The DEAD-box RNA helicase CshA is required for fatty acid homeostasis in Staphylococcus aureus

Staphylococcus aureus is an opportunistic pathogen that can grow in a wide array of conditions: on abiotic surfaces, on the skin, in the nose, in planktonic or biofilm forms and can cause many type of infections. Consequently, S. aureus must be able to adapt rapidly to these changing growth conditio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2020-07, Vol.16 (7), p.e1008779-e1008779
Hauptverfasser: Khemici, Vanessa, Prados, Julien, Petrignani, Bianca, Di Nolfi, Benjamin, Bergé, Elodie, Manzano, Caroline, Giraud, Caroline, Linder, Patrick, Buchrieser, Carmen, Casadesús, Josep
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1008779
container_issue 7
container_start_page e1008779
container_title PLoS genetics
container_volume 16
creator Khemici, Vanessa
Prados, Julien
Petrignani, Bianca
Di Nolfi, Benjamin
Bergé, Elodie
Manzano, Caroline
Giraud, Caroline
Linder, Patrick
Buchrieser, Carmen
Casadesús, Josep
description Staphylococcus aureus is an opportunistic pathogen that can grow in a wide array of conditions: on abiotic surfaces, on the skin, in the nose, in planktonic or biofilm forms and can cause many type of infections. Consequently, S. aureus must be able to adapt rapidly to these changing growth conditions, an ability largely driven at the posttranscriptional level. RNA helicases of the DEAD-box family play an important part in this process. In particular, CshA, which is part of the degradosome, is required for the rapid turnover of certain mRNAs and its deletion results in cold-sensitivity. To understand the molecular basis of this phenotype, we conducted a large genetic screen isolating 82 independent suppressors of cold growth. Full genome sequencing revealed the fatty acid synthesis pathway affected in many suppressor strains. Consistent with that result, sublethal doses of triclosan, a FASII inhibitor, can partially restore growth of a cshA mutant in the cold. Overexpression of the genes involved in branched-chain fatty acid synthesis was also able to suppress the cold-sensitivity. Using gas chromatography analysis of fatty acids, we observed an imbalance of straight and branched-chain fatty acids in the cshA mutant, compared to the wild-type. This imbalance is compensated in the suppressor strains. Thus, we reveal for the first time that the cold sensitive growth phenotype of a DEAD-box mutant can be explained, at least partially, by an improper membrane composition. The defect correlates with an accumulation of the pyruvate dehydrogenase complex mRNA, which is inefficiently degraded in absence of CshA. We propose that the resulting accumulation of acetyl-CoA fuels straight-chained fatty acid production at the expense of the branched ones. Strikingly, addition of acetate into the medium mimics the cshA deletion phenotype, resulting in cold sensitivity suppressed by the mutations found in our genetic screen or by sublethal doses of triclosan.
doi_str_mv 10.1371/journal.pgen.1008779
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2434498826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632943762</galeid><doaj_id>oai_doaj_org_article_5641d689bd9041d4a7137e438e906ea1</doaj_id><sourcerecordid>A632943762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6189-943cb8f022c85d9c8ea9f60192980d39fa24d39b66fbd585c4bf0f43b9590e7b3</originalsourceid><addsrcrecordid>eNqVk1Fv0zAQxyMEYmPwDZCwhITgocWxncR-mRR1AypNm7QNHrEc59y4SuPOTtD67XFpQAvaA8gPdzr_7n--sy5JXqd4ntIi_bh2g-9UO9-uoJunGPOiEE-S4zTL6KxgmD194B8lL0JYY0wzLornyRElBcWE8ePk-20D6Oy8PJtV7h5dX5aogdZqFQAtQlMiG5CHu8F6qJFxHhnV9zuktK1R4zbgQq9CZGyHbnq1bXat007rISA1eBjCy-SZUW2AV6M9Sb5-Or9dfJldXH1eLsqLmc5TLmaCUV1xgwnRPKuF5qCEyXEqiOC4psIowqKp8txUdcYzzSqDDaOVyASGoqInyZuD7rZ1QY6jCZIwypjgnOSRWB6I2qm13Hq7UX4nnbLyV8D5lVS-t7oFmeUsrXMuqlrg6DFVxIEDoxwEzkGlUet0rDZUG6g1dL1X7UR0etPZRq7cD1lQQQjZC7wfBby7GyD0cmODhrZVHbhh_24iCk4J5RF9-xf6eHcjtVKxAdsZF-vqvagsc0rifIucRGr-CBVPDRurXQfGxvgk4cMkITI93PcrNYQglzfX_8Fe_jt79W3KvnvANqDavgmuHXrrujAF2QHU3oXgwfz5kBTL_cr8npzcr4wcV4b-BNd8BFw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434498826</pqid></control><display><type>article</type><title>The DEAD-box RNA helicase CshA is required for fatty acid homeostasis in Staphylococcus aureus</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><creator>Khemici, Vanessa ; Prados, Julien ; Petrignani, Bianca ; Di Nolfi, Benjamin ; Bergé, Elodie ; Manzano, Caroline ; Giraud, Caroline ; Linder, Patrick ; Buchrieser, Carmen ; Casadesús, Josep</creator><contributor>Buchrieser, Carmen</contributor><creatorcontrib>Khemici, Vanessa ; Prados, Julien ; Petrignani, Bianca ; Di Nolfi, Benjamin ; Bergé, Elodie ; Manzano, Caroline ; Giraud, Caroline ; Linder, Patrick ; Buchrieser, Carmen ; Casadesús, Josep ; Buchrieser, Carmen</creatorcontrib><description>Staphylococcus aureus is an opportunistic pathogen that can grow in a wide array of conditions: on abiotic surfaces, on the skin, in the nose, in planktonic or biofilm forms and can cause many type of infections. Consequently, S. aureus must be able to adapt rapidly to these changing growth conditions, an ability largely driven at the posttranscriptional level. RNA helicases of the DEAD-box family play an important part in this process. In particular, CshA, which is part of the degradosome, is required for the rapid turnover of certain mRNAs and its deletion results in cold-sensitivity. To understand the molecular basis of this phenotype, we conducted a large genetic screen isolating 82 independent suppressors of cold growth. Full genome sequencing revealed the fatty acid synthesis pathway affected in many suppressor strains. Consistent with that result, sublethal doses of triclosan, a FASII inhibitor, can partially restore growth of a cshA mutant in the cold. Overexpression of the genes involved in branched-chain fatty acid synthesis was also able to suppress the cold-sensitivity. Using gas chromatography analysis of fatty acids, we observed an imbalance of straight and branched-chain fatty acids in the cshA mutant, compared to the wild-type. This imbalance is compensated in the suppressor strains. Thus, we reveal for the first time that the cold sensitive growth phenotype of a DEAD-box mutant can be explained, at least partially, by an improper membrane composition. The defect correlates with an accumulation of the pyruvate dehydrogenase complex mRNA, which is inefficiently degraded in absence of CshA. We propose that the resulting accumulation of acetyl-CoA fuels straight-chained fatty acid production at the expense of the branched ones. Strikingly, addition of acetate into the medium mimics the cshA deletion phenotype, resulting in cold sensitivity suppressed by the mutations found in our genetic screen or by sublethal doses of triclosan.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1008779</identifier><identifier>PMID: 32730248</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Acetic acid ; Acid production ; Analysis ; Bacteria ; Biofilms ; Biology and Life Sciences ; Biosynthesis ; Cold ; Defects ; Dehydrogenases ; DNA helicase ; Fatty acids ; Gas chromatography ; Gene deletion ; Gene expression ; Genetic aspects ; Genetic screening ; Genomes ; Genotype &amp; phenotype ; Glycerol ; Gram-positive bacteria ; Growth conditions ; Helicases ; Homeostasis ; Kinases ; Medicine ; Medicine and Health Sciences ; Membrane composition ; Metabolism ; Methods ; mRNA ; Mutants ; Mutation ; Opportunist infection ; Phenotypes ; Post-transcription ; Proteins ; Pyruvate dehydrogenase (lipoamide) ; Pyruvic acid ; Research and analysis methods ; RNA helicase ; Software ; Staphylococcus aureus ; Triclosan</subject><ispartof>PLoS genetics, 2020-07, Vol.16 (7), p.e1008779-e1008779</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Khemici et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Khemici et al 2020 Khemici et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6189-943cb8f022c85d9c8ea9f60192980d39fa24d39b66fbd585c4bf0f43b9590e7b3</citedby><cites>FETCH-LOGICAL-c6189-943cb8f022c85d9c8ea9f60192980d39fa24d39b66fbd585c4bf0f43b9590e7b3</cites><orcidid>0000-0002-8294-3218 ; 0000-0002-5308-9569 ; 0000-0002-8546-241X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392221/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392221/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2932,23875,27933,27934,53800,53802</link.rule.ids></links><search><contributor>Buchrieser, Carmen</contributor><creatorcontrib>Khemici, Vanessa</creatorcontrib><creatorcontrib>Prados, Julien</creatorcontrib><creatorcontrib>Petrignani, Bianca</creatorcontrib><creatorcontrib>Di Nolfi, Benjamin</creatorcontrib><creatorcontrib>Bergé, Elodie</creatorcontrib><creatorcontrib>Manzano, Caroline</creatorcontrib><creatorcontrib>Giraud, Caroline</creatorcontrib><creatorcontrib>Linder, Patrick</creatorcontrib><creatorcontrib>Buchrieser, Carmen</creatorcontrib><creatorcontrib>Casadesús, Josep</creatorcontrib><title>The DEAD-box RNA helicase CshA is required for fatty acid homeostasis in Staphylococcus aureus</title><title>PLoS genetics</title><description>Staphylococcus aureus is an opportunistic pathogen that can grow in a wide array of conditions: on abiotic surfaces, on the skin, in the nose, in planktonic or biofilm forms and can cause many type of infections. Consequently, S. aureus must be able to adapt rapidly to these changing growth conditions, an ability largely driven at the posttranscriptional level. RNA helicases of the DEAD-box family play an important part in this process. In particular, CshA, which is part of the degradosome, is required for the rapid turnover of certain mRNAs and its deletion results in cold-sensitivity. To understand the molecular basis of this phenotype, we conducted a large genetic screen isolating 82 independent suppressors of cold growth. Full genome sequencing revealed the fatty acid synthesis pathway affected in many suppressor strains. Consistent with that result, sublethal doses of triclosan, a FASII inhibitor, can partially restore growth of a cshA mutant in the cold. Overexpression of the genes involved in branched-chain fatty acid synthesis was also able to suppress the cold-sensitivity. Using gas chromatography analysis of fatty acids, we observed an imbalance of straight and branched-chain fatty acids in the cshA mutant, compared to the wild-type. This imbalance is compensated in the suppressor strains. Thus, we reveal for the first time that the cold sensitive growth phenotype of a DEAD-box mutant can be explained, at least partially, by an improper membrane composition. The defect correlates with an accumulation of the pyruvate dehydrogenase complex mRNA, which is inefficiently degraded in absence of CshA. We propose that the resulting accumulation of acetyl-CoA fuels straight-chained fatty acid production at the expense of the branched ones. Strikingly, addition of acetate into the medium mimics the cshA deletion phenotype, resulting in cold sensitivity suppressed by the mutations found in our genetic screen or by sublethal doses of triclosan.</description><subject>Acetic acid</subject><subject>Acid production</subject><subject>Analysis</subject><subject>Bacteria</subject><subject>Biofilms</subject><subject>Biology and Life Sciences</subject><subject>Biosynthesis</subject><subject>Cold</subject><subject>Defects</subject><subject>Dehydrogenases</subject><subject>DNA helicase</subject><subject>Fatty acids</subject><subject>Gas chromatography</subject><subject>Gene deletion</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Genetic screening</subject><subject>Genomes</subject><subject>Genotype &amp; phenotype</subject><subject>Glycerol</subject><subject>Gram-positive bacteria</subject><subject>Growth conditions</subject><subject>Helicases</subject><subject>Homeostasis</subject><subject>Kinases</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Membrane composition</subject><subject>Metabolism</subject><subject>Methods</subject><subject>mRNA</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Opportunist infection</subject><subject>Phenotypes</subject><subject>Post-transcription</subject><subject>Proteins</subject><subject>Pyruvate dehydrogenase (lipoamide)</subject><subject>Pyruvic acid</subject><subject>Research and analysis methods</subject><subject>RNA helicase</subject><subject>Software</subject><subject>Staphylococcus aureus</subject><subject>Triclosan</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk1Fv0zAQxyMEYmPwDZCwhITgocWxncR-mRR1AypNm7QNHrEc59y4SuPOTtD67XFpQAvaA8gPdzr_7n--sy5JXqd4ntIi_bh2g-9UO9-uoJunGPOiEE-S4zTL6KxgmD194B8lL0JYY0wzLornyRElBcWE8ePk-20D6Oy8PJtV7h5dX5aogdZqFQAtQlMiG5CHu8F6qJFxHhnV9zuktK1R4zbgQq9CZGyHbnq1bXat007rISA1eBjCy-SZUW2AV6M9Sb5-Or9dfJldXH1eLsqLmc5TLmaCUV1xgwnRPKuF5qCEyXEqiOC4psIowqKp8txUdcYzzSqDDaOVyASGoqInyZuD7rZ1QY6jCZIwypjgnOSRWB6I2qm13Hq7UX4nnbLyV8D5lVS-t7oFmeUsrXMuqlrg6DFVxIEDoxwEzkGlUet0rDZUG6g1dL1X7UR0etPZRq7cD1lQQQjZC7wfBby7GyD0cmODhrZVHbhh_24iCk4J5RF9-xf6eHcjtVKxAdsZF-vqvagsc0rifIucRGr-CBVPDRurXQfGxvgk4cMkITI93PcrNYQglzfX_8Fe_jt79W3KvnvANqDavgmuHXrrujAF2QHU3oXgwfz5kBTL_cr8npzcr4wcV4b-BNd8BFw</recordid><startdate>20200730</startdate><enddate>20200730</enddate><creator>Khemici, Vanessa</creator><creator>Prados, Julien</creator><creator>Petrignani, Bianca</creator><creator>Di Nolfi, Benjamin</creator><creator>Bergé, Elodie</creator><creator>Manzano, Caroline</creator><creator>Giraud, Caroline</creator><creator>Linder, Patrick</creator><creator>Buchrieser, Carmen</creator><creator>Casadesús, Josep</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8294-3218</orcidid><orcidid>https://orcid.org/0000-0002-5308-9569</orcidid><orcidid>https://orcid.org/0000-0002-8546-241X</orcidid></search><sort><creationdate>20200730</creationdate><title>The DEAD-box RNA helicase CshA is required for fatty acid homeostasis in Staphylococcus aureus</title><author>Khemici, Vanessa ; Prados, Julien ; Petrignani, Bianca ; Di Nolfi, Benjamin ; Bergé, Elodie ; Manzano, Caroline ; Giraud, Caroline ; Linder, Patrick ; Buchrieser, Carmen ; Casadesús, Josep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6189-943cb8f022c85d9c8ea9f60192980d39fa24d39b66fbd585c4bf0f43b9590e7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetic acid</topic><topic>Acid production</topic><topic>Analysis</topic><topic>Bacteria</topic><topic>Biofilms</topic><topic>Biology and Life Sciences</topic><topic>Biosynthesis</topic><topic>Cold</topic><topic>Defects</topic><topic>Dehydrogenases</topic><topic>DNA helicase</topic><topic>Fatty acids</topic><topic>Gas chromatography</topic><topic>Gene deletion</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Genetic screening</topic><topic>Genomes</topic><topic>Genotype &amp; phenotype</topic><topic>Glycerol</topic><topic>Gram-positive bacteria</topic><topic>Growth conditions</topic><topic>Helicases</topic><topic>Homeostasis</topic><topic>Kinases</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Membrane composition</topic><topic>Metabolism</topic><topic>Methods</topic><topic>mRNA</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Opportunist infection</topic><topic>Phenotypes</topic><topic>Post-transcription</topic><topic>Proteins</topic><topic>Pyruvate dehydrogenase (lipoamide)</topic><topic>Pyruvic acid</topic><topic>Research and analysis methods</topic><topic>RNA helicase</topic><topic>Software</topic><topic>Staphylococcus aureus</topic><topic>Triclosan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khemici, Vanessa</creatorcontrib><creatorcontrib>Prados, Julien</creatorcontrib><creatorcontrib>Petrignani, Bianca</creatorcontrib><creatorcontrib>Di Nolfi, Benjamin</creatorcontrib><creatorcontrib>Bergé, Elodie</creatorcontrib><creatorcontrib>Manzano, Caroline</creatorcontrib><creatorcontrib>Giraud, Caroline</creatorcontrib><creatorcontrib>Linder, Patrick</creatorcontrib><creatorcontrib>Buchrieser, Carmen</creatorcontrib><creatorcontrib>Casadesús, Josep</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khemici, Vanessa</au><au>Prados, Julien</au><au>Petrignani, Bianca</au><au>Di Nolfi, Benjamin</au><au>Bergé, Elodie</au><au>Manzano, Caroline</au><au>Giraud, Caroline</au><au>Linder, Patrick</au><au>Buchrieser, Carmen</au><au>Casadesús, Josep</au><au>Buchrieser, Carmen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The DEAD-box RNA helicase CshA is required for fatty acid homeostasis in Staphylococcus aureus</atitle><jtitle>PLoS genetics</jtitle><date>2020-07-30</date><risdate>2020</risdate><volume>16</volume><issue>7</issue><spage>e1008779</spage><epage>e1008779</epage><pages>e1008779-e1008779</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Staphylococcus aureus is an opportunistic pathogen that can grow in a wide array of conditions: on abiotic surfaces, on the skin, in the nose, in planktonic or biofilm forms and can cause many type of infections. Consequently, S. aureus must be able to adapt rapidly to these changing growth conditions, an ability largely driven at the posttranscriptional level. RNA helicases of the DEAD-box family play an important part in this process. In particular, CshA, which is part of the degradosome, is required for the rapid turnover of certain mRNAs and its deletion results in cold-sensitivity. To understand the molecular basis of this phenotype, we conducted a large genetic screen isolating 82 independent suppressors of cold growth. Full genome sequencing revealed the fatty acid synthesis pathway affected in many suppressor strains. Consistent with that result, sublethal doses of triclosan, a FASII inhibitor, can partially restore growth of a cshA mutant in the cold. Overexpression of the genes involved in branched-chain fatty acid synthesis was also able to suppress the cold-sensitivity. Using gas chromatography analysis of fatty acids, we observed an imbalance of straight and branched-chain fatty acids in the cshA mutant, compared to the wild-type. This imbalance is compensated in the suppressor strains. Thus, we reveal for the first time that the cold sensitive growth phenotype of a DEAD-box mutant can be explained, at least partially, by an improper membrane composition. The defect correlates with an accumulation of the pyruvate dehydrogenase complex mRNA, which is inefficiently degraded in absence of CshA. We propose that the resulting accumulation of acetyl-CoA fuels straight-chained fatty acid production at the expense of the branched ones. Strikingly, addition of acetate into the medium mimics the cshA deletion phenotype, resulting in cold sensitivity suppressed by the mutations found in our genetic screen or by sublethal doses of triclosan.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>32730248</pmid><doi>10.1371/journal.pgen.1008779</doi><orcidid>https://orcid.org/0000-0002-8294-3218</orcidid><orcidid>https://orcid.org/0000-0002-5308-9569</orcidid><orcidid>https://orcid.org/0000-0002-8546-241X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2020-07, Vol.16 (7), p.e1008779-e1008779
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_2434498826
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central
subjects Acetic acid
Acid production
Analysis
Bacteria
Biofilms
Biology and Life Sciences
Biosynthesis
Cold
Defects
Dehydrogenases
DNA helicase
Fatty acids
Gas chromatography
Gene deletion
Gene expression
Genetic aspects
Genetic screening
Genomes
Genotype & phenotype
Glycerol
Gram-positive bacteria
Growth conditions
Helicases
Homeostasis
Kinases
Medicine
Medicine and Health Sciences
Membrane composition
Metabolism
Methods
mRNA
Mutants
Mutation
Opportunist infection
Phenotypes
Post-transcription
Proteins
Pyruvate dehydrogenase (lipoamide)
Pyruvic acid
Research and analysis methods
RNA helicase
Software
Staphylococcus aureus
Triclosan
title The DEAD-box RNA helicase CshA is required for fatty acid homeostasis in Staphylococcus aureus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T21%3A08%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20DEAD-box%20RNA%20helicase%20CshA%20is%20required%20for%20fatty%20acid%20homeostasis%20in%20Staphylococcus%20aureus&rft.jtitle=PLoS%20genetics&rft.au=Khemici,%20Vanessa&rft.date=2020-07-30&rft.volume=16&rft.issue=7&rft.spage=e1008779&rft.epage=e1008779&rft.pages=e1008779-e1008779&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1008779&rft_dat=%3Cgale_plos_%3EA632943762%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434498826&rft_id=info:pmid/32730248&rft_galeid=A632943762&rft_doaj_id=oai_doaj_org_article_5641d689bd9041d4a7137e438e906ea1&rfr_iscdi=true