The impact of temporal fine structure and signal envelope on auditory motion perception

The majority of psychoacoustic research investigating sound localization has utilized stationary sources, yet most naturally occurring sounds are in motion, either because the sound source itself moves, or the listener does. In normal hearing (NH) listeners, previous research showed the extent to wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-08, Vol.15 (8), p.e0238125-e0238125
Hauptverfasser: Warnecke, Michaela, Peng, Z Ellen, Litovsky, Ruth Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0238125
container_issue 8
container_start_page e0238125
container_title PloS one
container_volume 15
creator Warnecke, Michaela
Peng, Z Ellen
Litovsky, Ruth Y
description The majority of psychoacoustic research investigating sound localization has utilized stationary sources, yet most naturally occurring sounds are in motion, either because the sound source itself moves, or the listener does. In normal hearing (NH) listeners, previous research showed the extent to which sound duration and velocity impact the ability of listeners to detect sound movement. By contrast, little is known about how listeners with hearing impairments perceive moving sounds; the only study to date comparing the performance of NH and bilateral cochlear implant (BiCI) listeners has demonstrated significantly poorer performance on motion detection tasks in BiCI listeners. Cochlear implants, auditory protheses offered to profoundly deaf individuals for access to spoken language, retain the signal envelope (ENV), while discarding temporal fine structure (TFS) of the original acoustic input. As a result, BiCI users do not have access to low-frequency TFS cues, which have previously been shown to be crucial for sound localization in NH listeners. Instead, BiCI listeners seem to rely on ENV cues for sound localization, especially level cues. Given that NH and BiCI listeners differentially utilize ENV and TFS information, the present study aimed to investigate the usefulness of these cues for auditory motion perception. We created acoustic chimaera stimuli, which allowed us to test the relative contributions of ENV and TFS to auditory motion perception. Stimuli were either moving or stationary, presented to NH listeners in free field. The task was to track the perceived sound location. We found that removing low-frequency TFS reduces sensitivity to sound motion, and fluctuating speech envelopes strongly biased the judgment of sounds to be stationary. Our findings yield a possible explanation as to why BiCI users struggle to identify sound motion, and provide a first account of cues important to the functional aspect of auditory motion perception.
doi_str_mv 10.1371/journal.pone.0238125
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2436141541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A633157754</galeid><doaj_id>oai_doaj_org_article_a4c199f9385640ee997894b179a61d95</doaj_id><sourcerecordid>A633157754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-9fce1f46bbb3a55249c1cc2a7b324c04121fb8faa46deaebd71fea1e1ea9f13a3</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEoqXwDxBEQkJw2CWOHSe-IFUVHytVqgQFjtbEGe-6SuLUdir673HYtNqgHpAP_nrmHc_4TZKXJFsTWpIPV3Z0PbTrwfa4znJakbx4lBwTQfMVzzP6-GB9lDzz_irLClpx_jQ5onmV54yK4-TX5Q5T0w2gQmp1GrAbrIM21abH1Ac3qjA6TKFvUm-2MV-K_Q22dsDU9imMjQnW3aadDSbuB3QKh2n5PHmiofX4Yp5Pkh-fP12efV2dX3zZnJ2er1RZVGEltEKiGa_rmkJR5EwoolQOZU1zpjJGcqLrSgMw3iBg3ZREIxAkCEITCvQkeb3XHVrr5dwTL2NxnDBSMBKJzZ5oLFzJwZkO3K20YOTfA-u2ElwwqkUJTBEhtKBVwVmGKERZCVaTUgAnjSii1sc521h32CjsQ2zWQnR505ud3NobWTLGK8qjwLtZwNnrEX2QnfEK2xZ6tOP-3SyLvzTlevMP-nB1M7WFWIDptY151SQqTzmlpCjLgkVq_QAVR4OdUdFA2sTzRcD7RUBkAv4OWxi9l5vv3_6fvfi5ZN8esDuENuy8bcfJMn4Jsj2onPXeob5vMsnk5P-7bsjJ_3L2fwx7dfhB90F3hqd_ACwUAQQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436141541</pqid></control><display><type>article</type><title>The impact of temporal fine structure and signal envelope on auditory motion perception</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Warnecke, Michaela ; Peng, Z Ellen ; Litovsky, Ruth Y</creator><contributor>Buechner, Andreas</contributor><creatorcontrib>Warnecke, Michaela ; Peng, Z Ellen ; Litovsky, Ruth Y ; Buechner, Andreas</creatorcontrib><description>The majority of psychoacoustic research investigating sound localization has utilized stationary sources, yet most naturally occurring sounds are in motion, either because the sound source itself moves, or the listener does. In normal hearing (NH) listeners, previous research showed the extent to which sound duration and velocity impact the ability of listeners to detect sound movement. By contrast, little is known about how listeners with hearing impairments perceive moving sounds; the only study to date comparing the performance of NH and bilateral cochlear implant (BiCI) listeners has demonstrated significantly poorer performance on motion detection tasks in BiCI listeners. Cochlear implants, auditory protheses offered to profoundly deaf individuals for access to spoken language, retain the signal envelope (ENV), while discarding temporal fine structure (TFS) of the original acoustic input. As a result, BiCI users do not have access to low-frequency TFS cues, which have previously been shown to be crucial for sound localization in NH listeners. Instead, BiCI listeners seem to rely on ENV cues for sound localization, especially level cues. Given that NH and BiCI listeners differentially utilize ENV and TFS information, the present study aimed to investigate the usefulness of these cues for auditory motion perception. We created acoustic chimaera stimuli, which allowed us to test the relative contributions of ENV and TFS to auditory motion perception. Stimuli were either moving or stationary, presented to NH listeners in free field. The task was to track the perceived sound location. We found that removing low-frequency TFS reduces sensitivity to sound motion, and fluctuating speech envelopes strongly biased the judgment of sounds to be stationary. Our findings yield a possible explanation as to why BiCI users struggle to identify sound motion, and provide a first account of cues important to the functional aspect of auditory motion perception.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0238125</identifier><identifier>PMID: 32822439</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acoustic Stimulation - methods ; Acoustics ; Adult ; Auditory perception ; Auditory Perception - physiology ; Auditory Threshold - physiology ; Biology and Life Sciences ; Cochlea ; Cochlear Implantation - rehabilitation ; Cochlear Implants ; Cues ; Engineering and Technology ; Experiments ; Female ; Fine structure ; Hearing ; Hearing impaired persons ; Hearing loss ; Hearing Loss - physiopathology ; Hearing Tests ; Humans ; Localization ; Male ; Medical screening ; Motion ; Motion detection ; Motion perception ; Motion Perception - physiology ; Noise ; Perception ; Persons With Hearing Impairments - rehabilitation ; Physical Sciences ; Physiological aspects ; Psychoacoustics ; Psychological aspects ; Signal processing ; Social Sciences ; Sound ; Sound localization ; Sound Localization - physiology ; Sound sources ; Speech ; Speech perception ; Speech Perception - physiology ; Stationary sources ; Stimuli ; Studies ; Supervision ; Transplants &amp; implants ; Ultrastructure</subject><ispartof>PloS one, 2020-08, Vol.15 (8), p.e0238125-e0238125</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Warnecke et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Warnecke et al 2020 Warnecke et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-9fce1f46bbb3a55249c1cc2a7b324c04121fb8faa46deaebd71fea1e1ea9f13a3</citedby><cites>FETCH-LOGICAL-c758t-9fce1f46bbb3a55249c1cc2a7b324c04121fb8faa46deaebd71fea1e1ea9f13a3</cites><orcidid>0000-0001-5774-4578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7446836/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7446836/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32822439$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Buechner, Andreas</contributor><creatorcontrib>Warnecke, Michaela</creatorcontrib><creatorcontrib>Peng, Z Ellen</creatorcontrib><creatorcontrib>Litovsky, Ruth Y</creatorcontrib><title>The impact of temporal fine structure and signal envelope on auditory motion perception</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The majority of psychoacoustic research investigating sound localization has utilized stationary sources, yet most naturally occurring sounds are in motion, either because the sound source itself moves, or the listener does. In normal hearing (NH) listeners, previous research showed the extent to which sound duration and velocity impact the ability of listeners to detect sound movement. By contrast, little is known about how listeners with hearing impairments perceive moving sounds; the only study to date comparing the performance of NH and bilateral cochlear implant (BiCI) listeners has demonstrated significantly poorer performance on motion detection tasks in BiCI listeners. Cochlear implants, auditory protheses offered to profoundly deaf individuals for access to spoken language, retain the signal envelope (ENV), while discarding temporal fine structure (TFS) of the original acoustic input. As a result, BiCI users do not have access to low-frequency TFS cues, which have previously been shown to be crucial for sound localization in NH listeners. Instead, BiCI listeners seem to rely on ENV cues for sound localization, especially level cues. Given that NH and BiCI listeners differentially utilize ENV and TFS information, the present study aimed to investigate the usefulness of these cues for auditory motion perception. We created acoustic chimaera stimuli, which allowed us to test the relative contributions of ENV and TFS to auditory motion perception. Stimuli were either moving or stationary, presented to NH listeners in free field. The task was to track the perceived sound location. We found that removing low-frequency TFS reduces sensitivity to sound motion, and fluctuating speech envelopes strongly biased the judgment of sounds to be stationary. Our findings yield a possible explanation as to why BiCI users struggle to identify sound motion, and provide a first account of cues important to the functional aspect of auditory motion perception.</description><subject>Acoustic Stimulation - methods</subject><subject>Acoustics</subject><subject>Adult</subject><subject>Auditory perception</subject><subject>Auditory Perception - physiology</subject><subject>Auditory Threshold - physiology</subject><subject>Biology and Life Sciences</subject><subject>Cochlea</subject><subject>Cochlear Implantation - rehabilitation</subject><subject>Cochlear Implants</subject><subject>Cues</subject><subject>Engineering and Technology</subject><subject>Experiments</subject><subject>Female</subject><subject>Fine structure</subject><subject>Hearing</subject><subject>Hearing impaired persons</subject><subject>Hearing loss</subject><subject>Hearing Loss - physiopathology</subject><subject>Hearing Tests</subject><subject>Humans</subject><subject>Localization</subject><subject>Male</subject><subject>Medical screening</subject><subject>Motion</subject><subject>Motion detection</subject><subject>Motion perception</subject><subject>Motion Perception - physiology</subject><subject>Noise</subject><subject>Perception</subject><subject>Persons With Hearing Impairments - rehabilitation</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Psychoacoustics</subject><subject>Psychological aspects</subject><subject>Signal processing</subject><subject>Social Sciences</subject><subject>Sound</subject><subject>Sound localization</subject><subject>Sound Localization - physiology</subject><subject>Sound sources</subject><subject>Speech</subject><subject>Speech perception</subject><subject>Speech Perception - physiology</subject><subject>Stationary sources</subject><subject>Stimuli</subject><subject>Studies</subject><subject>Supervision</subject><subject>Transplants &amp; implants</subject><subject>Ultrastructure</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk1v1DAQhiMEoqXwDxBEQkJw2CWOHSe-IFUVHytVqgQFjtbEGe-6SuLUdir673HYtNqgHpAP_nrmHc_4TZKXJFsTWpIPV3Z0PbTrwfa4znJakbx4lBwTQfMVzzP6-GB9lDzz_irLClpx_jQ5onmV54yK4-TX5Q5T0w2gQmp1GrAbrIM21abH1Ac3qjA6TKFvUm-2MV-K_Q22dsDU9imMjQnW3aadDSbuB3QKh2n5PHmiofX4Yp5Pkh-fP12efV2dX3zZnJ2er1RZVGEltEKiGa_rmkJR5EwoolQOZU1zpjJGcqLrSgMw3iBg3ZREIxAkCEITCvQkeb3XHVrr5dwTL2NxnDBSMBKJzZ5oLFzJwZkO3K20YOTfA-u2ElwwqkUJTBEhtKBVwVmGKERZCVaTUgAnjSii1sc521h32CjsQ2zWQnR505ud3NobWTLGK8qjwLtZwNnrEX2QnfEK2xZ6tOP-3SyLvzTlevMP-nB1M7WFWIDptY151SQqTzmlpCjLgkVq_QAVR4OdUdFA2sTzRcD7RUBkAv4OWxi9l5vv3_6fvfi5ZN8esDuENuy8bcfJMn4Jsj2onPXeob5vMsnk5P-7bsjJ_3L2fwx7dfhB90F3hqd_ACwUAQQ</recordid><startdate>20200821</startdate><enddate>20200821</enddate><creator>Warnecke, Michaela</creator><creator>Peng, Z Ellen</creator><creator>Litovsky, Ruth Y</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5774-4578</orcidid></search><sort><creationdate>20200821</creationdate><title>The impact of temporal fine structure and signal envelope on auditory motion perception</title><author>Warnecke, Michaela ; Peng, Z Ellen ; Litovsky, Ruth Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-9fce1f46bbb3a55249c1cc2a7b324c04121fb8faa46deaebd71fea1e1ea9f13a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustic Stimulation - methods</topic><topic>Acoustics</topic><topic>Adult</topic><topic>Auditory perception</topic><topic>Auditory Perception - physiology</topic><topic>Auditory Threshold - physiology</topic><topic>Biology and Life Sciences</topic><topic>Cochlea</topic><topic>Cochlear Implantation - rehabilitation</topic><topic>Cochlear Implants</topic><topic>Cues</topic><topic>Engineering and Technology</topic><topic>Experiments</topic><topic>Female</topic><topic>Fine structure</topic><topic>Hearing</topic><topic>Hearing impaired persons</topic><topic>Hearing loss</topic><topic>Hearing Loss - physiopathology</topic><topic>Hearing Tests</topic><topic>Humans</topic><topic>Localization</topic><topic>Male</topic><topic>Medical screening</topic><topic>Motion</topic><topic>Motion detection</topic><topic>Motion perception</topic><topic>Motion Perception - physiology</topic><topic>Noise</topic><topic>Perception</topic><topic>Persons With Hearing Impairments - rehabilitation</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Psychoacoustics</topic><topic>Psychological aspects</topic><topic>Signal processing</topic><topic>Social Sciences</topic><topic>Sound</topic><topic>Sound localization</topic><topic>Sound Localization - physiology</topic><topic>Sound sources</topic><topic>Speech</topic><topic>Speech perception</topic><topic>Speech Perception - physiology</topic><topic>Stationary sources</topic><topic>Stimuli</topic><topic>Studies</topic><topic>Supervision</topic><topic>Transplants &amp; implants</topic><topic>Ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Warnecke, Michaela</creatorcontrib><creatorcontrib>Peng, Z Ellen</creatorcontrib><creatorcontrib>Litovsky, Ruth Y</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Warnecke, Michaela</au><au>Peng, Z Ellen</au><au>Litovsky, Ruth Y</au><au>Buechner, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The impact of temporal fine structure and signal envelope on auditory motion perception</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-08-21</date><risdate>2020</risdate><volume>15</volume><issue>8</issue><spage>e0238125</spage><epage>e0238125</epage><pages>e0238125-e0238125</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The majority of psychoacoustic research investigating sound localization has utilized stationary sources, yet most naturally occurring sounds are in motion, either because the sound source itself moves, or the listener does. In normal hearing (NH) listeners, previous research showed the extent to which sound duration and velocity impact the ability of listeners to detect sound movement. By contrast, little is known about how listeners with hearing impairments perceive moving sounds; the only study to date comparing the performance of NH and bilateral cochlear implant (BiCI) listeners has demonstrated significantly poorer performance on motion detection tasks in BiCI listeners. Cochlear implants, auditory protheses offered to profoundly deaf individuals for access to spoken language, retain the signal envelope (ENV), while discarding temporal fine structure (TFS) of the original acoustic input. As a result, BiCI users do not have access to low-frequency TFS cues, which have previously been shown to be crucial for sound localization in NH listeners. Instead, BiCI listeners seem to rely on ENV cues for sound localization, especially level cues. Given that NH and BiCI listeners differentially utilize ENV and TFS information, the present study aimed to investigate the usefulness of these cues for auditory motion perception. We created acoustic chimaera stimuli, which allowed us to test the relative contributions of ENV and TFS to auditory motion perception. Stimuli were either moving or stationary, presented to NH listeners in free field. The task was to track the perceived sound location. We found that removing low-frequency TFS reduces sensitivity to sound motion, and fluctuating speech envelopes strongly biased the judgment of sounds to be stationary. Our findings yield a possible explanation as to why BiCI users struggle to identify sound motion, and provide a first account of cues important to the functional aspect of auditory motion perception.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32822439</pmid><doi>10.1371/journal.pone.0238125</doi><tpages>e0238125</tpages><orcidid>https://orcid.org/0000-0001-5774-4578</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-08, Vol.15 (8), p.e0238125-e0238125
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2436141541
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Acoustic Stimulation - methods
Acoustics
Adult
Auditory perception
Auditory Perception - physiology
Auditory Threshold - physiology
Biology and Life Sciences
Cochlea
Cochlear Implantation - rehabilitation
Cochlear Implants
Cues
Engineering and Technology
Experiments
Female
Fine structure
Hearing
Hearing impaired persons
Hearing loss
Hearing Loss - physiopathology
Hearing Tests
Humans
Localization
Male
Medical screening
Motion
Motion detection
Motion perception
Motion Perception - physiology
Noise
Perception
Persons With Hearing Impairments - rehabilitation
Physical Sciences
Physiological aspects
Psychoacoustics
Psychological aspects
Signal processing
Social Sciences
Sound
Sound localization
Sound Localization - physiology
Sound sources
Speech
Speech perception
Speech Perception - physiology
Stationary sources
Stimuli
Studies
Supervision
Transplants & implants
Ultrastructure
title The impact of temporal fine structure and signal envelope on auditory motion perception
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A20%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20impact%20of%20temporal%20fine%20structure%20and%20signal%20envelope%20on%20auditory%20motion%20perception&rft.jtitle=PloS%20one&rft.au=Warnecke,%20Michaela&rft.date=2020-08-21&rft.volume=15&rft.issue=8&rft.spage=e0238125&rft.epage=e0238125&rft.pages=e0238125-e0238125&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0238125&rft_dat=%3Cgale_plos_%3EA633157754%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436141541&rft_id=info:pmid/32822439&rft_galeid=A633157754&rft_doaj_id=oai_doaj_org_article_a4c199f9385640ee997894b179a61d95&rfr_iscdi=true