PCH-2 collaborates with CMT-1 to proofread meiotic homolog interactions

The conserved ATPase, PCH-2/TRIP13, is required during both the spindle checkpoint and meiotic prophase. However, its specific role in regulating meiotic homolog pairing, synapsis and recombination has been enigmatic. Here, we report that this enzyme is required to proofread meiotic homolog interact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2020-07, Vol.16 (7), p.e1008904-e1008904
Hauptverfasser: Giacopazzi, Stefani, Vong, Daniel, Devigne, Alice, Bhalla, Needhi, Barsh, Gregory S, Libuda, Diana E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1008904
container_issue 7
container_start_page e1008904
container_title PLoS genetics
container_volume 16
creator Giacopazzi, Stefani
Vong, Daniel
Devigne, Alice
Bhalla, Needhi
Barsh, Gregory S
Libuda, Diana E
description The conserved ATPase, PCH-2/TRIP13, is required during both the spindle checkpoint and meiotic prophase. However, its specific role in regulating meiotic homolog pairing, synapsis and recombination has been enigmatic. Here, we report that this enzyme is required to proofread meiotic homolog interactions. We generated a mutant version of PCH-2 in C. elegans that binds ATP but cannot hydrolyze it: pch-2.sup.E253Q . In vitro, this mutant can bind a known substrate but is unable to remodel it. This mutation results in some non-homologous synapsis and impaired crossover assurance. Surprisingly, worms with a null mutation in PCH-2's adapter protein, CMT-1, the ortholog of p31.sup.comet, localize PCH-2 to meiotic chromosomes, exhibit non-homologous synapsis and lose crossover assurance. The similarity in phenotypes between cmt-1 and pch-2.sup.E253Q mutants suggest that PCH-2 can bind its meiotic substrates in the absence of CMT-1, in contrast to its role during the spindle checkpoint, but requires its adapter to hydrolyze ATP and remodel them.
doi_str_mv 10.1371/journal.pgen.1008904
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2434498928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632943761</galeid><doaj_id>oai_doaj_org_article_8cab01d7e64c4da8aa29b25433269e7c</doaj_id><sourcerecordid>A632943761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6184-8d25be2c39da3c06b03c0289342406abcc6af857c7a393892605b044fa0554e53</originalsourceid><addsrcrecordid>eNqVk22L1DAQx4t4eOfpNxAsCKIvdk2TNA9vhGPRc-H0RE_fhmmadrO0zZqkPnx7s7c9ucq9UAJJmPzmP5lJJsueFGhZEF682rrRD9Atd60ZlgVCQiJ6LzspypIsOEX0_q39cfYwhC1CpBSSP8iOCeYE4ZKcZOcfV-8WONeu66ByHqIJ-Q8bN_nq_dWiyKPLd965xhuo895YF63ON653nWtzO0TjQUfrhvAoO2qgC-bxtJ5mX96-uUraF5fn69XZxUKzQtCFqHFZGayJrIFoxCqUZiwkoZgiBpXWDBpRcs2BSCIkZqisEKUNoLKkpiSn2dOD7q5zQU01CApTQqlMvEjE-kDUDrZq520P_pdyYNW1wflWgU9pdEYJDRUqam4Y1bQGAYBlhUtKCGbScJ20Xk_Rxqo3tTZD9NDNROcng92o1n1XPGkIwZLAi0nAu2-jCVH1NmiTij0YN-7vjSXnTEqS0Gd_oXdnN1EtpATs0LgUV-9F1RkjWFLCWZGo5R1UGrXprXaDaWyyzxxezhwSE83P2MIYglp__vQf7Id_Zy-_ztnnt9iNgS5uguvG6_81B-kB1N6F4E3z50EKpPa9cVM5te8NNfUG-Q2uJPwB</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434498928</pqid></control><display><type>article</type><title>PCH-2 collaborates with CMT-1 to proofread meiotic homolog interactions</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Giacopazzi, Stefani ; Vong, Daniel ; Devigne, Alice ; Bhalla, Needhi ; Barsh, Gregory S ; Libuda, Diana E</creator><contributor>Libuda, Diana E.</contributor><creatorcontrib>Giacopazzi, Stefani ; Vong, Daniel ; Devigne, Alice ; Bhalla, Needhi ; Barsh, Gregory S ; Libuda, Diana E ; Libuda, Diana E.</creatorcontrib><description>The conserved ATPase, PCH-2/TRIP13, is required during both the spindle checkpoint and meiotic prophase. However, its specific role in regulating meiotic homolog pairing, synapsis and recombination has been enigmatic. Here, we report that this enzyme is required to proofread meiotic homolog interactions. We generated a mutant version of PCH-2 in C. elegans that binds ATP but cannot hydrolyze it: pch-2.sup.E253Q . In vitro, this mutant can bind a known substrate but is unable to remodel it. This mutation results in some non-homologous synapsis and impaired crossover assurance. Surprisingly, worms with a null mutation in PCH-2's adapter protein, CMT-1, the ortholog of p31.sup.comet, localize PCH-2 to meiotic chromosomes, exhibit non-homologous synapsis and lose crossover assurance. The similarity in phenotypes between cmt-1 and pch-2.sup.E253Q mutants suggest that PCH-2 can bind its meiotic substrates in the absence of CMT-1, in contrast to its role during the spindle checkpoint, but requires its adapter to hydrolyze ATP and remodel them.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1008904</identifier><identifier>PMID: 32730253</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Adapter proteins ; Adenosine triphosphatase ; Analysis ; Apoptosis ; ATPases ; Biology and Life Sciences ; Caenorhabditis elegans ; Cell division ; Defects ; Developmental biology ; Gene mutation ; Genetic aspects ; Insects ; Localization ; Meiosis ; Mutants ; Mutation ; Phenotypes ; Prophase ; Recombination ; Research and Analysis Methods ; X chromosomes ; Yeast</subject><ispartof>PLoS genetics, 2020-07, Vol.16 (7), p.e1008904-e1008904</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Giacopazzi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Giacopazzi et al 2020 Giacopazzi et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6184-8d25be2c39da3c06b03c0289342406abcc6af857c7a393892605b044fa0554e53</citedby><cites>FETCH-LOGICAL-c6184-8d25be2c39da3c06b03c0289342406abcc6af857c7a393892605b044fa0554e53</cites><orcidid>0000-0002-6859-0073 ; 0000-0002-7774-0993 ; 0000-0002-1534-6472 ; 0000-0003-1348-5302</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7433886/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7433886/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids></links><search><contributor>Libuda, Diana E.</contributor><creatorcontrib>Giacopazzi, Stefani</creatorcontrib><creatorcontrib>Vong, Daniel</creatorcontrib><creatorcontrib>Devigne, Alice</creatorcontrib><creatorcontrib>Bhalla, Needhi</creatorcontrib><creatorcontrib>Barsh, Gregory S</creatorcontrib><creatorcontrib>Libuda, Diana E</creatorcontrib><title>PCH-2 collaborates with CMT-1 to proofread meiotic homolog interactions</title><title>PLoS genetics</title><description>The conserved ATPase, PCH-2/TRIP13, is required during both the spindle checkpoint and meiotic prophase. However, its specific role in regulating meiotic homolog pairing, synapsis and recombination has been enigmatic. Here, we report that this enzyme is required to proofread meiotic homolog interactions. We generated a mutant version of PCH-2 in C. elegans that binds ATP but cannot hydrolyze it: pch-2.sup.E253Q . In vitro, this mutant can bind a known substrate but is unable to remodel it. This mutation results in some non-homologous synapsis and impaired crossover assurance. Surprisingly, worms with a null mutation in PCH-2's adapter protein, CMT-1, the ortholog of p31.sup.comet, localize PCH-2 to meiotic chromosomes, exhibit non-homologous synapsis and lose crossover assurance. The similarity in phenotypes between cmt-1 and pch-2.sup.E253Q mutants suggest that PCH-2 can bind its meiotic substrates in the absence of CMT-1, in contrast to its role during the spindle checkpoint, but requires its adapter to hydrolyze ATP and remodel them.</description><subject>Adapter proteins</subject><subject>Adenosine triphosphatase</subject><subject>Analysis</subject><subject>Apoptosis</subject><subject>ATPases</subject><subject>Biology and Life Sciences</subject><subject>Caenorhabditis elegans</subject><subject>Cell division</subject><subject>Defects</subject><subject>Developmental biology</subject><subject>Gene mutation</subject><subject>Genetic aspects</subject><subject>Insects</subject><subject>Localization</subject><subject>Meiosis</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Phenotypes</subject><subject>Prophase</subject><subject>Recombination</subject><subject>Research and Analysis Methods</subject><subject>X chromosomes</subject><subject>Yeast</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk22L1DAQx4t4eOfpNxAsCKIvdk2TNA9vhGPRc-H0RE_fhmmadrO0zZqkPnx7s7c9ucq9UAJJmPzmP5lJJsueFGhZEF682rrRD9Atd60ZlgVCQiJ6LzspypIsOEX0_q39cfYwhC1CpBSSP8iOCeYE4ZKcZOcfV-8WONeu66ByHqIJ-Q8bN_nq_dWiyKPLd965xhuo895YF63ON653nWtzO0TjQUfrhvAoO2qgC-bxtJ5mX96-uUraF5fn69XZxUKzQtCFqHFZGayJrIFoxCqUZiwkoZgiBpXWDBpRcs2BSCIkZqisEKUNoLKkpiSn2dOD7q5zQU01CApTQqlMvEjE-kDUDrZq520P_pdyYNW1wflWgU9pdEYJDRUqam4Y1bQGAYBlhUtKCGbScJ20Xk_Rxqo3tTZD9NDNROcng92o1n1XPGkIwZLAi0nAu2-jCVH1NmiTij0YN-7vjSXnTEqS0Gd_oXdnN1EtpATs0LgUV-9F1RkjWFLCWZGo5R1UGrXprXaDaWyyzxxezhwSE83P2MIYglp__vQf7Id_Zy-_ztnnt9iNgS5uguvG6_81B-kB1N6F4E3z50EKpPa9cVM5te8NNfUG-Q2uJPwB</recordid><startdate>20200730</startdate><enddate>20200730</enddate><creator>Giacopazzi, Stefani</creator><creator>Vong, Daniel</creator><creator>Devigne, Alice</creator><creator>Bhalla, Needhi</creator><creator>Barsh, Gregory S</creator><creator>Libuda, Diana E</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6859-0073</orcidid><orcidid>https://orcid.org/0000-0002-7774-0993</orcidid><orcidid>https://orcid.org/0000-0002-1534-6472</orcidid><orcidid>https://orcid.org/0000-0003-1348-5302</orcidid></search><sort><creationdate>20200730</creationdate><title>PCH-2 collaborates with CMT-1 to proofread meiotic homolog interactions</title><author>Giacopazzi, Stefani ; Vong, Daniel ; Devigne, Alice ; Bhalla, Needhi ; Barsh, Gregory S ; Libuda, Diana E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6184-8d25be2c39da3c06b03c0289342406abcc6af857c7a393892605b044fa0554e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adapter proteins</topic><topic>Adenosine triphosphatase</topic><topic>Analysis</topic><topic>Apoptosis</topic><topic>ATPases</topic><topic>Biology and Life Sciences</topic><topic>Caenorhabditis elegans</topic><topic>Cell division</topic><topic>Defects</topic><topic>Developmental biology</topic><topic>Gene mutation</topic><topic>Genetic aspects</topic><topic>Insects</topic><topic>Localization</topic><topic>Meiosis</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Phenotypes</topic><topic>Prophase</topic><topic>Recombination</topic><topic>Research and Analysis Methods</topic><topic>X chromosomes</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giacopazzi, Stefani</creatorcontrib><creatorcontrib>Vong, Daniel</creatorcontrib><creatorcontrib>Devigne, Alice</creatorcontrib><creatorcontrib>Bhalla, Needhi</creatorcontrib><creatorcontrib>Barsh, Gregory S</creatorcontrib><creatorcontrib>Libuda, Diana E</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giacopazzi, Stefani</au><au>Vong, Daniel</au><au>Devigne, Alice</au><au>Bhalla, Needhi</au><au>Barsh, Gregory S</au><au>Libuda, Diana E</au><au>Libuda, Diana E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PCH-2 collaborates with CMT-1 to proofread meiotic homolog interactions</atitle><jtitle>PLoS genetics</jtitle><date>2020-07-30</date><risdate>2020</risdate><volume>16</volume><issue>7</issue><spage>e1008904</spage><epage>e1008904</epage><pages>e1008904-e1008904</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>The conserved ATPase, PCH-2/TRIP13, is required during both the spindle checkpoint and meiotic prophase. However, its specific role in regulating meiotic homolog pairing, synapsis and recombination has been enigmatic. Here, we report that this enzyme is required to proofread meiotic homolog interactions. We generated a mutant version of PCH-2 in C. elegans that binds ATP but cannot hydrolyze it: pch-2.sup.E253Q . In vitro, this mutant can bind a known substrate but is unable to remodel it. This mutation results in some non-homologous synapsis and impaired crossover assurance. Surprisingly, worms with a null mutation in PCH-2's adapter protein, CMT-1, the ortholog of p31.sup.comet, localize PCH-2 to meiotic chromosomes, exhibit non-homologous synapsis and lose crossover assurance. The similarity in phenotypes between cmt-1 and pch-2.sup.E253Q mutants suggest that PCH-2 can bind its meiotic substrates in the absence of CMT-1, in contrast to its role during the spindle checkpoint, but requires its adapter to hydrolyze ATP and remodel them.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>32730253</pmid><doi>10.1371/journal.pgen.1008904</doi><orcidid>https://orcid.org/0000-0002-6859-0073</orcidid><orcidid>https://orcid.org/0000-0002-7774-0993</orcidid><orcidid>https://orcid.org/0000-0002-1534-6472</orcidid><orcidid>https://orcid.org/0000-0003-1348-5302</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2020-07, Vol.16 (7), p.e1008904-e1008904
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_2434498928
source DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adapter proteins
Adenosine triphosphatase
Analysis
Apoptosis
ATPases
Biology and Life Sciences
Caenorhabditis elegans
Cell division
Defects
Developmental biology
Gene mutation
Genetic aspects
Insects
Localization
Meiosis
Mutants
Mutation
Phenotypes
Prophase
Recombination
Research and Analysis Methods
X chromosomes
Yeast
title PCH-2 collaborates with CMT-1 to proofread meiotic homolog interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A25%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PCH-2%20collaborates%20with%20CMT-1%20to%20proofread%20meiotic%20homolog%20interactions&rft.jtitle=PLoS%20genetics&rft.au=Giacopazzi,%20Stefani&rft.date=2020-07-30&rft.volume=16&rft.issue=7&rft.spage=e1008904&rft.epage=e1008904&rft.pages=e1008904-e1008904&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1008904&rft_dat=%3Cgale_plos_%3EA632943761%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434498928&rft_id=info:pmid/32730253&rft_galeid=A632943761&rft_doaj_id=oai_doaj_org_article_8cab01d7e64c4da8aa29b25433269e7c&rfr_iscdi=true