Signaling models for dopamine-dependent temporal contiguity in striatal synaptic plasticity

Animals remember temporal links between their actions and subsequent rewards. We previously discovered a synaptic mechanism underlying such reward learning in D1 receptor (D1R)-expressing spiny projection neurons (D1 SPN) of the striatum. Dopamine (DA) bursts promote dendritic spine enlargement in a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2020-07, Vol.16 (7), p.e1008078-e1008078
Hauptverfasser: Urakubo, Hidetoshi, Yagishita, Sho, Kasai, Haruo, Ishii, Shin, Blackwell, Kim T, Jedrzejewska-Szmek, Joanna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1008078
container_issue 7
container_start_page e1008078
container_title PLoS computational biology
container_volume 16
creator Urakubo, Hidetoshi
Yagishita, Sho
Kasai, Haruo
Ishii, Shin
Blackwell, Kim T
Jedrzejewska-Szmek, Joanna
description Animals remember temporal links between their actions and subsequent rewards. We previously discovered a synaptic mechanism underlying such reward learning in D1 receptor (D1R)-expressing spiny projection neurons (D1 SPN) of the striatum. Dopamine (DA) bursts promote dendritic spine enlargement in a time window of only a few seconds after paired pre- and post-synaptic spiking (pre-post pairing), which is termed as reinforcement plasticity (RP). The previous study has also identified underlying signaling pathways; however, it still remains unclear how the signaling dynamics results in RP. In the present study, we first developed a computational model of signaling dynamics of D1 SPNs. The D1 RP model successfully reproduced experimentally observed protein kinase A (PKA) activity, including its critical time window. In this model, adenylate cyclase type 1 (AC1) in the spines/thin dendrites played a pivotal role as a coincidence detector against pre-post pairing and DA burst. In particular, pre-post pairing (Ca.sup.2+ signal) stimulated AC1 with a delay, and the Ca.sup.2+ -stimulated AC1 was activated by the DA burst for the asymmetric time window. Moreover, the smallness of the spines/thin dendrites is crucial to the short time window for the PKA activity. We then developed a RP model for D2 SPNs, which also predicted the critical time window for RP that depended on the timing of pre-post pairing and phasic DA dip. AC1 worked for the coincidence detector in the D2 RP model as well. We further simulated the signaling pathway leading to Ca.sup.2+ /calmodulin-dependent protein kinase II (CaMKII) activation and clarified the role of the downstream molecules of AC1 as the integrators that turn transient input signals into persistent spine enlargement. Finally, we discuss how such timing windows guide animals' reward learning.
doi_str_mv 10.1371/journal.pcbi.1008078
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2434500142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632942210</galeid><doaj_id>oai_doaj_org_article_d371820b6ff04bbf9f89fdc3c442ed9a</doaj_id><sourcerecordid>A632942210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c638t-b8139cdaeaa847c92e92ab20a3ae72c06a1455b5c8acb3629959fb1dfb4af7873</originalsourceid><addsrcrecordid>eNqVkkuLFDEQxxtR3HX1Gwg2eFkPM-bVj1yEZfExsCi4evIQKq82Q3fSJt3ifHvTTiuO7EVySKj88q-qf6oonmK0xbTBL_dhjh767aik22KEWtS094pzXFV009Cqvf_X-ax4lNIeoXzk9cPijJIGYd4258WXW9dlFee7cgja9Km0IZY6jDA4bzbajMZr46dyMsMYIvSlCn5y3eymQ-l8maboYMrhdPAwTk6VYw8p7_n-cfHAQp_Mk3W_KD6_ef3p-t3m5sPb3fXVzUbVtJ02ssWUKw0GoGWN4sRwApIgoGAaolANmFWVrFQLStKacF5xK7G2koFt2oZeFM-OumMfklh9SYIwyiqEMCOZ2B0JHWAvxugGiAcRwIlfgRA7ATEX3Ruhs7ctQbK2FjEpLbctt1pRxRgxmkPWerVmm-VgtMrmZFtORE9vvPsquvBdNAyRiizlXq4CMXybTZrE4JIyfQ_ehHmpO0OI42ap-_k_6N3drVQHuQHnbch51SIqrmpKOCMEo0xt76Dy0mZw-VONdTl-8uDFyYPl482PqYM5JbG7_fgf7PtTlh1ZFUNK0dg_3mEkltH-3aRYRluso01_AnH57J8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434500142</pqid></control><display><type>article</type><title>Signaling models for dopamine-dependent temporal contiguity in striatal synaptic plasticity</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Urakubo, Hidetoshi ; Yagishita, Sho ; Kasai, Haruo ; Ishii, Shin ; Blackwell, Kim T ; Jedrzejewska-Szmek, Joanna</creator><contributor>Jędrzejewska-Szmek, Joanna</contributor><creatorcontrib>Urakubo, Hidetoshi ; Yagishita, Sho ; Kasai, Haruo ; Ishii, Shin ; Blackwell, Kim T ; Jedrzejewska-Szmek, Joanna ; Jędrzejewska-Szmek, Joanna</creatorcontrib><description>Animals remember temporal links between their actions and subsequent rewards. We previously discovered a synaptic mechanism underlying such reward learning in D1 receptor (D1R)-expressing spiny projection neurons (D1 SPN) of the striatum. Dopamine (DA) bursts promote dendritic spine enlargement in a time window of only a few seconds after paired pre- and post-synaptic spiking (pre-post pairing), which is termed as reinforcement plasticity (RP). The previous study has also identified underlying signaling pathways; however, it still remains unclear how the signaling dynamics results in RP. In the present study, we first developed a computational model of signaling dynamics of D1 SPNs. The D1 RP model successfully reproduced experimentally observed protein kinase A (PKA) activity, including its critical time window. In this model, adenylate cyclase type 1 (AC1) in the spines/thin dendrites played a pivotal role as a coincidence detector against pre-post pairing and DA burst. In particular, pre-post pairing (Ca.sup.2+ signal) stimulated AC1 with a delay, and the Ca.sup.2+ -stimulated AC1 was activated by the DA burst for the asymmetric time window. Moreover, the smallness of the spines/thin dendrites is crucial to the short time window for the PKA activity. We then developed a RP model for D2 SPNs, which also predicted the critical time window for RP that depended on the timing of pre-post pairing and phasic DA dip. AC1 worked for the coincidence detector in the D2 RP model as well. We further simulated the signaling pathway leading to Ca.sup.2+ /calmodulin-dependent protein kinase II (CaMKII) activation and clarified the role of the downstream molecules of AC1 as the integrators that turn transient input signals into persistent spine enlargement. Finally, we discuss how such timing windows guide animals' reward learning.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1008078</identifier><identifier>PMID: 32701987</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Adenosine ; Adenylate cyclase ; Animals ; Biology ; Biology and life sciences ; Ca2+/calmodulin-dependent protein kinase II ; Calcium ions ; Calcium signalling ; Calcium-binding protein ; Calmodulin ; Cellular signal transduction ; Computational neuroscience ; Computer simulation ; Dendrites ; Dendritic spines ; Dopamine ; Dopamine D1 receptors ; Dopamine D2 receptors ; Engineering and Technology ; Enlargement ; Experiments ; Forecasting ; Informatics ; Integrative medicine ; Integrators ; Kinases ; Laboratories ; Learning ; Medicine ; Medicine and Health Sciences ; Neostriatum ; Neuroplasticity ; Physiological aspects ; Physiology ; Plasticity ; Protein kinase A ; Proteins ; Reinforcement ; Signal transduction ; Signaling ; Spine ; Synaptic plasticity ; Systems science ; Windows (intervals)</subject><ispartof>PLoS computational biology, 2020-07, Vol.16 (7), p.e1008078-e1008078</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Urakubo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Urakubo et al 2020 Urakubo et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c638t-b8139cdaeaa847c92e92ab20a3ae72c06a1455b5c8acb3629959fb1dfb4af7873</citedby><cites>FETCH-LOGICAL-c638t-b8139cdaeaa847c92e92ab20a3ae72c06a1455b5c8acb3629959fb1dfb4af7873</cites><orcidid>0000-0003-2854-773X ; 0000-0002-1816-0040</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7402527/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7402527/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids></links><search><contributor>Jędrzejewska-Szmek, Joanna</contributor><creatorcontrib>Urakubo, Hidetoshi</creatorcontrib><creatorcontrib>Yagishita, Sho</creatorcontrib><creatorcontrib>Kasai, Haruo</creatorcontrib><creatorcontrib>Ishii, Shin</creatorcontrib><creatorcontrib>Blackwell, Kim T</creatorcontrib><creatorcontrib>Jedrzejewska-Szmek, Joanna</creatorcontrib><title>Signaling models for dopamine-dependent temporal contiguity in striatal synaptic plasticity</title><title>PLoS computational biology</title><description>Animals remember temporal links between their actions and subsequent rewards. We previously discovered a synaptic mechanism underlying such reward learning in D1 receptor (D1R)-expressing spiny projection neurons (D1 SPN) of the striatum. Dopamine (DA) bursts promote dendritic spine enlargement in a time window of only a few seconds after paired pre- and post-synaptic spiking (pre-post pairing), which is termed as reinforcement plasticity (RP). The previous study has also identified underlying signaling pathways; however, it still remains unclear how the signaling dynamics results in RP. In the present study, we first developed a computational model of signaling dynamics of D1 SPNs. The D1 RP model successfully reproduced experimentally observed protein kinase A (PKA) activity, including its critical time window. In this model, adenylate cyclase type 1 (AC1) in the spines/thin dendrites played a pivotal role as a coincidence detector against pre-post pairing and DA burst. In particular, pre-post pairing (Ca.sup.2+ signal) stimulated AC1 with a delay, and the Ca.sup.2+ -stimulated AC1 was activated by the DA burst for the asymmetric time window. Moreover, the smallness of the spines/thin dendrites is crucial to the short time window for the PKA activity. We then developed a RP model for D2 SPNs, which also predicted the critical time window for RP that depended on the timing of pre-post pairing and phasic DA dip. AC1 worked for the coincidence detector in the D2 RP model as well. We further simulated the signaling pathway leading to Ca.sup.2+ /calmodulin-dependent protein kinase II (CaMKII) activation and clarified the role of the downstream molecules of AC1 as the integrators that turn transient input signals into persistent spine enlargement. Finally, we discuss how such timing windows guide animals' reward learning.</description><subject>Adenosine</subject><subject>Adenylate cyclase</subject><subject>Animals</subject><subject>Biology</subject><subject>Biology and life sciences</subject><subject>Ca2+/calmodulin-dependent protein kinase II</subject><subject>Calcium ions</subject><subject>Calcium signalling</subject><subject>Calcium-binding protein</subject><subject>Calmodulin</subject><subject>Cellular signal transduction</subject><subject>Computational neuroscience</subject><subject>Computer simulation</subject><subject>Dendrites</subject><subject>Dendritic spines</subject><subject>Dopamine</subject><subject>Dopamine D1 receptors</subject><subject>Dopamine D2 receptors</subject><subject>Engineering and Technology</subject><subject>Enlargement</subject><subject>Experiments</subject><subject>Forecasting</subject><subject>Informatics</subject><subject>Integrative medicine</subject><subject>Integrators</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Learning</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Neostriatum</subject><subject>Neuroplasticity</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Plasticity</subject><subject>Protein kinase A</subject><subject>Proteins</subject><subject>Reinforcement</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>Spine</subject><subject>Synaptic plasticity</subject><subject>Systems science</subject><subject>Windows (intervals)</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkkuLFDEQxxtR3HX1Gwg2eFkPM-bVj1yEZfExsCi4evIQKq82Q3fSJt3ifHvTTiuO7EVySKj88q-qf6oonmK0xbTBL_dhjh767aik22KEWtS094pzXFV009Cqvf_X-ax4lNIeoXzk9cPijJIGYd4258WXW9dlFee7cgja9Km0IZY6jDA4bzbajMZr46dyMsMYIvSlCn5y3eymQ-l8maboYMrhdPAwTk6VYw8p7_n-cfHAQp_Mk3W_KD6_ef3p-t3m5sPb3fXVzUbVtJ02ssWUKw0GoGWN4sRwApIgoGAaolANmFWVrFQLStKacF5xK7G2koFt2oZeFM-OumMfklh9SYIwyiqEMCOZ2B0JHWAvxugGiAcRwIlfgRA7ATEX3Ruhs7ctQbK2FjEpLbctt1pRxRgxmkPWerVmm-VgtMrmZFtORE9vvPsquvBdNAyRiizlXq4CMXybTZrE4JIyfQ_ehHmpO0OI42ap-_k_6N3drVQHuQHnbch51SIqrmpKOCMEo0xt76Dy0mZw-VONdTl-8uDFyYPl482PqYM5JbG7_fgf7PtTlh1ZFUNK0dg_3mEkltH-3aRYRluso01_AnH57J8</recordid><startdate>20200723</startdate><enddate>20200723</enddate><creator>Urakubo, Hidetoshi</creator><creator>Yagishita, Sho</creator><creator>Kasai, Haruo</creator><creator>Ishii, Shin</creator><creator>Blackwell, Kim T</creator><creator>Jedrzejewska-Szmek, Joanna</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2854-773X</orcidid><orcidid>https://orcid.org/0000-0002-1816-0040</orcidid></search><sort><creationdate>20200723</creationdate><title>Signaling models for dopamine-dependent temporal contiguity in striatal synaptic plasticity</title><author>Urakubo, Hidetoshi ; Yagishita, Sho ; Kasai, Haruo ; Ishii, Shin ; Blackwell, Kim T ; Jedrzejewska-Szmek, Joanna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c638t-b8139cdaeaa847c92e92ab20a3ae72c06a1455b5c8acb3629959fb1dfb4af7873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adenosine</topic><topic>Adenylate cyclase</topic><topic>Animals</topic><topic>Biology</topic><topic>Biology and life sciences</topic><topic>Ca2+/calmodulin-dependent protein kinase II</topic><topic>Calcium ions</topic><topic>Calcium signalling</topic><topic>Calcium-binding protein</topic><topic>Calmodulin</topic><topic>Cellular signal transduction</topic><topic>Computational neuroscience</topic><topic>Computer simulation</topic><topic>Dendrites</topic><topic>Dendritic spines</topic><topic>Dopamine</topic><topic>Dopamine D1 receptors</topic><topic>Dopamine D2 receptors</topic><topic>Engineering and Technology</topic><topic>Enlargement</topic><topic>Experiments</topic><topic>Forecasting</topic><topic>Informatics</topic><topic>Integrative medicine</topic><topic>Integrators</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Learning</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Neostriatum</topic><topic>Neuroplasticity</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Plasticity</topic><topic>Protein kinase A</topic><topic>Proteins</topic><topic>Reinforcement</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>Spine</topic><topic>Synaptic plasticity</topic><topic>Systems science</topic><topic>Windows (intervals)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Urakubo, Hidetoshi</creatorcontrib><creatorcontrib>Yagishita, Sho</creatorcontrib><creatorcontrib>Kasai, Haruo</creatorcontrib><creatorcontrib>Ishii, Shin</creatorcontrib><creatorcontrib>Blackwell, Kim T</creatorcontrib><creatorcontrib>Jedrzejewska-Szmek, Joanna</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Urakubo, Hidetoshi</au><au>Yagishita, Sho</au><au>Kasai, Haruo</au><au>Ishii, Shin</au><au>Blackwell, Kim T</au><au>Jedrzejewska-Szmek, Joanna</au><au>Jędrzejewska-Szmek, Joanna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Signaling models for dopamine-dependent temporal contiguity in striatal synaptic plasticity</atitle><jtitle>PLoS computational biology</jtitle><date>2020-07-23</date><risdate>2020</risdate><volume>16</volume><issue>7</issue><spage>e1008078</spage><epage>e1008078</epage><pages>e1008078-e1008078</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Animals remember temporal links between their actions and subsequent rewards. We previously discovered a synaptic mechanism underlying such reward learning in D1 receptor (D1R)-expressing spiny projection neurons (D1 SPN) of the striatum. Dopamine (DA) bursts promote dendritic spine enlargement in a time window of only a few seconds after paired pre- and post-synaptic spiking (pre-post pairing), which is termed as reinforcement plasticity (RP). The previous study has also identified underlying signaling pathways; however, it still remains unclear how the signaling dynamics results in RP. In the present study, we first developed a computational model of signaling dynamics of D1 SPNs. The D1 RP model successfully reproduced experimentally observed protein kinase A (PKA) activity, including its critical time window. In this model, adenylate cyclase type 1 (AC1) in the spines/thin dendrites played a pivotal role as a coincidence detector against pre-post pairing and DA burst. In particular, pre-post pairing (Ca.sup.2+ signal) stimulated AC1 with a delay, and the Ca.sup.2+ -stimulated AC1 was activated by the DA burst for the asymmetric time window. Moreover, the smallness of the spines/thin dendrites is crucial to the short time window for the PKA activity. We then developed a RP model for D2 SPNs, which also predicted the critical time window for RP that depended on the timing of pre-post pairing and phasic DA dip. AC1 worked for the coincidence detector in the D2 RP model as well. We further simulated the signaling pathway leading to Ca.sup.2+ /calmodulin-dependent protein kinase II (CaMKII) activation and clarified the role of the downstream molecules of AC1 as the integrators that turn transient input signals into persistent spine enlargement. Finally, we discuss how such timing windows guide animals' reward learning.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>32701987</pmid><doi>10.1371/journal.pcbi.1008078</doi><orcidid>https://orcid.org/0000-0003-2854-773X</orcidid><orcidid>https://orcid.org/0000-0002-1816-0040</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2020-07, Vol.16 (7), p.e1008078-e1008078
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2434500142
source DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adenosine
Adenylate cyclase
Animals
Biology
Biology and life sciences
Ca2+/calmodulin-dependent protein kinase II
Calcium ions
Calcium signalling
Calcium-binding protein
Calmodulin
Cellular signal transduction
Computational neuroscience
Computer simulation
Dendrites
Dendritic spines
Dopamine
Dopamine D1 receptors
Dopamine D2 receptors
Engineering and Technology
Enlargement
Experiments
Forecasting
Informatics
Integrative medicine
Integrators
Kinases
Laboratories
Learning
Medicine
Medicine and Health Sciences
Neostriatum
Neuroplasticity
Physiological aspects
Physiology
Plasticity
Protein kinase A
Proteins
Reinforcement
Signal transduction
Signaling
Spine
Synaptic plasticity
Systems science
Windows (intervals)
title Signaling models for dopamine-dependent temporal contiguity in striatal synaptic plasticity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A31%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Signaling%20models%20for%20dopamine-dependent%20temporal%20contiguity%20in%20striatal%20synaptic%20plasticity&rft.jtitle=PLoS%20computational%20biology&rft.au=Urakubo,%20Hidetoshi&rft.date=2020-07-23&rft.volume=16&rft.issue=7&rft.spage=e1008078&rft.epage=e1008078&rft.pages=e1008078-e1008078&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1008078&rft_dat=%3Cgale_plos_%3EA632942210%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434500142&rft_id=info:pmid/32701987&rft_galeid=A632942210&rft_doaj_id=oai_doaj_org_article_d371820b6ff04bbf9f89fdc3c442ed9a&rfr_iscdi=true