The DEAD-box RNA helicase CshA is required for fatty acid homeostasis in Staphylococcus aureus
Staphylococcus aureus is an opportunistic pathogen that can grow in a wide array of conditions: on abiotic surfaces, on the skin, in the nose, in planktonic or biofilm forms and can cause many type of infections. Consequently, S. aureus must be able to adapt rapidly to these changing growth conditio...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2020-07, Vol.16 (7), p.e1008779-e1008779 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1008779 |
---|---|
container_issue | 7 |
container_start_page | e1008779 |
container_title | PLoS genetics |
container_volume | 16 |
creator | Khemici, Vanessa Prados, Julien Petrignani, Bianca Di Nolfi, Benjamin Bergé, Elodie Manzano, Caroline Giraud, Caroline Linder, Patrick Buchrieser, Carmen Casadesús, Josep |
description | Staphylococcus aureus is an opportunistic pathogen that can grow in a wide array of conditions: on abiotic surfaces, on the skin, in the nose, in planktonic or biofilm forms and can cause many type of infections. Consequently, S. aureus must be able to adapt rapidly to these changing growth conditions, an ability largely driven at the posttranscriptional level. RNA helicases of the DEAD-box family play an important part in this process. In particular, CshA, which is part of the degradosome, is required for the rapid turnover of certain mRNAs and its deletion results in cold-sensitivity. To understand the molecular basis of this phenotype, we conducted a large genetic screen isolating 82 independent suppressors of cold growth. Full genome sequencing revealed the fatty acid synthesis pathway affected in many suppressor strains. Consistent with that result, sublethal doses of triclosan, a FASII inhibitor, can partially restore growth of a cshA mutant in the cold. Overexpression of the genes involved in branched-chain fatty acid synthesis was also able to suppress the cold-sensitivity. Using gas chromatography analysis of fatty acids, we observed an imbalance of straight and branched-chain fatty acids in the cshA mutant, compared to the wild-type. This imbalance is compensated in the suppressor strains. Thus, we reveal for the first time that the cold sensitive growth phenotype of a DEAD-box mutant can be explained, at least partially, by an improper membrane composition. The defect correlates with an accumulation of the pyruvate dehydrogenase complex mRNA, which is inefficiently degraded in absence of CshA. We propose that the resulting accumulation of acetyl-CoA fuels straight-chained fatty acid production at the expense of the branched ones. Strikingly, addition of acetate into the medium mimics the cshA deletion phenotype, resulting in cold sensitivity suppressed by the mutations found in our genetic screen or by sublethal doses of triclosan. |
doi_str_mv | 10.1371/journal.pgen.1008779 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2434498826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632943762</galeid><doaj_id>oai_doaj_org_article_5641d689bd9041d4a7137e438e906ea1</doaj_id><sourcerecordid>A632943762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6189-943cb8f022c85d9c8ea9f60192980d39fa24d39b66fbd585c4bf0f43b9590e7b3</originalsourceid><addsrcrecordid>eNqVk1Fv0zAQxyMEYmPwDZCwhITgocWxncR-mRR1AypNm7QNHrEc59y4SuPOTtD67XFpQAvaA8gPdzr_7n--sy5JXqd4ntIi_bh2g-9UO9-uoJunGPOiEE-S4zTL6KxgmD194B8lL0JYY0wzLornyRElBcWE8ePk-20D6Oy8PJtV7h5dX5aogdZqFQAtQlMiG5CHu8F6qJFxHhnV9zuktK1R4zbgQq9CZGyHbnq1bXat007rISA1eBjCy-SZUW2AV6M9Sb5-Or9dfJldXH1eLsqLmc5TLmaCUV1xgwnRPKuF5qCEyXEqiOC4psIowqKp8txUdcYzzSqDDaOVyASGoqInyZuD7rZ1QY6jCZIwypjgnOSRWB6I2qm13Hq7UX4nnbLyV8D5lVS-t7oFmeUsrXMuqlrg6DFVxIEDoxwEzkGlUet0rDZUG6g1dL1X7UR0etPZRq7cD1lQQQjZC7wfBby7GyD0cmODhrZVHbhh_24iCk4J5RF9-xf6eHcjtVKxAdsZF-vqvagsc0rifIucRGr-CBVPDRurXQfGxvgk4cMkITI93PcrNYQglzfX_8Fe_jt79W3KvnvANqDavgmuHXrrujAF2QHU3oXgwfz5kBTL_cr8npzcr4wcV4b-BNd8BFw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434498826</pqid></control><display><type>article</type><title>The DEAD-box RNA helicase CshA is required for fatty acid homeostasis in Staphylococcus aureus</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><creator>Khemici, Vanessa ; Prados, Julien ; Petrignani, Bianca ; Di Nolfi, Benjamin ; Bergé, Elodie ; Manzano, Caroline ; Giraud, Caroline ; Linder, Patrick ; Buchrieser, Carmen ; Casadesús, Josep</creator><contributor>Buchrieser, Carmen</contributor><creatorcontrib>Khemici, Vanessa ; Prados, Julien ; Petrignani, Bianca ; Di Nolfi, Benjamin ; Bergé, Elodie ; Manzano, Caroline ; Giraud, Caroline ; Linder, Patrick ; Buchrieser, Carmen ; Casadesús, Josep ; Buchrieser, Carmen</creatorcontrib><description>Staphylococcus aureus is an opportunistic pathogen that can grow in a wide array of conditions: on abiotic surfaces, on the skin, in the nose, in planktonic or biofilm forms and can cause many type of infections. Consequently, S. aureus must be able to adapt rapidly to these changing growth conditions, an ability largely driven at the posttranscriptional level. RNA helicases of the DEAD-box family play an important part in this process. In particular, CshA, which is part of the degradosome, is required for the rapid turnover of certain mRNAs and its deletion results in cold-sensitivity. To understand the molecular basis of this phenotype, we conducted a large genetic screen isolating 82 independent suppressors of cold growth. Full genome sequencing revealed the fatty acid synthesis pathway affected in many suppressor strains. Consistent with that result, sublethal doses of triclosan, a FASII inhibitor, can partially restore growth of a cshA mutant in the cold. Overexpression of the genes involved in branched-chain fatty acid synthesis was also able to suppress the cold-sensitivity. Using gas chromatography analysis of fatty acids, we observed an imbalance of straight and branched-chain fatty acids in the cshA mutant, compared to the wild-type. This imbalance is compensated in the suppressor strains. Thus, we reveal for the first time that the cold sensitive growth phenotype of a DEAD-box mutant can be explained, at least partially, by an improper membrane composition. The defect correlates with an accumulation of the pyruvate dehydrogenase complex mRNA, which is inefficiently degraded in absence of CshA. We propose that the resulting accumulation of acetyl-CoA fuels straight-chained fatty acid production at the expense of the branched ones. Strikingly, addition of acetate into the medium mimics the cshA deletion phenotype, resulting in cold sensitivity suppressed by the mutations found in our genetic screen or by sublethal doses of triclosan.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1008779</identifier><identifier>PMID: 32730248</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Acetic acid ; Acid production ; Analysis ; Bacteria ; Biofilms ; Biology and Life Sciences ; Biosynthesis ; Cold ; Defects ; Dehydrogenases ; DNA helicase ; Fatty acids ; Gas chromatography ; Gene deletion ; Gene expression ; Genetic aspects ; Genetic screening ; Genomes ; Genotype & phenotype ; Glycerol ; Gram-positive bacteria ; Growth conditions ; Helicases ; Homeostasis ; Kinases ; Medicine ; Medicine and Health Sciences ; Membrane composition ; Metabolism ; Methods ; mRNA ; Mutants ; Mutation ; Opportunist infection ; Phenotypes ; Post-transcription ; Proteins ; Pyruvate dehydrogenase (lipoamide) ; Pyruvic acid ; Research and analysis methods ; RNA helicase ; Software ; Staphylococcus aureus ; Triclosan</subject><ispartof>PLoS genetics, 2020-07, Vol.16 (7), p.e1008779-e1008779</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Khemici et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Khemici et al 2020 Khemici et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6189-943cb8f022c85d9c8ea9f60192980d39fa24d39b66fbd585c4bf0f43b9590e7b3</citedby><cites>FETCH-LOGICAL-c6189-943cb8f022c85d9c8ea9f60192980d39fa24d39b66fbd585c4bf0f43b9590e7b3</cites><orcidid>0000-0002-8294-3218 ; 0000-0002-5308-9569 ; 0000-0002-8546-241X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392221/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392221/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2932,23875,27933,27934,53800,53802</link.rule.ids></links><search><contributor>Buchrieser, Carmen</contributor><creatorcontrib>Khemici, Vanessa</creatorcontrib><creatorcontrib>Prados, Julien</creatorcontrib><creatorcontrib>Petrignani, Bianca</creatorcontrib><creatorcontrib>Di Nolfi, Benjamin</creatorcontrib><creatorcontrib>Bergé, Elodie</creatorcontrib><creatorcontrib>Manzano, Caroline</creatorcontrib><creatorcontrib>Giraud, Caroline</creatorcontrib><creatorcontrib>Linder, Patrick</creatorcontrib><creatorcontrib>Buchrieser, Carmen</creatorcontrib><creatorcontrib>Casadesús, Josep</creatorcontrib><title>The DEAD-box RNA helicase CshA is required for fatty acid homeostasis in Staphylococcus aureus</title><title>PLoS genetics</title><description>Staphylococcus aureus is an opportunistic pathogen that can grow in a wide array of conditions: on abiotic surfaces, on the skin, in the nose, in planktonic or biofilm forms and can cause many type of infections. Consequently, S. aureus must be able to adapt rapidly to these changing growth conditions, an ability largely driven at the posttranscriptional level. RNA helicases of the DEAD-box family play an important part in this process. In particular, CshA, which is part of the degradosome, is required for the rapid turnover of certain mRNAs and its deletion results in cold-sensitivity. To understand the molecular basis of this phenotype, we conducted a large genetic screen isolating 82 independent suppressors of cold growth. Full genome sequencing revealed the fatty acid synthesis pathway affected in many suppressor strains. Consistent with that result, sublethal doses of triclosan, a FASII inhibitor, can partially restore growth of a cshA mutant in the cold. Overexpression of the genes involved in branched-chain fatty acid synthesis was also able to suppress the cold-sensitivity. Using gas chromatography analysis of fatty acids, we observed an imbalance of straight and branched-chain fatty acids in the cshA mutant, compared to the wild-type. This imbalance is compensated in the suppressor strains. Thus, we reveal for the first time that the cold sensitive growth phenotype of a DEAD-box mutant can be explained, at least partially, by an improper membrane composition. The defect correlates with an accumulation of the pyruvate dehydrogenase complex mRNA, which is inefficiently degraded in absence of CshA. We propose that the resulting accumulation of acetyl-CoA fuels straight-chained fatty acid production at the expense of the branched ones. Strikingly, addition of acetate into the medium mimics the cshA deletion phenotype, resulting in cold sensitivity suppressed by the mutations found in our genetic screen or by sublethal doses of triclosan.</description><subject>Acetic acid</subject><subject>Acid production</subject><subject>Analysis</subject><subject>Bacteria</subject><subject>Biofilms</subject><subject>Biology and Life Sciences</subject><subject>Biosynthesis</subject><subject>Cold</subject><subject>Defects</subject><subject>Dehydrogenases</subject><subject>DNA helicase</subject><subject>Fatty acids</subject><subject>Gas chromatography</subject><subject>Gene deletion</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Genetic screening</subject><subject>Genomes</subject><subject>Genotype & phenotype</subject><subject>Glycerol</subject><subject>Gram-positive bacteria</subject><subject>Growth conditions</subject><subject>Helicases</subject><subject>Homeostasis</subject><subject>Kinases</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Membrane composition</subject><subject>Metabolism</subject><subject>Methods</subject><subject>mRNA</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Opportunist infection</subject><subject>Phenotypes</subject><subject>Post-transcription</subject><subject>Proteins</subject><subject>Pyruvate dehydrogenase (lipoamide)</subject><subject>Pyruvic acid</subject><subject>Research and analysis methods</subject><subject>RNA helicase</subject><subject>Software</subject><subject>Staphylococcus aureus</subject><subject>Triclosan</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk1Fv0zAQxyMEYmPwDZCwhITgocWxncR-mRR1AypNm7QNHrEc59y4SuPOTtD67XFpQAvaA8gPdzr_7n--sy5JXqd4ntIi_bh2g-9UO9-uoJunGPOiEE-S4zTL6KxgmD194B8lL0JYY0wzLornyRElBcWE8ePk-20D6Oy8PJtV7h5dX5aogdZqFQAtQlMiG5CHu8F6qJFxHhnV9zuktK1R4zbgQq9CZGyHbnq1bXat007rISA1eBjCy-SZUW2AV6M9Sb5-Or9dfJldXH1eLsqLmc5TLmaCUV1xgwnRPKuF5qCEyXEqiOC4psIowqKp8txUdcYzzSqDDaOVyASGoqInyZuD7rZ1QY6jCZIwypjgnOSRWB6I2qm13Hq7UX4nnbLyV8D5lVS-t7oFmeUsrXMuqlrg6DFVxIEDoxwEzkGlUet0rDZUG6g1dL1X7UR0etPZRq7cD1lQQQjZC7wfBby7GyD0cmODhrZVHbhh_24iCk4J5RF9-xf6eHcjtVKxAdsZF-vqvagsc0rifIucRGr-CBVPDRurXQfGxvgk4cMkITI93PcrNYQglzfX_8Fe_jt79W3KvnvANqDavgmuHXrrujAF2QHU3oXgwfz5kBTL_cr8npzcr4wcV4b-BNd8BFw</recordid><startdate>20200730</startdate><enddate>20200730</enddate><creator>Khemici, Vanessa</creator><creator>Prados, Julien</creator><creator>Petrignani, Bianca</creator><creator>Di Nolfi, Benjamin</creator><creator>Bergé, Elodie</creator><creator>Manzano, Caroline</creator><creator>Giraud, Caroline</creator><creator>Linder, Patrick</creator><creator>Buchrieser, Carmen</creator><creator>Casadesús, Josep</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8294-3218</orcidid><orcidid>https://orcid.org/0000-0002-5308-9569</orcidid><orcidid>https://orcid.org/0000-0002-8546-241X</orcidid></search><sort><creationdate>20200730</creationdate><title>The DEAD-box RNA helicase CshA is required for fatty acid homeostasis in Staphylococcus aureus</title><author>Khemici, Vanessa ; Prados, Julien ; Petrignani, Bianca ; Di Nolfi, Benjamin ; Bergé, Elodie ; Manzano, Caroline ; Giraud, Caroline ; Linder, Patrick ; Buchrieser, Carmen ; Casadesús, Josep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6189-943cb8f022c85d9c8ea9f60192980d39fa24d39b66fbd585c4bf0f43b9590e7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetic acid</topic><topic>Acid production</topic><topic>Analysis</topic><topic>Bacteria</topic><topic>Biofilms</topic><topic>Biology and Life Sciences</topic><topic>Biosynthesis</topic><topic>Cold</topic><topic>Defects</topic><topic>Dehydrogenases</topic><topic>DNA helicase</topic><topic>Fatty acids</topic><topic>Gas chromatography</topic><topic>Gene deletion</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Genetic screening</topic><topic>Genomes</topic><topic>Genotype & phenotype</topic><topic>Glycerol</topic><topic>Gram-positive bacteria</topic><topic>Growth conditions</topic><topic>Helicases</topic><topic>Homeostasis</topic><topic>Kinases</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Membrane composition</topic><topic>Metabolism</topic><topic>Methods</topic><topic>mRNA</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Opportunist infection</topic><topic>Phenotypes</topic><topic>Post-transcription</topic><topic>Proteins</topic><topic>Pyruvate dehydrogenase (lipoamide)</topic><topic>Pyruvic acid</topic><topic>Research and analysis methods</topic><topic>RNA helicase</topic><topic>Software</topic><topic>Staphylococcus aureus</topic><topic>Triclosan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khemici, Vanessa</creatorcontrib><creatorcontrib>Prados, Julien</creatorcontrib><creatorcontrib>Petrignani, Bianca</creatorcontrib><creatorcontrib>Di Nolfi, Benjamin</creatorcontrib><creatorcontrib>Bergé, Elodie</creatorcontrib><creatorcontrib>Manzano, Caroline</creatorcontrib><creatorcontrib>Giraud, Caroline</creatorcontrib><creatorcontrib>Linder, Patrick</creatorcontrib><creatorcontrib>Buchrieser, Carmen</creatorcontrib><creatorcontrib>Casadesús, Josep</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khemici, Vanessa</au><au>Prados, Julien</au><au>Petrignani, Bianca</au><au>Di Nolfi, Benjamin</au><au>Bergé, Elodie</au><au>Manzano, Caroline</au><au>Giraud, Caroline</au><au>Linder, Patrick</au><au>Buchrieser, Carmen</au><au>Casadesús, Josep</au><au>Buchrieser, Carmen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The DEAD-box RNA helicase CshA is required for fatty acid homeostasis in Staphylococcus aureus</atitle><jtitle>PLoS genetics</jtitle><date>2020-07-30</date><risdate>2020</risdate><volume>16</volume><issue>7</issue><spage>e1008779</spage><epage>e1008779</epage><pages>e1008779-e1008779</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Staphylococcus aureus is an opportunistic pathogen that can grow in a wide array of conditions: on abiotic surfaces, on the skin, in the nose, in planktonic or biofilm forms and can cause many type of infections. Consequently, S. aureus must be able to adapt rapidly to these changing growth conditions, an ability largely driven at the posttranscriptional level. RNA helicases of the DEAD-box family play an important part in this process. In particular, CshA, which is part of the degradosome, is required for the rapid turnover of certain mRNAs and its deletion results in cold-sensitivity. To understand the molecular basis of this phenotype, we conducted a large genetic screen isolating 82 independent suppressors of cold growth. Full genome sequencing revealed the fatty acid synthesis pathway affected in many suppressor strains. Consistent with that result, sublethal doses of triclosan, a FASII inhibitor, can partially restore growth of a cshA mutant in the cold. Overexpression of the genes involved in branched-chain fatty acid synthesis was also able to suppress the cold-sensitivity. Using gas chromatography analysis of fatty acids, we observed an imbalance of straight and branched-chain fatty acids in the cshA mutant, compared to the wild-type. This imbalance is compensated in the suppressor strains. Thus, we reveal for the first time that the cold sensitive growth phenotype of a DEAD-box mutant can be explained, at least partially, by an improper membrane composition. The defect correlates with an accumulation of the pyruvate dehydrogenase complex mRNA, which is inefficiently degraded in absence of CshA. We propose that the resulting accumulation of acetyl-CoA fuels straight-chained fatty acid production at the expense of the branched ones. Strikingly, addition of acetate into the medium mimics the cshA deletion phenotype, resulting in cold sensitivity suppressed by the mutations found in our genetic screen or by sublethal doses of triclosan.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>32730248</pmid><doi>10.1371/journal.pgen.1008779</doi><orcidid>https://orcid.org/0000-0002-8294-3218</orcidid><orcidid>https://orcid.org/0000-0002-5308-9569</orcidid><orcidid>https://orcid.org/0000-0002-8546-241X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2020-07, Vol.16 (7), p.e1008779-e1008779 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_2434498826 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central |
subjects | Acetic acid Acid production Analysis Bacteria Biofilms Biology and Life Sciences Biosynthesis Cold Defects Dehydrogenases DNA helicase Fatty acids Gas chromatography Gene deletion Gene expression Genetic aspects Genetic screening Genomes Genotype & phenotype Glycerol Gram-positive bacteria Growth conditions Helicases Homeostasis Kinases Medicine Medicine and Health Sciences Membrane composition Metabolism Methods mRNA Mutants Mutation Opportunist infection Phenotypes Post-transcription Proteins Pyruvate dehydrogenase (lipoamide) Pyruvic acid Research and analysis methods RNA helicase Software Staphylococcus aureus Triclosan |
title | The DEAD-box RNA helicase CshA is required for fatty acid homeostasis in Staphylococcus aureus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T21%3A08%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20DEAD-box%20RNA%20helicase%20CshA%20is%20required%20for%20fatty%20acid%20homeostasis%20in%20Staphylococcus%20aureus&rft.jtitle=PLoS%20genetics&rft.au=Khemici,%20Vanessa&rft.date=2020-07-30&rft.volume=16&rft.issue=7&rft.spage=e1008779&rft.epage=e1008779&rft.pages=e1008779-e1008779&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1008779&rft_dat=%3Cgale_plos_%3EA632943762%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434498826&rft_id=info:pmid/32730248&rft_galeid=A632943762&rft_doaj_id=oai_doaj_org_article_5641d689bd9041d4a7137e438e906ea1&rfr_iscdi=true |