When to use one-dimensional, two-dimensional, and Shifted Transversal Design pooling in mycotoxin screening
While complex sample pooling strategies have been developed for large-scale experiments with robotic liquid handling, many medium-scale experiments like mycotoxin screening by Enzyme-Linked Immunosorbent Assay (ELISA) are still conducted manually in 48- and 96-well plates. At this scale, the opportu...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-08, Vol.15 (8), p.e0236668-e0236668 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0236668 |
---|---|
container_issue | 8 |
container_start_page | e0236668 |
container_title | PloS one |
container_volume | 15 |
creator | Cheng, Xianbin Chavez, Ruben A Stasiewicz, Matthew J Das, Jishnu |
description | While complex sample pooling strategies have been developed for large-scale experiments with robotic liquid handling, many medium-scale experiments like mycotoxin screening by Enzyme-Linked Immunosorbent Assay (ELISA) are still conducted manually in 48- and 96-well plates. At this scale, the opportunity to save on reagent costs is offset by the increased costs of labor, materials, and risk-of-error caused by increasingly complex pooling strategies. This paper compares one-dimensional (1D), two-dimensional (2D), and Shifted Transversal Design (STD) pooling to study whether pooling affects assay accuracy and experimental cost and to provide guidance for when a human experimentalist might benefit from pooling. We approximated mycotoxin contamination in single corn kernels by fitting statistical distributions to experimental data (432 kernels for aflatoxin and 528 kernels for fumonisin) and used experimentally-validated Monte-Carlo simulation (10,000 iterations) to evaluate assay sensitivity, specificity, reagent cost, and pipetting cost. Based on the validated simulation results, assay sensitivity remains 100% for all four pooling strategies while specificity decreases as prevalence level rises. Reagent cost could be reduced by 70% and 80% in 48- and 96-well plates, with 1D and STD pooling being most reagent-saving respectively. Such a reagent-saving effect is only valid when prevalence level is < 21% for 48-well plates and < 13%-21% for 96-well plates. Pipetting cost will rise by 1.3-3.3 fold for 48-well plates and 1.2-4.3 fold for 96-well plates, with 1D pooling by row requiring the least pipetting. Thus, it is advisable to employ pooling when the expected prevalence level is below 21% and when the likely savings of up to 80% on reagent cost outweighs the increased materials and labor costs of up to 4 fold increases in pipetting. |
doi_str_mv | 10.1371/journal.pone.0236668 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2430651249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A631637436</galeid><doaj_id>oai_doaj_org_article_cc3fbda425714b4988e361cdac43a253</doaj_id><sourcerecordid>A631637436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c599t-d855cfbad2b278bcc30ef26c4b2b4cd23c7ea3368ac746456ecaa9c87fb6dfd73</originalsourceid><addsrcrecordid>eNqNk9-L1DAQx4so3rn6HwgWBFFw1zZJk_ZFOM5fCwcH3qmPIU2m3axpsibpefffm3WrXOUeJA8ZJp_5TmaYybKnZbEqMSvfbN3orTCrnbOwKhCmlNb3suOywWhJUYHv37KPskchbIuiwjWlD7MjjFhFK1YeZ9-_bcDm0eVjgDwpLZUewAbtkvTrPP50c4ewKr_Y6C6Cyi-9sOEKfBAmfwdB9zbfOWe07XNt8-FGuuiukxWkB7DJ_Th70AkT4Ml0L7IvH95fnn5anp1_XJ-enC1l1TRxqeqqkl0rFGoRq1spcQEdopK0qCVSISwZCIxpLSQjlFQUpBCNrFnXUtUphhfZs4PuzrjApz4FjgguaFUi0iRifSCUE1u-83oQ_oY7oflvh_M9Fz5qaYCn9F2rBEGpXaQlTV0DpqVUQhIsUIWT1tsp29gOoCTY6IWZic5frN7w3l1xRgpa0L3Ay0nAux8jhMgHHSQYIyy48fDvhjVNSrbInv-D3l3dRPUiFaBt51JeuRflJxSXFDOCaaJWd1DpKBi0TKPQ6eSfBbyaBSQmwnXsxRgCX198_n_2_OucfXGL3YAwcROcGWOauTAHyQGU3oXgofvb5LLg-5340w2-3wk-7QT-BZln_wA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430651249</pqid></control><display><type>article</type><title>When to use one-dimensional, two-dimensional, and Shifted Transversal Design pooling in mycotoxin screening</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Cheng, Xianbin ; Chavez, Ruben A ; Stasiewicz, Matthew J ; Das, Jishnu</creator><contributor>Das, Jishnu</contributor><creatorcontrib>Cheng, Xianbin ; Chavez, Ruben A ; Stasiewicz, Matthew J ; Das, Jishnu ; Das, Jishnu</creatorcontrib><description>While complex sample pooling strategies have been developed for large-scale experiments with robotic liquid handling, many medium-scale experiments like mycotoxin screening by Enzyme-Linked Immunosorbent Assay (ELISA) are still conducted manually in 48- and 96-well plates. At this scale, the opportunity to save on reagent costs is offset by the increased costs of labor, materials, and risk-of-error caused by increasingly complex pooling strategies. This paper compares one-dimensional (1D), two-dimensional (2D), and Shifted Transversal Design (STD) pooling to study whether pooling affects assay accuracy and experimental cost and to provide guidance for when a human experimentalist might benefit from pooling. We approximated mycotoxin contamination in single corn kernels by fitting statistical distributions to experimental data (432 kernels for aflatoxin and 528 kernels for fumonisin) and used experimentally-validated Monte-Carlo simulation (10,000 iterations) to evaluate assay sensitivity, specificity, reagent cost, and pipetting cost. Based on the validated simulation results, assay sensitivity remains 100% for all four pooling strategies while specificity decreases as prevalence level rises. Reagent cost could be reduced by 70% and 80% in 48- and 96-well plates, with 1D and STD pooling being most reagent-saving respectively. Such a reagent-saving effect is only valid when prevalence level is < 21% for 48-well plates and < 13%-21% for 96-well plates. Pipetting cost will rise by 1.3-3.3 fold for 48-well plates and 1.2-4.3 fold for 96-well plates, with 1D pooling by row requiring the least pipetting. Thus, it is advisable to employ pooling when the expected prevalence level is below 21% and when the likely savings of up to 80% on reagent cost outweighs the increased materials and labor costs of up to 4 fold increases in pipetting.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0236668</identifier><identifier>PMID: 32756571</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Aflatoxins ; Assaying ; Bioassay ; Biology and Life Sciences ; Chemical reduction ; Computer simulation ; Contamination ; Cost reduction ; Enzyme-linked immunosorbent assay ; Evaluation ; Experiments ; Food contamination & poisoning ; Food products ; Food science ; Kernels ; Labor ; Labor costs ; Methods ; Monte Carlo method ; Monte Carlo simulation ; Mycotoxins ; Normal distribution ; Nutrition ; Pathogens ; Performance evaluation ; Physical Sciences ; Plates ; Probability distribution ; Reagents ; Research and Analysis Methods ; Screening ; Sensitivity analysis ; Standard deviation ; Statistical distributions ; Test reliability ; Testing</subject><ispartof>PloS one, 2020-08, Vol.15 (8), p.e0236668-e0236668</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Cheng et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Cheng et al 2020 Cheng et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c599t-d855cfbad2b278bcc30ef26c4b2b4cd23c7ea3368ac746456ecaa9c87fb6dfd73</citedby><cites>FETCH-LOGICAL-c599t-d855cfbad2b278bcc30ef26c4b2b4cd23c7ea3368ac746456ecaa9c87fb6dfd73</cites><orcidid>0000-0003-2712-0793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7406063/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7406063/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids></links><search><contributor>Das, Jishnu</contributor><creatorcontrib>Cheng, Xianbin</creatorcontrib><creatorcontrib>Chavez, Ruben A</creatorcontrib><creatorcontrib>Stasiewicz, Matthew J</creatorcontrib><creatorcontrib>Das, Jishnu</creatorcontrib><title>When to use one-dimensional, two-dimensional, and Shifted Transversal Design pooling in mycotoxin screening</title><title>PloS one</title><description>While complex sample pooling strategies have been developed for large-scale experiments with robotic liquid handling, many medium-scale experiments like mycotoxin screening by Enzyme-Linked Immunosorbent Assay (ELISA) are still conducted manually in 48- and 96-well plates. At this scale, the opportunity to save on reagent costs is offset by the increased costs of labor, materials, and risk-of-error caused by increasingly complex pooling strategies. This paper compares one-dimensional (1D), two-dimensional (2D), and Shifted Transversal Design (STD) pooling to study whether pooling affects assay accuracy and experimental cost and to provide guidance for when a human experimentalist might benefit from pooling. We approximated mycotoxin contamination in single corn kernels by fitting statistical distributions to experimental data (432 kernels for aflatoxin and 528 kernels for fumonisin) and used experimentally-validated Monte-Carlo simulation (10,000 iterations) to evaluate assay sensitivity, specificity, reagent cost, and pipetting cost. Based on the validated simulation results, assay sensitivity remains 100% for all four pooling strategies while specificity decreases as prevalence level rises. Reagent cost could be reduced by 70% and 80% in 48- and 96-well plates, with 1D and STD pooling being most reagent-saving respectively. Such a reagent-saving effect is only valid when prevalence level is < 21% for 48-well plates and < 13%-21% for 96-well plates. Pipetting cost will rise by 1.3-3.3 fold for 48-well plates and 1.2-4.3 fold for 96-well plates, with 1D pooling by row requiring the least pipetting. Thus, it is advisable to employ pooling when the expected prevalence level is below 21% and when the likely savings of up to 80% on reagent cost outweighs the increased materials and labor costs of up to 4 fold increases in pipetting.</description><subject>Aflatoxins</subject><subject>Assaying</subject><subject>Bioassay</subject><subject>Biology and Life Sciences</subject><subject>Chemical reduction</subject><subject>Computer simulation</subject><subject>Contamination</subject><subject>Cost reduction</subject><subject>Enzyme-linked immunosorbent assay</subject><subject>Evaluation</subject><subject>Experiments</subject><subject>Food contamination & poisoning</subject><subject>Food products</subject><subject>Food science</subject><subject>Kernels</subject><subject>Labor</subject><subject>Labor costs</subject><subject>Methods</subject><subject>Monte Carlo method</subject><subject>Monte Carlo simulation</subject><subject>Mycotoxins</subject><subject>Normal distribution</subject><subject>Nutrition</subject><subject>Pathogens</subject><subject>Performance evaluation</subject><subject>Physical Sciences</subject><subject>Plates</subject><subject>Probability distribution</subject><subject>Reagents</subject><subject>Research and Analysis Methods</subject><subject>Screening</subject><subject>Sensitivity analysis</subject><subject>Standard deviation</subject><subject>Statistical distributions</subject><subject>Test reliability</subject><subject>Testing</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9-L1DAQx4so3rn6HwgWBFFw1zZJk_ZFOM5fCwcH3qmPIU2m3axpsibpefffm3WrXOUeJA8ZJp_5TmaYybKnZbEqMSvfbN3orTCrnbOwKhCmlNb3suOywWhJUYHv37KPskchbIuiwjWlD7MjjFhFK1YeZ9-_bcDm0eVjgDwpLZUewAbtkvTrPP50c4ewKr_Y6C6Cyi-9sOEKfBAmfwdB9zbfOWe07XNt8-FGuuiukxWkB7DJ_Th70AkT4Ml0L7IvH95fnn5anp1_XJ-enC1l1TRxqeqqkl0rFGoRq1spcQEdopK0qCVSISwZCIxpLSQjlFQUpBCNrFnXUtUphhfZs4PuzrjApz4FjgguaFUi0iRifSCUE1u-83oQ_oY7oflvh_M9Fz5qaYCn9F2rBEGpXaQlTV0DpqVUQhIsUIWT1tsp29gOoCTY6IWZic5frN7w3l1xRgpa0L3Ay0nAux8jhMgHHSQYIyy48fDvhjVNSrbInv-D3l3dRPUiFaBt51JeuRflJxSXFDOCaaJWd1DpKBi0TKPQ6eSfBbyaBSQmwnXsxRgCX198_n_2_OucfXGL3YAwcROcGWOauTAHyQGU3oXgofvb5LLg-5340w2-3wk-7QT-BZln_wA</recordid><startdate>20200805</startdate><enddate>20200805</enddate><creator>Cheng, Xianbin</creator><creator>Chavez, Ruben A</creator><creator>Stasiewicz, Matthew J</creator><creator>Das, Jishnu</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2712-0793</orcidid></search><sort><creationdate>20200805</creationdate><title>When to use one-dimensional, two-dimensional, and Shifted Transversal Design pooling in mycotoxin screening</title><author>Cheng, Xianbin ; Chavez, Ruben A ; Stasiewicz, Matthew J ; Das, Jishnu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c599t-d855cfbad2b278bcc30ef26c4b2b4cd23c7ea3368ac746456ecaa9c87fb6dfd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aflatoxins</topic><topic>Assaying</topic><topic>Bioassay</topic><topic>Biology and Life Sciences</topic><topic>Chemical reduction</topic><topic>Computer simulation</topic><topic>Contamination</topic><topic>Cost reduction</topic><topic>Enzyme-linked immunosorbent assay</topic><topic>Evaluation</topic><topic>Experiments</topic><topic>Food contamination & poisoning</topic><topic>Food products</topic><topic>Food science</topic><topic>Kernels</topic><topic>Labor</topic><topic>Labor costs</topic><topic>Methods</topic><topic>Monte Carlo method</topic><topic>Monte Carlo simulation</topic><topic>Mycotoxins</topic><topic>Normal distribution</topic><topic>Nutrition</topic><topic>Pathogens</topic><topic>Performance evaluation</topic><topic>Physical Sciences</topic><topic>Plates</topic><topic>Probability distribution</topic><topic>Reagents</topic><topic>Research and Analysis Methods</topic><topic>Screening</topic><topic>Sensitivity analysis</topic><topic>Standard deviation</topic><topic>Statistical distributions</topic><topic>Test reliability</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Xianbin</creatorcontrib><creatorcontrib>Chavez, Ruben A</creatorcontrib><creatorcontrib>Stasiewicz, Matthew J</creatorcontrib><creatorcontrib>Das, Jishnu</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Xianbin</au><au>Chavez, Ruben A</au><au>Stasiewicz, Matthew J</au><au>Das, Jishnu</au><au>Das, Jishnu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>When to use one-dimensional, two-dimensional, and Shifted Transversal Design pooling in mycotoxin screening</atitle><jtitle>PloS one</jtitle><date>2020-08-05</date><risdate>2020</risdate><volume>15</volume><issue>8</issue><spage>e0236668</spage><epage>e0236668</epage><pages>e0236668-e0236668</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>While complex sample pooling strategies have been developed for large-scale experiments with robotic liquid handling, many medium-scale experiments like mycotoxin screening by Enzyme-Linked Immunosorbent Assay (ELISA) are still conducted manually in 48- and 96-well plates. At this scale, the opportunity to save on reagent costs is offset by the increased costs of labor, materials, and risk-of-error caused by increasingly complex pooling strategies. This paper compares one-dimensional (1D), two-dimensional (2D), and Shifted Transversal Design (STD) pooling to study whether pooling affects assay accuracy and experimental cost and to provide guidance for when a human experimentalist might benefit from pooling. We approximated mycotoxin contamination in single corn kernels by fitting statistical distributions to experimental data (432 kernels for aflatoxin and 528 kernels for fumonisin) and used experimentally-validated Monte-Carlo simulation (10,000 iterations) to evaluate assay sensitivity, specificity, reagent cost, and pipetting cost. Based on the validated simulation results, assay sensitivity remains 100% for all four pooling strategies while specificity decreases as prevalence level rises. Reagent cost could be reduced by 70% and 80% in 48- and 96-well plates, with 1D and STD pooling being most reagent-saving respectively. Such a reagent-saving effect is only valid when prevalence level is < 21% for 48-well plates and < 13%-21% for 96-well plates. Pipetting cost will rise by 1.3-3.3 fold for 48-well plates and 1.2-4.3 fold for 96-well plates, with 1D pooling by row requiring the least pipetting. Thus, it is advisable to employ pooling when the expected prevalence level is below 21% and when the likely savings of up to 80% on reagent cost outweighs the increased materials and labor costs of up to 4 fold increases in pipetting.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>32756571</pmid><doi>10.1371/journal.pone.0236668</doi><tpages>e0236668</tpages><orcidid>https://orcid.org/0000-0003-2712-0793</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-08, Vol.15 (8), p.e0236668-e0236668 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2430651249 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Aflatoxins Assaying Bioassay Biology and Life Sciences Chemical reduction Computer simulation Contamination Cost reduction Enzyme-linked immunosorbent assay Evaluation Experiments Food contamination & poisoning Food products Food science Kernels Labor Labor costs Methods Monte Carlo method Monte Carlo simulation Mycotoxins Normal distribution Nutrition Pathogens Performance evaluation Physical Sciences Plates Probability distribution Reagents Research and Analysis Methods Screening Sensitivity analysis Standard deviation Statistical distributions Test reliability Testing |
title | When to use one-dimensional, two-dimensional, and Shifted Transversal Design pooling in mycotoxin screening |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A41%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=When%20to%20use%20one-dimensional,%20two-dimensional,%20and%20Shifted%20Transversal%20Design%20pooling%20in%20mycotoxin%20screening&rft.jtitle=PloS%20one&rft.au=Cheng,%20Xianbin&rft.date=2020-08-05&rft.volume=15&rft.issue=8&rft.spage=e0236668&rft.epage=e0236668&rft.pages=e0236668-e0236668&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0236668&rft_dat=%3Cgale_plos_%3EA631637436%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430651249&rft_id=info:pmid/32756571&rft_galeid=A631637436&rft_doaj_id=oai_doaj_org_article_cc3fbda425714b4988e361cdac43a253&rfr_iscdi=true |