PCH-2 collaborates with CMT-1 to proofread meiotic homolog interactions
The conserved ATPase, PCH-2/TRIP13, is required during both the spindle checkpoint and meiotic prophase. However, its specific role in regulating meiotic homolog pairing, synapsis and recombination has been enigmatic. Here, we report that this enzyme is required to proofread meiotic homolog interact...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2020-07, Vol.16 (7), p.e1008904-e1008904 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1008904 |
---|---|
container_issue | 7 |
container_start_page | e1008904 |
container_title | PLoS genetics |
container_volume | 16 |
creator | Giacopazzi, Stefani Vong, Daniel Devigne, Alice Bhalla, Needhi Barsh, Gregory S Libuda, Diana E |
description | The conserved ATPase, PCH-2/TRIP13, is required during both the spindle checkpoint and meiotic prophase. However, its specific role in regulating meiotic homolog pairing, synapsis and recombination has been enigmatic. Here, we report that this enzyme is required to proofread meiotic homolog interactions. We generated a mutant version of PCH-2 in C. elegans that binds ATP but cannot hydrolyze it: pch-2.sup.E253Q . In vitro, this mutant can bind a known substrate but is unable to remodel it. This mutation results in some non-homologous synapsis and impaired crossover assurance. Surprisingly, worms with a null mutation in PCH-2's adapter protein, CMT-1, the ortholog of p31.sup.comet, localize PCH-2 to meiotic chromosomes, exhibit non-homologous synapsis and lose crossover assurance. The similarity in phenotypes between cmt-1 and pch-2.sup.E253Q mutants suggest that PCH-2 can bind its meiotic substrates in the absence of CMT-1, in contrast to its role during the spindle checkpoint, but requires its adapter to hydrolyze ATP and remodel them. |
doi_str_mv | 10.1371/journal.pgen.1008904 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2434498928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632943761</galeid><doaj_id>oai_doaj_org_article_8cab01d7e64c4da8aa29b25433269e7c</doaj_id><sourcerecordid>A632943761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6184-8d25be2c39da3c06b03c0289342406abcc6af857c7a393892605b044fa0554e53</originalsourceid><addsrcrecordid>eNqVk22L1DAQx4t4eOfpNxAsCKIvdk2TNA9vhGPRc-H0RE_fhmmadrO0zZqkPnx7s7c9ucq9UAJJmPzmP5lJJsueFGhZEF682rrRD9Atd60ZlgVCQiJ6LzspypIsOEX0_q39cfYwhC1CpBSSP8iOCeYE4ZKcZOcfV-8WONeu66ByHqIJ-Q8bN_nq_dWiyKPLd965xhuo895YF63ON653nWtzO0TjQUfrhvAoO2qgC-bxtJ5mX96-uUraF5fn69XZxUKzQtCFqHFZGayJrIFoxCqUZiwkoZgiBpXWDBpRcs2BSCIkZqisEKUNoLKkpiSn2dOD7q5zQU01CApTQqlMvEjE-kDUDrZq520P_pdyYNW1wflWgU9pdEYJDRUqam4Y1bQGAYBlhUtKCGbScJ20Xk_Rxqo3tTZD9NDNROcng92o1n1XPGkIwZLAi0nAu2-jCVH1NmiTij0YN-7vjSXnTEqS0Gd_oXdnN1EtpATs0LgUV-9F1RkjWFLCWZGo5R1UGrXprXaDaWyyzxxezhwSE83P2MIYglp__vQf7Id_Zy-_ztnnt9iNgS5uguvG6_81B-kB1N6F4E3z50EKpPa9cVM5te8NNfUG-Q2uJPwB</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434498928</pqid></control><display><type>article</type><title>PCH-2 collaborates with CMT-1 to proofread meiotic homolog interactions</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Giacopazzi, Stefani ; Vong, Daniel ; Devigne, Alice ; Bhalla, Needhi ; Barsh, Gregory S ; Libuda, Diana E</creator><contributor>Libuda, Diana E.</contributor><creatorcontrib>Giacopazzi, Stefani ; Vong, Daniel ; Devigne, Alice ; Bhalla, Needhi ; Barsh, Gregory S ; Libuda, Diana E ; Libuda, Diana E.</creatorcontrib><description>The conserved ATPase, PCH-2/TRIP13, is required during both the spindle checkpoint and meiotic prophase. However, its specific role in regulating meiotic homolog pairing, synapsis and recombination has been enigmatic. Here, we report that this enzyme is required to proofread meiotic homolog interactions. We generated a mutant version of PCH-2 in C. elegans that binds ATP but cannot hydrolyze it: pch-2.sup.E253Q . In vitro, this mutant can bind a known substrate but is unable to remodel it. This mutation results in some non-homologous synapsis and impaired crossover assurance. Surprisingly, worms with a null mutation in PCH-2's adapter protein, CMT-1, the ortholog of p31.sup.comet, localize PCH-2 to meiotic chromosomes, exhibit non-homologous synapsis and lose crossover assurance. The similarity in phenotypes between cmt-1 and pch-2.sup.E253Q mutants suggest that PCH-2 can bind its meiotic substrates in the absence of CMT-1, in contrast to its role during the spindle checkpoint, but requires its adapter to hydrolyze ATP and remodel them.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1008904</identifier><identifier>PMID: 32730253</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Adapter proteins ; Adenosine triphosphatase ; Analysis ; Apoptosis ; ATPases ; Biology and Life Sciences ; Caenorhabditis elegans ; Cell division ; Defects ; Developmental biology ; Gene mutation ; Genetic aspects ; Insects ; Localization ; Meiosis ; Mutants ; Mutation ; Phenotypes ; Prophase ; Recombination ; Research and Analysis Methods ; X chromosomes ; Yeast</subject><ispartof>PLoS genetics, 2020-07, Vol.16 (7), p.e1008904-e1008904</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Giacopazzi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Giacopazzi et al 2020 Giacopazzi et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6184-8d25be2c39da3c06b03c0289342406abcc6af857c7a393892605b044fa0554e53</citedby><cites>FETCH-LOGICAL-c6184-8d25be2c39da3c06b03c0289342406abcc6af857c7a393892605b044fa0554e53</cites><orcidid>0000-0002-6859-0073 ; 0000-0002-7774-0993 ; 0000-0002-1534-6472 ; 0000-0003-1348-5302</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7433886/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7433886/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids></links><search><contributor>Libuda, Diana E.</contributor><creatorcontrib>Giacopazzi, Stefani</creatorcontrib><creatorcontrib>Vong, Daniel</creatorcontrib><creatorcontrib>Devigne, Alice</creatorcontrib><creatorcontrib>Bhalla, Needhi</creatorcontrib><creatorcontrib>Barsh, Gregory S</creatorcontrib><creatorcontrib>Libuda, Diana E</creatorcontrib><title>PCH-2 collaborates with CMT-1 to proofread meiotic homolog interactions</title><title>PLoS genetics</title><description>The conserved ATPase, PCH-2/TRIP13, is required during both the spindle checkpoint and meiotic prophase. However, its specific role in regulating meiotic homolog pairing, synapsis and recombination has been enigmatic. Here, we report that this enzyme is required to proofread meiotic homolog interactions. We generated a mutant version of PCH-2 in C. elegans that binds ATP but cannot hydrolyze it: pch-2.sup.E253Q . In vitro, this mutant can bind a known substrate but is unable to remodel it. This mutation results in some non-homologous synapsis and impaired crossover assurance. Surprisingly, worms with a null mutation in PCH-2's adapter protein, CMT-1, the ortholog of p31.sup.comet, localize PCH-2 to meiotic chromosomes, exhibit non-homologous synapsis and lose crossover assurance. The similarity in phenotypes between cmt-1 and pch-2.sup.E253Q mutants suggest that PCH-2 can bind its meiotic substrates in the absence of CMT-1, in contrast to its role during the spindle checkpoint, but requires its adapter to hydrolyze ATP and remodel them.</description><subject>Adapter proteins</subject><subject>Adenosine triphosphatase</subject><subject>Analysis</subject><subject>Apoptosis</subject><subject>ATPases</subject><subject>Biology and Life Sciences</subject><subject>Caenorhabditis elegans</subject><subject>Cell division</subject><subject>Defects</subject><subject>Developmental biology</subject><subject>Gene mutation</subject><subject>Genetic aspects</subject><subject>Insects</subject><subject>Localization</subject><subject>Meiosis</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Phenotypes</subject><subject>Prophase</subject><subject>Recombination</subject><subject>Research and Analysis Methods</subject><subject>X chromosomes</subject><subject>Yeast</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk22L1DAQx4t4eOfpNxAsCKIvdk2TNA9vhGPRc-H0RE_fhmmadrO0zZqkPnx7s7c9ucq9UAJJmPzmP5lJJsueFGhZEF682rrRD9Atd60ZlgVCQiJ6LzspypIsOEX0_q39cfYwhC1CpBSSP8iOCeYE4ZKcZOcfV-8WONeu66ByHqIJ-Q8bN_nq_dWiyKPLd965xhuo895YF63ON653nWtzO0TjQUfrhvAoO2qgC-bxtJ5mX96-uUraF5fn69XZxUKzQtCFqHFZGayJrIFoxCqUZiwkoZgiBpXWDBpRcs2BSCIkZqisEKUNoLKkpiSn2dOD7q5zQU01CApTQqlMvEjE-kDUDrZq520P_pdyYNW1wflWgU9pdEYJDRUqam4Y1bQGAYBlhUtKCGbScJ20Xk_Rxqo3tTZD9NDNROcng92o1n1XPGkIwZLAi0nAu2-jCVH1NmiTij0YN-7vjSXnTEqS0Gd_oXdnN1EtpATs0LgUV-9F1RkjWFLCWZGo5R1UGrXprXaDaWyyzxxezhwSE83P2MIYglp__vQf7Id_Zy-_ztnnt9iNgS5uguvG6_81B-kB1N6F4E3z50EKpPa9cVM5te8NNfUG-Q2uJPwB</recordid><startdate>20200730</startdate><enddate>20200730</enddate><creator>Giacopazzi, Stefani</creator><creator>Vong, Daniel</creator><creator>Devigne, Alice</creator><creator>Bhalla, Needhi</creator><creator>Barsh, Gregory S</creator><creator>Libuda, Diana E</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6859-0073</orcidid><orcidid>https://orcid.org/0000-0002-7774-0993</orcidid><orcidid>https://orcid.org/0000-0002-1534-6472</orcidid><orcidid>https://orcid.org/0000-0003-1348-5302</orcidid></search><sort><creationdate>20200730</creationdate><title>PCH-2 collaborates with CMT-1 to proofread meiotic homolog interactions</title><author>Giacopazzi, Stefani ; Vong, Daniel ; Devigne, Alice ; Bhalla, Needhi ; Barsh, Gregory S ; Libuda, Diana E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6184-8d25be2c39da3c06b03c0289342406abcc6af857c7a393892605b044fa0554e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adapter proteins</topic><topic>Adenosine triphosphatase</topic><topic>Analysis</topic><topic>Apoptosis</topic><topic>ATPases</topic><topic>Biology and Life Sciences</topic><topic>Caenorhabditis elegans</topic><topic>Cell division</topic><topic>Defects</topic><topic>Developmental biology</topic><topic>Gene mutation</topic><topic>Genetic aspects</topic><topic>Insects</topic><topic>Localization</topic><topic>Meiosis</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Phenotypes</topic><topic>Prophase</topic><topic>Recombination</topic><topic>Research and Analysis Methods</topic><topic>X chromosomes</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giacopazzi, Stefani</creatorcontrib><creatorcontrib>Vong, Daniel</creatorcontrib><creatorcontrib>Devigne, Alice</creatorcontrib><creatorcontrib>Bhalla, Needhi</creatorcontrib><creatorcontrib>Barsh, Gregory S</creatorcontrib><creatorcontrib>Libuda, Diana E</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giacopazzi, Stefani</au><au>Vong, Daniel</au><au>Devigne, Alice</au><au>Bhalla, Needhi</au><au>Barsh, Gregory S</au><au>Libuda, Diana E</au><au>Libuda, Diana E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PCH-2 collaborates with CMT-1 to proofread meiotic homolog interactions</atitle><jtitle>PLoS genetics</jtitle><date>2020-07-30</date><risdate>2020</risdate><volume>16</volume><issue>7</issue><spage>e1008904</spage><epage>e1008904</epage><pages>e1008904-e1008904</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>The conserved ATPase, PCH-2/TRIP13, is required during both the spindle checkpoint and meiotic prophase. However, its specific role in regulating meiotic homolog pairing, synapsis and recombination has been enigmatic. Here, we report that this enzyme is required to proofread meiotic homolog interactions. We generated a mutant version of PCH-2 in C. elegans that binds ATP but cannot hydrolyze it: pch-2.sup.E253Q . In vitro, this mutant can bind a known substrate but is unable to remodel it. This mutation results in some non-homologous synapsis and impaired crossover assurance. Surprisingly, worms with a null mutation in PCH-2's adapter protein, CMT-1, the ortholog of p31.sup.comet, localize PCH-2 to meiotic chromosomes, exhibit non-homologous synapsis and lose crossover assurance. The similarity in phenotypes between cmt-1 and pch-2.sup.E253Q mutants suggest that PCH-2 can bind its meiotic substrates in the absence of CMT-1, in contrast to its role during the spindle checkpoint, but requires its adapter to hydrolyze ATP and remodel them.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>32730253</pmid><doi>10.1371/journal.pgen.1008904</doi><orcidid>https://orcid.org/0000-0002-6859-0073</orcidid><orcidid>https://orcid.org/0000-0002-7774-0993</orcidid><orcidid>https://orcid.org/0000-0002-1534-6472</orcidid><orcidid>https://orcid.org/0000-0003-1348-5302</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2020-07, Vol.16 (7), p.e1008904-e1008904 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_2434498928 |
source | DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Adapter proteins Adenosine triphosphatase Analysis Apoptosis ATPases Biology and Life Sciences Caenorhabditis elegans Cell division Defects Developmental biology Gene mutation Genetic aspects Insects Localization Meiosis Mutants Mutation Phenotypes Prophase Recombination Research and Analysis Methods X chromosomes Yeast |
title | PCH-2 collaborates with CMT-1 to proofread meiotic homolog interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A25%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PCH-2%20collaborates%20with%20CMT-1%20to%20proofread%20meiotic%20homolog%20interactions&rft.jtitle=PLoS%20genetics&rft.au=Giacopazzi,%20Stefani&rft.date=2020-07-30&rft.volume=16&rft.issue=7&rft.spage=e1008904&rft.epage=e1008904&rft.pages=e1008904-e1008904&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1008904&rft_dat=%3Cgale_plos_%3EA632943761%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434498928&rft_id=info:pmid/32730253&rft_galeid=A632943761&rft_doaj_id=oai_doaj_org_article_8cab01d7e64c4da8aa29b25433269e7c&rfr_iscdi=true |