A mathematical model for persistent post-CSD vasoconstriction

Cortical spreading depression (CSD) is the propagation of a relatively slow wave in cortical brain tissue that is linked to a number of pathological conditions such as stroke and migraine. Most of the existing literature investigates the dynamics of short term phenomena such as the depolarization an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2020-07, Vol.16 (7), p.e1007996-e1007996
Hauptverfasser: Xu, Shixin, Chang, Joshua C, Chow, Carson C, Brennan, K C, Huang, Huaxiong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1007996
container_issue 7
container_start_page e1007996
container_title PLoS computational biology
container_volume 16
creator Xu, Shixin
Chang, Joshua C
Chow, Carson C
Brennan, K C
Huang, Huaxiong
description Cortical spreading depression (CSD) is the propagation of a relatively slow wave in cortical brain tissue that is linked to a number of pathological conditions such as stroke and migraine. Most of the existing literature investigates the dynamics of short term phenomena such as the depolarization and repolarization of membrane potentials or large ion shifts. Here, we focus on the clinically-relevant hour-long state of neurovascular malfunction in the wake of CSDs. This dysfunctional state involves widespread vasoconstriction and a general disruption of neurovascular coupling. We demonstrate, using a mathematical model, that dissolution of calcium that has aggregated within the mitochondria of vascular smooth muscle cells can drive an hour-long disruption. We model the rate of calcium clearance as well as the dynamical implications on overall blood flow. Based on reaction stoichiometry, we quantify a possible impact of calcium phosphate dissolution on the maintenance of F0F1-ATP synthase activity.
doi_str_mv 10.1371/journal.pcbi.1007996
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2434499975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632942433</galeid><doaj_id>oai_doaj_org_article_7bbbc9a901874d50842c2d1326699839</doaj_id><sourcerecordid>A632942433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-ef3c41978ac9be1fcfba7b9337434bc858c73489bfa30d77035de4979b4b82543</originalsourceid><addsrcrecordid>eNqVkl-P1CAUxRujcdfVb2C0iS_60BEKLdwHTSbjv0k2mrj6TIDSWSZt6QKz0W8vdbqbrdkX04QS-J0D53Kz7DlGK0wYfrt3Bz_IbjVqZVcYIQZQP8hOcVWRgpGKP7wzP8mehLBHKE2hfpydkLKuGSA4zd6t817GS5MGq2WX964xXd46n4_GBxuiGWI-uhCLzcWH_FoGp90Qorc6Wjc8zR61sgvm2fw_y35--vhj86U4__Z5u1mfF7qucSxMSzTFwLjUoAxudaskU0AIo4QqzSuuGaEcVCsJahhL92wMBQaKKl5WlJxlL4--Y-eCmJMHUSY5BQBWJWJ7JBon92L0tpf-t3DSir8Lzu-E9CliZwRTSmmQgDBntKkQp6UuGzzVBIATSF7v59MOqjeNTiXwsluYLncGeyl27lowimuoWTJ4PRt4d3UwIYreBm26Tg7GHaZ7l5TSkuMyoa_-Qe9PN1M7mQLYoXXpXD2ZinVNSkh-hCRqdQ-Vvsb0Nj2baW1aXwjeLASJieZX3MlDCGJ78f0_2K9Llh5Z7V0I3rS3tcNITM17E1JMzSvm5k2yF3frfiu66VbyB4el6Mg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434499975</pqid></control><display><type>article</type><title>A mathematical model for persistent post-CSD vasoconstriction</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Xu, Shixin ; Chang, Joshua C ; Chow, Carson C ; Brennan, K C ; Huang, Huaxiong</creator><creatorcontrib>Xu, Shixin ; Chang, Joshua C ; Chow, Carson C ; Brennan, K C ; Huang, Huaxiong</creatorcontrib><description>Cortical spreading depression (CSD) is the propagation of a relatively slow wave in cortical brain tissue that is linked to a number of pathological conditions such as stroke and migraine. Most of the existing literature investigates the dynamics of short term phenomena such as the depolarization and repolarization of membrane potentials or large ion shifts. Here, we focus on the clinically-relevant hour-long state of neurovascular malfunction in the wake of CSDs. This dysfunctional state involves widespread vasoconstriction and a general disruption of neurovascular coupling. We demonstrate, using a mathematical model, that dissolution of calcium that has aggregated within the mitochondria of vascular smooth muscle cells can drive an hour-long disruption. We model the rate of calcium clearance as well as the dynamical implications on overall blood flow. Based on reaction stoichiometry, we quantify a possible impact of calcium phosphate dissolution on the maintenance of F0F1-ATP synthase activity.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1007996</identifier><identifier>PMID: 32667909</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenosine Triphosphate - chemistry ; ATP synthase ; Biology and Life Sciences ; Blood flow ; Brain research ; Calcium ; Calcium - chemistry ; Calcium phosphates ; Calcium Phosphates - chemistry ; Cerebral cortex ; Cerebral Cortex - physiopathology ; Cerebrovascular Circulation ; Cortical Spreading Depression ; Cytosol - chemistry ; Depolarization ; Development and progression ; Disruption ; Dissolution ; Endoplasmic Reticulum - chemistry ; Gray Matter - physiopathology ; Headache ; Health aspects ; Humans ; Laboratories ; Mathematical analysis ; Mathematical models ; Mathematics ; Medicine and Health Sciences ; Membrane potential ; Membrane Potentials ; Metabolism ; Migraine ; Mitochondria ; Mitochondria - metabolism ; Models, Theoretical ; Muscles ; Neurologic manifestations ; Neurovascular Coupling ; Oscillometry ; Oxygen - chemistry ; Permeability ; Phosphorylation ; Physical Sciences ; Physiological aspects ; Physiology ; Proton-Translocating ATPases - chemistry ; Quantitative analysis ; Smooth muscle ; Stoichiometry ; Stroke - physiopathology ; Traumatic brain injury ; Vasoconstriction ; Wave propagation</subject><ispartof>PLoS computational biology, 2020-07, Vol.16 (7), p.e1007996-e1007996</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-ef3c41978ac9be1fcfba7b9337434bc858c73489bfa30d77035de4979b4b82543</citedby><cites>FETCH-LOGICAL-c661t-ef3c41978ac9be1fcfba7b9337434bc858c73489bfa30d77035de4979b4b82543</cites><orcidid>0000-0003-1463-9553 ; 0000-0002-1594-4077</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7416967/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7416967/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32667909$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Shixin</creatorcontrib><creatorcontrib>Chang, Joshua C</creatorcontrib><creatorcontrib>Chow, Carson C</creatorcontrib><creatorcontrib>Brennan, K C</creatorcontrib><creatorcontrib>Huang, Huaxiong</creatorcontrib><title>A mathematical model for persistent post-CSD vasoconstriction</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Cortical spreading depression (CSD) is the propagation of a relatively slow wave in cortical brain tissue that is linked to a number of pathological conditions such as stroke and migraine. Most of the existing literature investigates the dynamics of short term phenomena such as the depolarization and repolarization of membrane potentials or large ion shifts. Here, we focus on the clinically-relevant hour-long state of neurovascular malfunction in the wake of CSDs. This dysfunctional state involves widespread vasoconstriction and a general disruption of neurovascular coupling. We demonstrate, using a mathematical model, that dissolution of calcium that has aggregated within the mitochondria of vascular smooth muscle cells can drive an hour-long disruption. We model the rate of calcium clearance as well as the dynamical implications on overall blood flow. Based on reaction stoichiometry, we quantify a possible impact of calcium phosphate dissolution on the maintenance of F0F1-ATP synthase activity.</description><subject>Adenosine Triphosphate - chemistry</subject><subject>ATP synthase</subject><subject>Biology and Life Sciences</subject><subject>Blood flow</subject><subject>Brain research</subject><subject>Calcium</subject><subject>Calcium - chemistry</subject><subject>Calcium phosphates</subject><subject>Calcium Phosphates - chemistry</subject><subject>Cerebral cortex</subject><subject>Cerebral Cortex - physiopathology</subject><subject>Cerebrovascular Circulation</subject><subject>Cortical Spreading Depression</subject><subject>Cytosol - chemistry</subject><subject>Depolarization</subject><subject>Development and progression</subject><subject>Disruption</subject><subject>Dissolution</subject><subject>Endoplasmic Reticulum - chemistry</subject><subject>Gray Matter - physiopathology</subject><subject>Headache</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Laboratories</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Medicine and Health Sciences</subject><subject>Membrane potential</subject><subject>Membrane Potentials</subject><subject>Metabolism</subject><subject>Migraine</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Models, Theoretical</subject><subject>Muscles</subject><subject>Neurologic manifestations</subject><subject>Neurovascular Coupling</subject><subject>Oscillometry</subject><subject>Oxygen - chemistry</subject><subject>Permeability</subject><subject>Phosphorylation</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Proton-Translocating ATPases - chemistry</subject><subject>Quantitative analysis</subject><subject>Smooth muscle</subject><subject>Stoichiometry</subject><subject>Stroke - physiopathology</subject><subject>Traumatic brain injury</subject><subject>Vasoconstriction</subject><subject>Wave propagation</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkl-P1CAUxRujcdfVb2C0iS_60BEKLdwHTSbjv0k2mrj6TIDSWSZt6QKz0W8vdbqbrdkX04QS-J0D53Kz7DlGK0wYfrt3Bz_IbjVqZVcYIQZQP8hOcVWRgpGKP7wzP8mehLBHKE2hfpydkLKuGSA4zd6t817GS5MGq2WX964xXd46n4_GBxuiGWI-uhCLzcWH_FoGp90Qorc6Wjc8zR61sgvm2fw_y35--vhj86U4__Z5u1mfF7qucSxMSzTFwLjUoAxudaskU0AIo4QqzSuuGaEcVCsJahhL92wMBQaKKl5WlJxlL4--Y-eCmJMHUSY5BQBWJWJ7JBon92L0tpf-t3DSir8Lzu-E9CliZwRTSmmQgDBntKkQp6UuGzzVBIATSF7v59MOqjeNTiXwsluYLncGeyl27lowimuoWTJ4PRt4d3UwIYreBm26Tg7GHaZ7l5TSkuMyoa_-Qe9PN1M7mQLYoXXpXD2ZinVNSkh-hCRqdQ-Vvsb0Nj2baW1aXwjeLASJieZX3MlDCGJ78f0_2K9Llh5Z7V0I3rS3tcNITM17E1JMzSvm5k2yF3frfiu66VbyB4el6Mg</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Xu, Shixin</creator><creator>Chang, Joshua C</creator><creator>Chow, Carson C</creator><creator>Brennan, K C</creator><creator>Huang, Huaxiong</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1463-9553</orcidid><orcidid>https://orcid.org/0000-0002-1594-4077</orcidid></search><sort><creationdate>20200701</creationdate><title>A mathematical model for persistent post-CSD vasoconstriction</title><author>Xu, Shixin ; Chang, Joshua C ; Chow, Carson C ; Brennan, K C ; Huang, Huaxiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-ef3c41978ac9be1fcfba7b9337434bc858c73489bfa30d77035de4979b4b82543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adenosine Triphosphate - chemistry</topic><topic>ATP synthase</topic><topic>Biology and Life Sciences</topic><topic>Blood flow</topic><topic>Brain research</topic><topic>Calcium</topic><topic>Calcium - chemistry</topic><topic>Calcium phosphates</topic><topic>Calcium Phosphates - chemistry</topic><topic>Cerebral cortex</topic><topic>Cerebral Cortex - physiopathology</topic><topic>Cerebrovascular Circulation</topic><topic>Cortical Spreading Depression</topic><topic>Cytosol - chemistry</topic><topic>Depolarization</topic><topic>Development and progression</topic><topic>Disruption</topic><topic>Dissolution</topic><topic>Endoplasmic Reticulum - chemistry</topic><topic>Gray Matter - physiopathology</topic><topic>Headache</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Laboratories</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Medicine and Health Sciences</topic><topic>Membrane potential</topic><topic>Membrane Potentials</topic><topic>Metabolism</topic><topic>Migraine</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Models, Theoretical</topic><topic>Muscles</topic><topic>Neurologic manifestations</topic><topic>Neurovascular Coupling</topic><topic>Oscillometry</topic><topic>Oxygen - chemistry</topic><topic>Permeability</topic><topic>Phosphorylation</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Proton-Translocating ATPases - chemistry</topic><topic>Quantitative analysis</topic><topic>Smooth muscle</topic><topic>Stoichiometry</topic><topic>Stroke - physiopathology</topic><topic>Traumatic brain injury</topic><topic>Vasoconstriction</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Shixin</creatorcontrib><creatorcontrib>Chang, Joshua C</creatorcontrib><creatorcontrib>Chow, Carson C</creatorcontrib><creatorcontrib>Brennan, K C</creatorcontrib><creatorcontrib>Huang, Huaxiong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Shixin</au><au>Chang, Joshua C</au><au>Chow, Carson C</au><au>Brennan, K C</au><au>Huang, Huaxiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mathematical model for persistent post-CSD vasoconstriction</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>16</volume><issue>7</issue><spage>e1007996</spage><epage>e1007996</epage><pages>e1007996-e1007996</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Cortical spreading depression (CSD) is the propagation of a relatively slow wave in cortical brain tissue that is linked to a number of pathological conditions such as stroke and migraine. Most of the existing literature investigates the dynamics of short term phenomena such as the depolarization and repolarization of membrane potentials or large ion shifts. Here, we focus on the clinically-relevant hour-long state of neurovascular malfunction in the wake of CSDs. This dysfunctional state involves widespread vasoconstriction and a general disruption of neurovascular coupling. We demonstrate, using a mathematical model, that dissolution of calcium that has aggregated within the mitochondria of vascular smooth muscle cells can drive an hour-long disruption. We model the rate of calcium clearance as well as the dynamical implications on overall blood flow. Based on reaction stoichiometry, we quantify a possible impact of calcium phosphate dissolution on the maintenance of F0F1-ATP synthase activity.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32667909</pmid><doi>10.1371/journal.pcbi.1007996</doi><orcidid>https://orcid.org/0000-0003-1463-9553</orcidid><orcidid>https://orcid.org/0000-0002-1594-4077</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2020-07, Vol.16 (7), p.e1007996-e1007996
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2434499975
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Public Library of Science (PLoS)
subjects Adenosine Triphosphate - chemistry
ATP synthase
Biology and Life Sciences
Blood flow
Brain research
Calcium
Calcium - chemistry
Calcium phosphates
Calcium Phosphates - chemistry
Cerebral cortex
Cerebral Cortex - physiopathology
Cerebrovascular Circulation
Cortical Spreading Depression
Cytosol - chemistry
Depolarization
Development and progression
Disruption
Dissolution
Endoplasmic Reticulum - chemistry
Gray Matter - physiopathology
Headache
Health aspects
Humans
Laboratories
Mathematical analysis
Mathematical models
Mathematics
Medicine and Health Sciences
Membrane potential
Membrane Potentials
Metabolism
Migraine
Mitochondria
Mitochondria - metabolism
Models, Theoretical
Muscles
Neurologic manifestations
Neurovascular Coupling
Oscillometry
Oxygen - chemistry
Permeability
Phosphorylation
Physical Sciences
Physiological aspects
Physiology
Proton-Translocating ATPases - chemistry
Quantitative analysis
Smooth muscle
Stoichiometry
Stroke - physiopathology
Traumatic brain injury
Vasoconstriction
Wave propagation
title A mathematical model for persistent post-CSD vasoconstriction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A38%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mathematical%20model%20for%20persistent%20post-CSD%20vasoconstriction&rft.jtitle=PLoS%20computational%20biology&rft.au=Xu,%20Shixin&rft.date=2020-07-01&rft.volume=16&rft.issue=7&rft.spage=e1007996&rft.epage=e1007996&rft.pages=e1007996-e1007996&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1007996&rft_dat=%3Cgale_plos_%3EA632942433%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434499975&rft_id=info:pmid/32667909&rft_galeid=A632942433&rft_doaj_id=oai_doaj_org_article_7bbbc9a901874d50842c2d1326699839&rfr_iscdi=true