When to use one-dimensional, two-dimensional, and Shifted Transversal Design pooling in mycotoxin screening

While complex sample pooling strategies have been developed for large-scale experiments with robotic liquid handling, many medium-scale experiments like mycotoxin screening by Enzyme-Linked Immunosorbent Assay (ELISA) are still conducted manually in 48- and 96-well plates. At this scale, the opportu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-08, Vol.15 (8), p.e0236668-e0236668
Hauptverfasser: Cheng, Xianbin, Chavez, Ruben A, Stasiewicz, Matthew J, Das, Jishnu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0236668
container_issue 8
container_start_page e0236668
container_title PloS one
container_volume 15
creator Cheng, Xianbin
Chavez, Ruben A
Stasiewicz, Matthew J
Das, Jishnu
description While complex sample pooling strategies have been developed for large-scale experiments with robotic liquid handling, many medium-scale experiments like mycotoxin screening by Enzyme-Linked Immunosorbent Assay (ELISA) are still conducted manually in 48- and 96-well plates. At this scale, the opportunity to save on reagent costs is offset by the increased costs of labor, materials, and risk-of-error caused by increasingly complex pooling strategies. This paper compares one-dimensional (1D), two-dimensional (2D), and Shifted Transversal Design (STD) pooling to study whether pooling affects assay accuracy and experimental cost and to provide guidance for when a human experimentalist might benefit from pooling. We approximated mycotoxin contamination in single corn kernels by fitting statistical distributions to experimental data (432 kernels for aflatoxin and 528 kernels for fumonisin) and used experimentally-validated Monte-Carlo simulation (10,000 iterations) to evaluate assay sensitivity, specificity, reagent cost, and pipetting cost. Based on the validated simulation results, assay sensitivity remains 100% for all four pooling strategies while specificity decreases as prevalence level rises. Reagent cost could be reduced by 70% and 80% in 48- and 96-well plates, with 1D and STD pooling being most reagent-saving respectively. Such a reagent-saving effect is only valid when prevalence level is < 21% for 48-well plates and < 13%-21% for 96-well plates. Pipetting cost will rise by 1.3-3.3 fold for 48-well plates and 1.2-4.3 fold for 96-well plates, with 1D pooling by row requiring the least pipetting. Thus, it is advisable to employ pooling when the expected prevalence level is below 21% and when the likely savings of up to 80% on reagent cost outweighs the increased materials and labor costs of up to 4 fold increases in pipetting.
doi_str_mv 10.1371/journal.pone.0236668
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2430651249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A631637436</galeid><doaj_id>oai_doaj_org_article_cc3fbda425714b4988e361cdac43a253</doaj_id><sourcerecordid>A631637436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c599t-d855cfbad2b278bcc30ef26c4b2b4cd23c7ea3368ac746456ecaa9c87fb6dfd73</originalsourceid><addsrcrecordid>eNqNk9-L1DAQx4so3rn6HwgWBFFw1zZJk_ZFOM5fCwcH3qmPIU2m3axpsibpefffm3WrXOUeJA8ZJp_5TmaYybKnZbEqMSvfbN3orTCrnbOwKhCmlNb3suOywWhJUYHv37KPskchbIuiwjWlD7MjjFhFK1YeZ9-_bcDm0eVjgDwpLZUewAbtkvTrPP50c4ewKr_Y6C6Cyi-9sOEKfBAmfwdB9zbfOWe07XNt8-FGuuiukxWkB7DJ_Th70AkT4Ml0L7IvH95fnn5anp1_XJ-enC1l1TRxqeqqkl0rFGoRq1spcQEdopK0qCVSISwZCIxpLSQjlFQUpBCNrFnXUtUphhfZs4PuzrjApz4FjgguaFUi0iRifSCUE1u-83oQ_oY7oflvh_M9Fz5qaYCn9F2rBEGpXaQlTV0DpqVUQhIsUIWT1tsp29gOoCTY6IWZic5frN7w3l1xRgpa0L3Ay0nAux8jhMgHHSQYIyy48fDvhjVNSrbInv-D3l3dRPUiFaBt51JeuRflJxSXFDOCaaJWd1DpKBi0TKPQ6eSfBbyaBSQmwnXsxRgCX198_n_2_OucfXGL3YAwcROcGWOauTAHyQGU3oXgofvb5LLg-5340w2-3wk-7QT-BZln_wA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430651249</pqid></control><display><type>article</type><title>When to use one-dimensional, two-dimensional, and Shifted Transversal Design pooling in mycotoxin screening</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Cheng, Xianbin ; Chavez, Ruben A ; Stasiewicz, Matthew J ; Das, Jishnu</creator><contributor>Das, Jishnu</contributor><creatorcontrib>Cheng, Xianbin ; Chavez, Ruben A ; Stasiewicz, Matthew J ; Das, Jishnu ; Das, Jishnu</creatorcontrib><description>While complex sample pooling strategies have been developed for large-scale experiments with robotic liquid handling, many medium-scale experiments like mycotoxin screening by Enzyme-Linked Immunosorbent Assay (ELISA) are still conducted manually in 48- and 96-well plates. At this scale, the opportunity to save on reagent costs is offset by the increased costs of labor, materials, and risk-of-error caused by increasingly complex pooling strategies. This paper compares one-dimensional (1D), two-dimensional (2D), and Shifted Transversal Design (STD) pooling to study whether pooling affects assay accuracy and experimental cost and to provide guidance for when a human experimentalist might benefit from pooling. We approximated mycotoxin contamination in single corn kernels by fitting statistical distributions to experimental data (432 kernels for aflatoxin and 528 kernels for fumonisin) and used experimentally-validated Monte-Carlo simulation (10,000 iterations) to evaluate assay sensitivity, specificity, reagent cost, and pipetting cost. Based on the validated simulation results, assay sensitivity remains 100% for all four pooling strategies while specificity decreases as prevalence level rises. Reagent cost could be reduced by 70% and 80% in 48- and 96-well plates, with 1D and STD pooling being most reagent-saving respectively. Such a reagent-saving effect is only valid when prevalence level is &lt; 21% for 48-well plates and &lt; 13%-21% for 96-well plates. Pipetting cost will rise by 1.3-3.3 fold for 48-well plates and 1.2-4.3 fold for 96-well plates, with 1D pooling by row requiring the least pipetting. Thus, it is advisable to employ pooling when the expected prevalence level is below 21% and when the likely savings of up to 80% on reagent cost outweighs the increased materials and labor costs of up to 4 fold increases in pipetting.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0236668</identifier><identifier>PMID: 32756571</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Aflatoxins ; Assaying ; Bioassay ; Biology and Life Sciences ; Chemical reduction ; Computer simulation ; Contamination ; Cost reduction ; Enzyme-linked immunosorbent assay ; Evaluation ; Experiments ; Food contamination &amp; poisoning ; Food products ; Food science ; Kernels ; Labor ; Labor costs ; Methods ; Monte Carlo method ; Monte Carlo simulation ; Mycotoxins ; Normal distribution ; Nutrition ; Pathogens ; Performance evaluation ; Physical Sciences ; Plates ; Probability distribution ; Reagents ; Research and Analysis Methods ; Screening ; Sensitivity analysis ; Standard deviation ; Statistical distributions ; Test reliability ; Testing</subject><ispartof>PloS one, 2020-08, Vol.15 (8), p.e0236668-e0236668</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Cheng et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Cheng et al 2020 Cheng et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c599t-d855cfbad2b278bcc30ef26c4b2b4cd23c7ea3368ac746456ecaa9c87fb6dfd73</citedby><cites>FETCH-LOGICAL-c599t-d855cfbad2b278bcc30ef26c4b2b4cd23c7ea3368ac746456ecaa9c87fb6dfd73</cites><orcidid>0000-0003-2712-0793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7406063/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7406063/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids></links><search><contributor>Das, Jishnu</contributor><creatorcontrib>Cheng, Xianbin</creatorcontrib><creatorcontrib>Chavez, Ruben A</creatorcontrib><creatorcontrib>Stasiewicz, Matthew J</creatorcontrib><creatorcontrib>Das, Jishnu</creatorcontrib><title>When to use one-dimensional, two-dimensional, and Shifted Transversal Design pooling in mycotoxin screening</title><title>PloS one</title><description>While complex sample pooling strategies have been developed for large-scale experiments with robotic liquid handling, many medium-scale experiments like mycotoxin screening by Enzyme-Linked Immunosorbent Assay (ELISA) are still conducted manually in 48- and 96-well plates. At this scale, the opportunity to save on reagent costs is offset by the increased costs of labor, materials, and risk-of-error caused by increasingly complex pooling strategies. This paper compares one-dimensional (1D), two-dimensional (2D), and Shifted Transversal Design (STD) pooling to study whether pooling affects assay accuracy and experimental cost and to provide guidance for when a human experimentalist might benefit from pooling. We approximated mycotoxin contamination in single corn kernels by fitting statistical distributions to experimental data (432 kernels for aflatoxin and 528 kernels for fumonisin) and used experimentally-validated Monte-Carlo simulation (10,000 iterations) to evaluate assay sensitivity, specificity, reagent cost, and pipetting cost. Based on the validated simulation results, assay sensitivity remains 100% for all four pooling strategies while specificity decreases as prevalence level rises. Reagent cost could be reduced by 70% and 80% in 48- and 96-well plates, with 1D and STD pooling being most reagent-saving respectively. Such a reagent-saving effect is only valid when prevalence level is &lt; 21% for 48-well plates and &lt; 13%-21% for 96-well plates. Pipetting cost will rise by 1.3-3.3 fold for 48-well plates and 1.2-4.3 fold for 96-well plates, with 1D pooling by row requiring the least pipetting. Thus, it is advisable to employ pooling when the expected prevalence level is below 21% and when the likely savings of up to 80% on reagent cost outweighs the increased materials and labor costs of up to 4 fold increases in pipetting.</description><subject>Aflatoxins</subject><subject>Assaying</subject><subject>Bioassay</subject><subject>Biology and Life Sciences</subject><subject>Chemical reduction</subject><subject>Computer simulation</subject><subject>Contamination</subject><subject>Cost reduction</subject><subject>Enzyme-linked immunosorbent assay</subject><subject>Evaluation</subject><subject>Experiments</subject><subject>Food contamination &amp; poisoning</subject><subject>Food products</subject><subject>Food science</subject><subject>Kernels</subject><subject>Labor</subject><subject>Labor costs</subject><subject>Methods</subject><subject>Monte Carlo method</subject><subject>Monte Carlo simulation</subject><subject>Mycotoxins</subject><subject>Normal distribution</subject><subject>Nutrition</subject><subject>Pathogens</subject><subject>Performance evaluation</subject><subject>Physical Sciences</subject><subject>Plates</subject><subject>Probability distribution</subject><subject>Reagents</subject><subject>Research and Analysis Methods</subject><subject>Screening</subject><subject>Sensitivity analysis</subject><subject>Standard deviation</subject><subject>Statistical distributions</subject><subject>Test reliability</subject><subject>Testing</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9-L1DAQx4so3rn6HwgWBFFw1zZJk_ZFOM5fCwcH3qmPIU2m3axpsibpefffm3WrXOUeJA8ZJp_5TmaYybKnZbEqMSvfbN3orTCrnbOwKhCmlNb3suOywWhJUYHv37KPskchbIuiwjWlD7MjjFhFK1YeZ9-_bcDm0eVjgDwpLZUewAbtkvTrPP50c4ewKr_Y6C6Cyi-9sOEKfBAmfwdB9zbfOWe07XNt8-FGuuiukxWkB7DJ_Th70AkT4Ml0L7IvH95fnn5anp1_XJ-enC1l1TRxqeqqkl0rFGoRq1spcQEdopK0qCVSISwZCIxpLSQjlFQUpBCNrFnXUtUphhfZs4PuzrjApz4FjgguaFUi0iRifSCUE1u-83oQ_oY7oflvh_M9Fz5qaYCn9F2rBEGpXaQlTV0DpqVUQhIsUIWT1tsp29gOoCTY6IWZic5frN7w3l1xRgpa0L3Ay0nAux8jhMgHHSQYIyy48fDvhjVNSrbInv-D3l3dRPUiFaBt51JeuRflJxSXFDOCaaJWd1DpKBi0TKPQ6eSfBbyaBSQmwnXsxRgCX198_n_2_OucfXGL3YAwcROcGWOauTAHyQGU3oXgofvb5LLg-5340w2-3wk-7QT-BZln_wA</recordid><startdate>20200805</startdate><enddate>20200805</enddate><creator>Cheng, Xianbin</creator><creator>Chavez, Ruben A</creator><creator>Stasiewicz, Matthew J</creator><creator>Das, Jishnu</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2712-0793</orcidid></search><sort><creationdate>20200805</creationdate><title>When to use one-dimensional, two-dimensional, and Shifted Transversal Design pooling in mycotoxin screening</title><author>Cheng, Xianbin ; Chavez, Ruben A ; Stasiewicz, Matthew J ; Das, Jishnu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c599t-d855cfbad2b278bcc30ef26c4b2b4cd23c7ea3368ac746456ecaa9c87fb6dfd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aflatoxins</topic><topic>Assaying</topic><topic>Bioassay</topic><topic>Biology and Life Sciences</topic><topic>Chemical reduction</topic><topic>Computer simulation</topic><topic>Contamination</topic><topic>Cost reduction</topic><topic>Enzyme-linked immunosorbent assay</topic><topic>Evaluation</topic><topic>Experiments</topic><topic>Food contamination &amp; poisoning</topic><topic>Food products</topic><topic>Food science</topic><topic>Kernels</topic><topic>Labor</topic><topic>Labor costs</topic><topic>Methods</topic><topic>Monte Carlo method</topic><topic>Monte Carlo simulation</topic><topic>Mycotoxins</topic><topic>Normal distribution</topic><topic>Nutrition</topic><topic>Pathogens</topic><topic>Performance evaluation</topic><topic>Physical Sciences</topic><topic>Plates</topic><topic>Probability distribution</topic><topic>Reagents</topic><topic>Research and Analysis Methods</topic><topic>Screening</topic><topic>Sensitivity analysis</topic><topic>Standard deviation</topic><topic>Statistical distributions</topic><topic>Test reliability</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Xianbin</creatorcontrib><creatorcontrib>Chavez, Ruben A</creatorcontrib><creatorcontrib>Stasiewicz, Matthew J</creatorcontrib><creatorcontrib>Das, Jishnu</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Xianbin</au><au>Chavez, Ruben A</au><au>Stasiewicz, Matthew J</au><au>Das, Jishnu</au><au>Das, Jishnu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>When to use one-dimensional, two-dimensional, and Shifted Transversal Design pooling in mycotoxin screening</atitle><jtitle>PloS one</jtitle><date>2020-08-05</date><risdate>2020</risdate><volume>15</volume><issue>8</issue><spage>e0236668</spage><epage>e0236668</epage><pages>e0236668-e0236668</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>While complex sample pooling strategies have been developed for large-scale experiments with robotic liquid handling, many medium-scale experiments like mycotoxin screening by Enzyme-Linked Immunosorbent Assay (ELISA) are still conducted manually in 48- and 96-well plates. At this scale, the opportunity to save on reagent costs is offset by the increased costs of labor, materials, and risk-of-error caused by increasingly complex pooling strategies. This paper compares one-dimensional (1D), two-dimensional (2D), and Shifted Transversal Design (STD) pooling to study whether pooling affects assay accuracy and experimental cost and to provide guidance for when a human experimentalist might benefit from pooling. We approximated mycotoxin contamination in single corn kernels by fitting statistical distributions to experimental data (432 kernels for aflatoxin and 528 kernels for fumonisin) and used experimentally-validated Monte-Carlo simulation (10,000 iterations) to evaluate assay sensitivity, specificity, reagent cost, and pipetting cost. Based on the validated simulation results, assay sensitivity remains 100% for all four pooling strategies while specificity decreases as prevalence level rises. Reagent cost could be reduced by 70% and 80% in 48- and 96-well plates, with 1D and STD pooling being most reagent-saving respectively. Such a reagent-saving effect is only valid when prevalence level is &lt; 21% for 48-well plates and &lt; 13%-21% for 96-well plates. Pipetting cost will rise by 1.3-3.3 fold for 48-well plates and 1.2-4.3 fold for 96-well plates, with 1D pooling by row requiring the least pipetting. Thus, it is advisable to employ pooling when the expected prevalence level is below 21% and when the likely savings of up to 80% on reagent cost outweighs the increased materials and labor costs of up to 4 fold increases in pipetting.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>32756571</pmid><doi>10.1371/journal.pone.0236668</doi><tpages>e0236668</tpages><orcidid>https://orcid.org/0000-0003-2712-0793</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-08, Vol.15 (8), p.e0236668-e0236668
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2430651249
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry
subjects Aflatoxins
Assaying
Bioassay
Biology and Life Sciences
Chemical reduction
Computer simulation
Contamination
Cost reduction
Enzyme-linked immunosorbent assay
Evaluation
Experiments
Food contamination & poisoning
Food products
Food science
Kernels
Labor
Labor costs
Methods
Monte Carlo method
Monte Carlo simulation
Mycotoxins
Normal distribution
Nutrition
Pathogens
Performance evaluation
Physical Sciences
Plates
Probability distribution
Reagents
Research and Analysis Methods
Screening
Sensitivity analysis
Standard deviation
Statistical distributions
Test reliability
Testing
title When to use one-dimensional, two-dimensional, and Shifted Transversal Design pooling in mycotoxin screening
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A41%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=When%20to%20use%20one-dimensional,%20two-dimensional,%20and%20Shifted%20Transversal%20Design%20pooling%20in%20mycotoxin%20screening&rft.jtitle=PloS%20one&rft.au=Cheng,%20Xianbin&rft.date=2020-08-05&rft.volume=15&rft.issue=8&rft.spage=e0236668&rft.epage=e0236668&rft.pages=e0236668-e0236668&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0236668&rft_dat=%3Cgale_plos_%3EA631637436%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430651249&rft_id=info:pmid/32756571&rft_galeid=A631637436&rft_doaj_id=oai_doaj_org_article_cc3fbda425714b4988e361cdac43a253&rfr_iscdi=true