A mathematical model for persistent post-CSD vasoconstriction
Cortical spreading depression (CSD) is the propagation of a relatively slow wave in cortical brain tissue that is linked to a number of pathological conditions such as stroke and migraine. Most of the existing literature investigates the dynamics of short term phenomena such as the depolarization an...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2020-07, Vol.16 (7), p.e1007996-e1007996 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1007996 |
---|---|
container_issue | 7 |
container_start_page | e1007996 |
container_title | PLoS computational biology |
container_volume | 16 |
creator | Xu, Shixin Chang, Joshua C Chow, Carson C Brennan, K C Huang, Huaxiong |
description | Cortical spreading depression (CSD) is the propagation of a relatively slow wave in cortical brain tissue that is linked to a number of pathological conditions such as stroke and migraine. Most of the existing literature investigates the dynamics of short term phenomena such as the depolarization and repolarization of membrane potentials or large ion shifts. Here, we focus on the clinically-relevant hour-long state of neurovascular malfunction in the wake of CSDs. This dysfunctional state involves widespread vasoconstriction and a general disruption of neurovascular coupling. We demonstrate, using a mathematical model, that dissolution of calcium that has aggregated within the mitochondria of vascular smooth muscle cells can drive an hour-long disruption. We model the rate of calcium clearance as well as the dynamical implications on overall blood flow. Based on reaction stoichiometry, we quantify a possible impact of calcium phosphate dissolution on the maintenance of F0F1-ATP synthase activity. |
doi_str_mv | 10.1371/journal.pcbi.1007996 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2434499975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632942433</galeid><doaj_id>oai_doaj_org_article_7bbbc9a901874d50842c2d1326699839</doaj_id><sourcerecordid>A632942433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-ef3c41978ac9be1fcfba7b9337434bc858c73489bfa30d77035de4979b4b82543</originalsourceid><addsrcrecordid>eNqVkl-P1CAUxRujcdfVb2C0iS_60BEKLdwHTSbjv0k2mrj6TIDSWSZt6QKz0W8vdbqbrdkX04QS-J0D53Kz7DlGK0wYfrt3Bz_IbjVqZVcYIQZQP8hOcVWRgpGKP7wzP8mehLBHKE2hfpydkLKuGSA4zd6t817GS5MGq2WX964xXd46n4_GBxuiGWI-uhCLzcWH_FoGp90Qorc6Wjc8zR61sgvm2fw_y35--vhj86U4__Z5u1mfF7qucSxMSzTFwLjUoAxudaskU0AIo4QqzSuuGaEcVCsJahhL92wMBQaKKl5WlJxlL4--Y-eCmJMHUSY5BQBWJWJ7JBon92L0tpf-t3DSir8Lzu-E9CliZwRTSmmQgDBntKkQp6UuGzzVBIATSF7v59MOqjeNTiXwsluYLncGeyl27lowimuoWTJ4PRt4d3UwIYreBm26Tg7GHaZ7l5TSkuMyoa_-Qe9PN1M7mQLYoXXpXD2ZinVNSkh-hCRqdQ-Vvsb0Nj2baW1aXwjeLASJieZX3MlDCGJ78f0_2K9Llh5Z7V0I3rS3tcNITM17E1JMzSvm5k2yF3frfiu66VbyB4el6Mg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434499975</pqid></control><display><type>article</type><title>A mathematical model for persistent post-CSD vasoconstriction</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Xu, Shixin ; Chang, Joshua C ; Chow, Carson C ; Brennan, K C ; Huang, Huaxiong</creator><creatorcontrib>Xu, Shixin ; Chang, Joshua C ; Chow, Carson C ; Brennan, K C ; Huang, Huaxiong</creatorcontrib><description>Cortical spreading depression (CSD) is the propagation of a relatively slow wave in cortical brain tissue that is linked to a number of pathological conditions such as stroke and migraine. Most of the existing literature investigates the dynamics of short term phenomena such as the depolarization and repolarization of membrane potentials or large ion shifts. Here, we focus on the clinically-relevant hour-long state of neurovascular malfunction in the wake of CSDs. This dysfunctional state involves widespread vasoconstriction and a general disruption of neurovascular coupling. We demonstrate, using a mathematical model, that dissolution of calcium that has aggregated within the mitochondria of vascular smooth muscle cells can drive an hour-long disruption. We model the rate of calcium clearance as well as the dynamical implications on overall blood flow. Based on reaction stoichiometry, we quantify a possible impact of calcium phosphate dissolution on the maintenance of F0F1-ATP synthase activity.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1007996</identifier><identifier>PMID: 32667909</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenosine Triphosphate - chemistry ; ATP synthase ; Biology and Life Sciences ; Blood flow ; Brain research ; Calcium ; Calcium - chemistry ; Calcium phosphates ; Calcium Phosphates - chemistry ; Cerebral cortex ; Cerebral Cortex - physiopathology ; Cerebrovascular Circulation ; Cortical Spreading Depression ; Cytosol - chemistry ; Depolarization ; Development and progression ; Disruption ; Dissolution ; Endoplasmic Reticulum - chemistry ; Gray Matter - physiopathology ; Headache ; Health aspects ; Humans ; Laboratories ; Mathematical analysis ; Mathematical models ; Mathematics ; Medicine and Health Sciences ; Membrane potential ; Membrane Potentials ; Metabolism ; Migraine ; Mitochondria ; Mitochondria - metabolism ; Models, Theoretical ; Muscles ; Neurologic manifestations ; Neurovascular Coupling ; Oscillometry ; Oxygen - chemistry ; Permeability ; Phosphorylation ; Physical Sciences ; Physiological aspects ; Physiology ; Proton-Translocating ATPases - chemistry ; Quantitative analysis ; Smooth muscle ; Stoichiometry ; Stroke - physiopathology ; Traumatic brain injury ; Vasoconstriction ; Wave propagation</subject><ispartof>PLoS computational biology, 2020-07, Vol.16 (7), p.e1007996-e1007996</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-ef3c41978ac9be1fcfba7b9337434bc858c73489bfa30d77035de4979b4b82543</citedby><cites>FETCH-LOGICAL-c661t-ef3c41978ac9be1fcfba7b9337434bc858c73489bfa30d77035de4979b4b82543</cites><orcidid>0000-0003-1463-9553 ; 0000-0002-1594-4077</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7416967/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7416967/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32667909$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Shixin</creatorcontrib><creatorcontrib>Chang, Joshua C</creatorcontrib><creatorcontrib>Chow, Carson C</creatorcontrib><creatorcontrib>Brennan, K C</creatorcontrib><creatorcontrib>Huang, Huaxiong</creatorcontrib><title>A mathematical model for persistent post-CSD vasoconstriction</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Cortical spreading depression (CSD) is the propagation of a relatively slow wave in cortical brain tissue that is linked to a number of pathological conditions such as stroke and migraine. Most of the existing literature investigates the dynamics of short term phenomena such as the depolarization and repolarization of membrane potentials or large ion shifts. Here, we focus on the clinically-relevant hour-long state of neurovascular malfunction in the wake of CSDs. This dysfunctional state involves widespread vasoconstriction and a general disruption of neurovascular coupling. We demonstrate, using a mathematical model, that dissolution of calcium that has aggregated within the mitochondria of vascular smooth muscle cells can drive an hour-long disruption. We model the rate of calcium clearance as well as the dynamical implications on overall blood flow. Based on reaction stoichiometry, we quantify a possible impact of calcium phosphate dissolution on the maintenance of F0F1-ATP synthase activity.</description><subject>Adenosine Triphosphate - chemistry</subject><subject>ATP synthase</subject><subject>Biology and Life Sciences</subject><subject>Blood flow</subject><subject>Brain research</subject><subject>Calcium</subject><subject>Calcium - chemistry</subject><subject>Calcium phosphates</subject><subject>Calcium Phosphates - chemistry</subject><subject>Cerebral cortex</subject><subject>Cerebral Cortex - physiopathology</subject><subject>Cerebrovascular Circulation</subject><subject>Cortical Spreading Depression</subject><subject>Cytosol - chemistry</subject><subject>Depolarization</subject><subject>Development and progression</subject><subject>Disruption</subject><subject>Dissolution</subject><subject>Endoplasmic Reticulum - chemistry</subject><subject>Gray Matter - physiopathology</subject><subject>Headache</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Laboratories</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Medicine and Health Sciences</subject><subject>Membrane potential</subject><subject>Membrane Potentials</subject><subject>Metabolism</subject><subject>Migraine</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Models, Theoretical</subject><subject>Muscles</subject><subject>Neurologic manifestations</subject><subject>Neurovascular Coupling</subject><subject>Oscillometry</subject><subject>Oxygen - chemistry</subject><subject>Permeability</subject><subject>Phosphorylation</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Proton-Translocating ATPases - chemistry</subject><subject>Quantitative analysis</subject><subject>Smooth muscle</subject><subject>Stoichiometry</subject><subject>Stroke - physiopathology</subject><subject>Traumatic brain injury</subject><subject>Vasoconstriction</subject><subject>Wave propagation</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkl-P1CAUxRujcdfVb2C0iS_60BEKLdwHTSbjv0k2mrj6TIDSWSZt6QKz0W8vdbqbrdkX04QS-J0D53Kz7DlGK0wYfrt3Bz_IbjVqZVcYIQZQP8hOcVWRgpGKP7wzP8mehLBHKE2hfpydkLKuGSA4zd6t817GS5MGq2WX964xXd46n4_GBxuiGWI-uhCLzcWH_FoGp90Qorc6Wjc8zR61sgvm2fw_y35--vhj86U4__Z5u1mfF7qucSxMSzTFwLjUoAxudaskU0AIo4QqzSuuGaEcVCsJahhL92wMBQaKKl5WlJxlL4--Y-eCmJMHUSY5BQBWJWJ7JBon92L0tpf-t3DSir8Lzu-E9CliZwRTSmmQgDBntKkQp6UuGzzVBIATSF7v59MOqjeNTiXwsluYLncGeyl27lowimuoWTJ4PRt4d3UwIYreBm26Tg7GHaZ7l5TSkuMyoa_-Qe9PN1M7mQLYoXXpXD2ZinVNSkh-hCRqdQ-Vvsb0Nj2baW1aXwjeLASJieZX3MlDCGJ78f0_2K9Llh5Z7V0I3rS3tcNITM17E1JMzSvm5k2yF3frfiu66VbyB4el6Mg</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Xu, Shixin</creator><creator>Chang, Joshua C</creator><creator>Chow, Carson C</creator><creator>Brennan, K C</creator><creator>Huang, Huaxiong</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1463-9553</orcidid><orcidid>https://orcid.org/0000-0002-1594-4077</orcidid></search><sort><creationdate>20200701</creationdate><title>A mathematical model for persistent post-CSD vasoconstriction</title><author>Xu, Shixin ; Chang, Joshua C ; Chow, Carson C ; Brennan, K C ; Huang, Huaxiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-ef3c41978ac9be1fcfba7b9337434bc858c73489bfa30d77035de4979b4b82543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adenosine Triphosphate - chemistry</topic><topic>ATP synthase</topic><topic>Biology and Life Sciences</topic><topic>Blood flow</topic><topic>Brain research</topic><topic>Calcium</topic><topic>Calcium - chemistry</topic><topic>Calcium phosphates</topic><topic>Calcium Phosphates - chemistry</topic><topic>Cerebral cortex</topic><topic>Cerebral Cortex - physiopathology</topic><topic>Cerebrovascular Circulation</topic><topic>Cortical Spreading Depression</topic><topic>Cytosol - chemistry</topic><topic>Depolarization</topic><topic>Development and progression</topic><topic>Disruption</topic><topic>Dissolution</topic><topic>Endoplasmic Reticulum - chemistry</topic><topic>Gray Matter - physiopathology</topic><topic>Headache</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Laboratories</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Medicine and Health Sciences</topic><topic>Membrane potential</topic><topic>Membrane Potentials</topic><topic>Metabolism</topic><topic>Migraine</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Models, Theoretical</topic><topic>Muscles</topic><topic>Neurologic manifestations</topic><topic>Neurovascular Coupling</topic><topic>Oscillometry</topic><topic>Oxygen - chemistry</topic><topic>Permeability</topic><topic>Phosphorylation</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Proton-Translocating ATPases - chemistry</topic><topic>Quantitative analysis</topic><topic>Smooth muscle</topic><topic>Stoichiometry</topic><topic>Stroke - physiopathology</topic><topic>Traumatic brain injury</topic><topic>Vasoconstriction</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Shixin</creatorcontrib><creatorcontrib>Chang, Joshua C</creatorcontrib><creatorcontrib>Chow, Carson C</creatorcontrib><creatorcontrib>Brennan, K C</creatorcontrib><creatorcontrib>Huang, Huaxiong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Shixin</au><au>Chang, Joshua C</au><au>Chow, Carson C</au><au>Brennan, K C</au><au>Huang, Huaxiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mathematical model for persistent post-CSD vasoconstriction</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>16</volume><issue>7</issue><spage>e1007996</spage><epage>e1007996</epage><pages>e1007996-e1007996</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Cortical spreading depression (CSD) is the propagation of a relatively slow wave in cortical brain tissue that is linked to a number of pathological conditions such as stroke and migraine. Most of the existing literature investigates the dynamics of short term phenomena such as the depolarization and repolarization of membrane potentials or large ion shifts. Here, we focus on the clinically-relevant hour-long state of neurovascular malfunction in the wake of CSDs. This dysfunctional state involves widespread vasoconstriction and a general disruption of neurovascular coupling. We demonstrate, using a mathematical model, that dissolution of calcium that has aggregated within the mitochondria of vascular smooth muscle cells can drive an hour-long disruption. We model the rate of calcium clearance as well as the dynamical implications on overall blood flow. Based on reaction stoichiometry, we quantify a possible impact of calcium phosphate dissolution on the maintenance of F0F1-ATP synthase activity.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32667909</pmid><doi>10.1371/journal.pcbi.1007996</doi><orcidid>https://orcid.org/0000-0003-1463-9553</orcidid><orcidid>https://orcid.org/0000-0002-1594-4077</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2020-07, Vol.16 (7), p.e1007996-e1007996 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2434499975 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Public Library of Science (PLoS) |
subjects | Adenosine Triphosphate - chemistry ATP synthase Biology and Life Sciences Blood flow Brain research Calcium Calcium - chemistry Calcium phosphates Calcium Phosphates - chemistry Cerebral cortex Cerebral Cortex - physiopathology Cerebrovascular Circulation Cortical Spreading Depression Cytosol - chemistry Depolarization Development and progression Disruption Dissolution Endoplasmic Reticulum - chemistry Gray Matter - physiopathology Headache Health aspects Humans Laboratories Mathematical analysis Mathematical models Mathematics Medicine and Health Sciences Membrane potential Membrane Potentials Metabolism Migraine Mitochondria Mitochondria - metabolism Models, Theoretical Muscles Neurologic manifestations Neurovascular Coupling Oscillometry Oxygen - chemistry Permeability Phosphorylation Physical Sciences Physiological aspects Physiology Proton-Translocating ATPases - chemistry Quantitative analysis Smooth muscle Stoichiometry Stroke - physiopathology Traumatic brain injury Vasoconstriction Wave propagation |
title | A mathematical model for persistent post-CSD vasoconstriction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A38%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mathematical%20model%20for%20persistent%20post-CSD%20vasoconstriction&rft.jtitle=PLoS%20computational%20biology&rft.au=Xu,%20Shixin&rft.date=2020-07-01&rft.volume=16&rft.issue=7&rft.spage=e1007996&rft.epage=e1007996&rft.pages=e1007996-e1007996&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1007996&rft_dat=%3Cgale_plos_%3EA632942433%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434499975&rft_id=info:pmid/32667909&rft_galeid=A632942433&rft_doaj_id=oai_doaj_org_article_7bbbc9a901874d50842c2d1326699839&rfr_iscdi=true |