membrane affinity or targeting.
doi_str_mv 10.1371/journal.pone.0237884
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2437106555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A633501073</galeid><doaj_id>oai_doaj_org_article_fb19bc2492214e3d99aa789fbcea3ed7</doaj_id><sourcerecordid>A633501073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5844-f3d71f9e525ccbd91c0505f8caae9d855b3638e3da6746114743092f2d4b95ff3</originalsourceid><addsrcrecordid>eNqNk11vFCEUhidGY2v1H5hIYmL0YlcYYD5uTJrGj02aNLHVW8LAYZbKwBZmGvvvZd3RdEwvDBeQw8N7OC-conhJ8JrQmry_DlP00q13wcMal7RuGvaoOCYtLVdVienje-uj4llK1xhz2lTV0-KIlg0jJaPHxXC1BRSDAxQM0jZNzlgNqAteJ2Q9kugyOOmnAY1TBzGkvEpyF5L1K2d_ANrFMEIGrb-FNNpejqDRlLd7NGRZNTkZkb7zcrAqPS-eGOkSvJjnk-Lbp49XZ19W5xefN2en5yvFG8ZWhuqamBZ4yZXqdEsU5pibRkkJrW4472hFG6BaVjWrCGE1o7gtTalZ13Jj6Enx6qC7cyGJ2akkcsU1wRXnPBObA6GDvBa7aAcZ70SQVvwOhNgLGUerHAjTkbZTJWvLkrCctG2lrJvWdAokBV1nrQ9ztqkbQCvwY5RuIbrc8XYr-nArasZqXFVZ4O0sEMPNlG0Ug00KXDYewnS4N8OMVjijr_9BH65upnqZC7DehJxX7UXFaUUpxwTXNFPrB6g8NOTHyt_K2BxfHHi3OJCZEX6OvZxSEpvLr__PXnxfsm_usVuQbtym4KbRBp-WIDuAKv_EFMH8NZlgse-KP26IfVeIuSvoL9w5_rE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437106555</pqid></control><display><type>article</type><title>The role of disulfide bonds in a Solanum tuberosum saposin-like protein investigated using molecular dynamics</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Dupuis, John H ; Wang, Shenlin ; Song, Chen ; Yada, Rickey Y</creator><contributor>Millet, Oscar</contributor><creatorcontrib>Dupuis, John H ; Wang, Shenlin ; Song, Chen ; Yada, Rickey Y ; Millet, Oscar</creatorcontrib><description>The Solanum tuberosum plant specific insert (StPSI) has a defensive role in potato plants, with the requirements of acidic pH and anionic lipids. The StPSI contains a set of three highly conserved disulfide bonds that bridge the protein's helical domains. Removal of these bonds leads to enhanced membrane interactions. This work examined the effects of their sequential removal, both individually and in combination, using all-atom molecular dynamics to elucidate the role of disulfide linkages in maintaining overall protein tertiary structure. The tertiary structure was found to remain stable at both acidic (active) and neutral (inactive) pH despite the removal of disulfide linkages. The findings include how the dimer structure is stabilized and the impact on secondary structure on a residue-basis as a function of disulfide bond removal. The StPSI possesses an extensive network of inter-monomer hydrophobic interactions and intra-monomer hydrogen bonds, which is likely the key to the stability of the StPSI by stabilizing local secondary structure and the tertiary saposin-fold, leading to a robust association between monomers, regardless of the disulfide bond state. Removal of disulfide bonds did not significantly impact secondary structure, nor lead to quaternary structural changes. Instead, disulfide bond removal induces regions of amino acids with relatively higher or lower variation in secondary structure, relative to when all the disulfide bonds are intact. Although disulfide bonds are not required to preserve overall secondary structure, they may have an important role in maintaining a less plastic structure within plant cells in order to regulate membrane affinity or targeting.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0237884</identifier><identifier>PMID: 32841243</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Amino acids ; Biology and Life Sciences ; Chemical bonds ; Chemical properties ; Dimers ; Disulfide bonds ; Food ; Hydrogen ; Hydrogen bonding ; Hydrogen bonds ; Hydrophobicity ; Linkages ; Lipids ; Membrane proteins ; Membranes ; Molecular dynamics ; Molecular structure ; Monomers ; Nutrition ; pH effects ; Physical Sciences ; Plant cells ; Potatoes ; Protein binding ; Protein research ; Protein structure ; Proteins ; Secondary structure ; Solanum tuberosum ; Structure ; Sulfides ; Surfactants ; Tertiary structure</subject><ispartof>PloS one, 2020-08, Vol.15 (8), p.e0237884-e0237884</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Dupuis et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Dupuis et al 2020 Dupuis et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5844-f3d71f9e525ccbd91c0505f8caae9d855b3638e3da6746114743092f2d4b95ff3</citedby><cites>FETCH-LOGICAL-c5844-f3d71f9e525ccbd91c0505f8caae9d855b3638e3da6746114743092f2d4b95ff3</cites><orcidid>0000-0003-0780-9454 ; 0000-0002-8648-2156 ; 0000-0001-9730-3216</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7447066/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7447066/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids></links><search><contributor>Millet, Oscar</contributor><creatorcontrib>Dupuis, John H</creatorcontrib><creatorcontrib>Wang, Shenlin</creatorcontrib><creatorcontrib>Song, Chen</creatorcontrib><creatorcontrib>Yada, Rickey Y</creatorcontrib><title>The role of disulfide bonds in a Solanum tuberosum saposin-like protein investigated using molecular dynamics</title><title>PloS one</title><description>The Solanum tuberosum plant specific insert (StPSI) has a defensive role in potato plants, with the requirements of acidic pH and anionic lipids. The StPSI contains a set of three highly conserved disulfide bonds that bridge the protein's helical domains. Removal of these bonds leads to enhanced membrane interactions. This work examined the effects of their sequential removal, both individually and in combination, using all-atom molecular dynamics to elucidate the role of disulfide linkages in maintaining overall protein tertiary structure. The tertiary structure was found to remain stable at both acidic (active) and neutral (inactive) pH despite the removal of disulfide linkages. The findings include how the dimer structure is stabilized and the impact on secondary structure on a residue-basis as a function of disulfide bond removal. The StPSI possesses an extensive network of inter-monomer hydrophobic interactions and intra-monomer hydrogen bonds, which is likely the key to the stability of the StPSI by stabilizing local secondary structure and the tertiary saposin-fold, leading to a robust association between monomers, regardless of the disulfide bond state. Removal of disulfide bonds did not significantly impact secondary structure, nor lead to quaternary structural changes. Instead, disulfide bond removal induces regions of amino acids with relatively higher or lower variation in secondary structure, relative to when all the disulfide bonds are intact. Although disulfide bonds are not required to preserve overall secondary structure, they may have an important role in maintaining a less plastic structure within plant cells in order to regulate membrane affinity or targeting.</description><subject>Amino acids</subject><subject>Biology and Life Sciences</subject><subject>Chemical bonds</subject><subject>Chemical properties</subject><subject>Dimers</subject><subject>Disulfide bonds</subject><subject>Food</subject><subject>Hydrogen</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Hydrophobicity</subject><subject>Linkages</subject><subject>Lipids</subject><subject>Membrane proteins</subject><subject>Membranes</subject><subject>Molecular dynamics</subject><subject>Molecular structure</subject><subject>Monomers</subject><subject>Nutrition</subject><subject>pH effects</subject><subject>Physical Sciences</subject><subject>Plant cells</subject><subject>Potatoes</subject><subject>Protein binding</subject><subject>Protein research</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Secondary structure</subject><subject>Solanum tuberosum</subject><subject>Structure</subject><subject>Sulfides</subject><subject>Surfactants</subject><subject>Tertiary structure</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11vFCEUhidGY2v1H5hIYmL0YlcYYD5uTJrGj02aNLHVW8LAYZbKwBZmGvvvZd3RdEwvDBeQw8N7OC-conhJ8JrQmry_DlP00q13wcMal7RuGvaoOCYtLVdVienje-uj4llK1xhz2lTV0-KIlg0jJaPHxXC1BRSDAxQM0jZNzlgNqAteJ2Q9kugyOOmnAY1TBzGkvEpyF5L1K2d_ANrFMEIGrb-FNNpejqDRlLd7NGRZNTkZkb7zcrAqPS-eGOkSvJjnk-Lbp49XZ19W5xefN2en5yvFG8ZWhuqamBZ4yZXqdEsU5pibRkkJrW4472hFG6BaVjWrCGE1o7gtTalZ13Jj6Enx6qC7cyGJ2akkcsU1wRXnPBObA6GDvBa7aAcZ70SQVvwOhNgLGUerHAjTkbZTJWvLkrCctG2lrJvWdAokBV1nrQ9ztqkbQCvwY5RuIbrc8XYr-nArasZqXFVZ4O0sEMPNlG0Ug00KXDYewnS4N8OMVjijr_9BH65upnqZC7DehJxX7UXFaUUpxwTXNFPrB6g8NOTHyt_K2BxfHHi3OJCZEX6OvZxSEpvLr__PXnxfsm_usVuQbtym4KbRBp-WIDuAKv_EFMH8NZlgse-KP26IfVeIuSvoL9w5_rE</recordid><startdate>20200825</startdate><enddate>20200825</enddate><creator>Dupuis, John H</creator><creator>Wang, Shenlin</creator><creator>Song, Chen</creator><creator>Yada, Rickey Y</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0780-9454</orcidid><orcidid>https://orcid.org/0000-0002-8648-2156</orcidid><orcidid>https://orcid.org/0000-0001-9730-3216</orcidid></search><sort><creationdate>20200825</creationdate><title>The role of disulfide bonds in a Solanum tuberosum saposin-like protein investigated using molecular dynamics</title><author>Dupuis, John H ; Wang, Shenlin ; Song, Chen ; Yada, Rickey Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5844-f3d71f9e525ccbd91c0505f8caae9d855b3638e3da6746114743092f2d4b95ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amino acids</topic><topic>Biology and Life Sciences</topic><topic>Chemical bonds</topic><topic>Chemical properties</topic><topic>Dimers</topic><topic>Disulfide bonds</topic><topic>Food</topic><topic>Hydrogen</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Hydrophobicity</topic><topic>Linkages</topic><topic>Lipids</topic><topic>Membrane proteins</topic><topic>Membranes</topic><topic>Molecular dynamics</topic><topic>Molecular structure</topic><topic>Monomers</topic><topic>Nutrition</topic><topic>pH effects</topic><topic>Physical Sciences</topic><topic>Plant cells</topic><topic>Potatoes</topic><topic>Protein binding</topic><topic>Protein research</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Secondary structure</topic><topic>Solanum tuberosum</topic><topic>Structure</topic><topic>Sulfides</topic><topic>Surfactants</topic><topic>Tertiary structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dupuis, John H</creatorcontrib><creatorcontrib>Wang, Shenlin</creatorcontrib><creatorcontrib>Song, Chen</creatorcontrib><creatorcontrib>Yada, Rickey Y</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dupuis, John H</au><au>Wang, Shenlin</au><au>Song, Chen</au><au>Yada, Rickey Y</au><au>Millet, Oscar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of disulfide bonds in a Solanum tuberosum saposin-like protein investigated using molecular dynamics</atitle><jtitle>PloS one</jtitle><date>2020-08-25</date><risdate>2020</risdate><volume>15</volume><issue>8</issue><spage>e0237884</spage><epage>e0237884</epage><pages>e0237884-e0237884</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The Solanum tuberosum plant specific insert (StPSI) has a defensive role in potato plants, with the requirements of acidic pH and anionic lipids. The StPSI contains a set of three highly conserved disulfide bonds that bridge the protein's helical domains. Removal of these bonds leads to enhanced membrane interactions. This work examined the effects of their sequential removal, both individually and in combination, using all-atom molecular dynamics to elucidate the role of disulfide linkages in maintaining overall protein tertiary structure. The tertiary structure was found to remain stable at both acidic (active) and neutral (inactive) pH despite the removal of disulfide linkages. The findings include how the dimer structure is stabilized and the impact on secondary structure on a residue-basis as a function of disulfide bond removal. The StPSI possesses an extensive network of inter-monomer hydrophobic interactions and intra-monomer hydrogen bonds, which is likely the key to the stability of the StPSI by stabilizing local secondary structure and the tertiary saposin-fold, leading to a robust association between monomers, regardless of the disulfide bond state. Removal of disulfide bonds did not significantly impact secondary structure, nor lead to quaternary structural changes. Instead, disulfide bond removal induces regions of amino acids with relatively higher or lower variation in secondary structure, relative to when all the disulfide bonds are intact. Although disulfide bonds are not required to preserve overall secondary structure, they may have an important role in maintaining a less plastic structure within plant cells in order to regulate membrane affinity or targeting.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>32841243</pmid><doi>10.1371/journal.pone.0237884</doi><tpages>e0237884</tpages><orcidid>https://orcid.org/0000-0003-0780-9454</orcidid><orcidid>https://orcid.org/0000-0002-8648-2156</orcidid><orcidid>https://orcid.org/0000-0001-9730-3216</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-08, Vol.15 (8), p.e0237884-e0237884
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2437106555
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Amino acids
Biology and Life Sciences
Chemical bonds
Chemical properties
Dimers
Disulfide bonds
Food
Hydrogen
Hydrogen bonding
Hydrogen bonds
Hydrophobicity
Linkages
Lipids
Membrane proteins
Membranes
Molecular dynamics
Molecular structure
Monomers
Nutrition
pH effects
Physical Sciences
Plant cells
Potatoes
Protein binding
Protein research
Protein structure
Proteins
Secondary structure
Solanum tuberosum
Structure
Sulfides
Surfactants
Tertiary structure
title The role of disulfide bonds in a Solanum tuberosum saposin-like protein investigated using molecular dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A29%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20disulfide%20bonds%20in%20a%20Solanum%20tuberosum%20saposin-like%20protein%20investigated%20using%20molecular%20dynamics&rft.jtitle=PloS%20one&rft.au=Dupuis,%20John%20H&rft.date=2020-08-25&rft.volume=15&rft.issue=8&rft.spage=e0237884&rft.epage=e0237884&rft.pages=e0237884-e0237884&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0237884&rft_dat=%3Cgale_plos_%3EA633501073%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2437106555&rft_id=info:pmid/32841243&rft_galeid=A633501073&rft_doaj_id=oai_doaj_org_article_fb19bc2492214e3d99aa789fbcea3ed7&rfr_iscdi=true