Data-driven study of the COVID-19 pandemic via age-structured modelling and prediction of the health system failure in Brazil amid diverse intervention strategies
In this work we propose a data-driven age-structured census-based SIRD-like epidemiological model capable of forecasting the spread of COVID-19 in Brazil. We model the current scenario of closed schools and universities, social distancing of people above sixty years old and voluntary home quarantine...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-07, Vol.15 (7), p.e0236310-e0236310 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0236310 |
---|---|
container_issue | 7 |
container_start_page | e0236310 |
container_title | PloS one |
container_volume | 15 |
creator | Canabarro, Askery Tenório, Elayne Martins, Renato Martins, Laís Brito, Samuraí Chaves, Rafael |
description | In this work we propose a data-driven age-structured census-based SIRD-like epidemiological model capable of forecasting the spread of COVID-19 in Brazil. We model the current scenario of closed schools and universities, social distancing of people above sixty years old and voluntary home quarantine to show that it is still not enough to protect the health system by explicitly computing the demand for hospital intensive care units. We also show that an urgent intense quarantine might be the only solution to avoid the collapse of the health system and, consequently, to minimize the quantity of deaths. On the other hand, we demonstrate that the relaxation of the already imposed control measures in the next days would be catastrophic. |
doi_str_mv | 10.1371/journal.pone.0236310 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2429056802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2a3c104ea02f4e03b16de586e7aaf353</doaj_id><sourcerecordid>2429783168</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-27e1d4aa6c93d8b70a29b273a4d067e5527f39cbb290a5675254f96b10893faf3</originalsourceid><addsrcrecordid>eNptUkuP0zAQjhCIXQr_AIElLlxS_Iid5IK0dHlUWmkvwNWaxJPWVRIX26lUfg6_FHfbrnYRJ1vj7zHfeLLsNaNzJkr2YeMmP0I_37oR55QLJRh9kl2yWvBccSqePrhfZC9C2FAqRaXU8-xC8FJQIfll9ucaIuTG2x2OJMTJ7InrSFwjWdz-XF7nrCZbGA0OtiU7CwRWmIfopzZOHg0ZnMG-t-OKJBDZppJto3XjWWSN0Mc1CfsQcSAd2D7RiB3JJw-_bU9gsIaYZO7DoRzRpz7uBJIJRFxZDC-zZx30AV-dzln248vn74tv-c3t1-Xi6iZvJVcx5yUyUwCothamakoKvG5STigMVSVKyctO1G3T8JqCVKXksuhq1TBa1aKDTsyyt0fdbe-CPo03aF4kglRVGvEsWx4RxsFGb70dwO-1A6vvCs6vNPho2x41B9EyWiBQ3hVIRcOUQVkpLCFZSZG0Pp7cpmZA06bYHvpHoo9fRrvWK7fTpag5l1USeH8S8O7XhCHqwYY2_QaM6KZj32UlmDpA3_0D_X-64ohqvQvBY3ffDKP6sHJnlj6snD6tXKK9eRjknnTeMfEX3CvXHA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429056802</pqid></control><display><type>article</type><title>Data-driven study of the COVID-19 pandemic via age-structured modelling and prediction of the health system failure in Brazil amid diverse intervention strategies</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Canabarro, Askery ; Tenório, Elayne ; Martins, Renato ; Martins, Laís ; Brito, Samuraí ; Chaves, Rafael</creator><contributor>Braunstein, Lidia Adriana</contributor><creatorcontrib>Canabarro, Askery ; Tenório, Elayne ; Martins, Renato ; Martins, Laís ; Brito, Samuraí ; Chaves, Rafael ; Braunstein, Lidia Adriana</creatorcontrib><description>In this work we propose a data-driven age-structured census-based SIRD-like epidemiological model capable of forecasting the spread of COVID-19 in Brazil. We model the current scenario of closed schools and universities, social distancing of people above sixty years old and voluntary home quarantine to show that it is still not enough to protect the health system by explicitly computing the demand for hospital intensive care units. We also show that an urgent intense quarantine might be the only solution to avoid the collapse of the health system and, consequently, to minimize the quantity of deaths. On the other hand, we demonstrate that the relaxation of the already imposed control measures in the next days would be catastrophic.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0236310</identifier><identifier>PMID: 32730352</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adolescent ; Adult ; Age ; Age Distribution ; Aged ; Aged, 80 and over ; Betacoronavirus ; Brazil - epidemiology ; Catastrophic failure analysis ; Child ; Child, Preschool ; Coronavirus Infections - epidemiology ; Coronavirus Infections - mortality ; Coronavirus Infections - prevention & control ; Coronavirus Infections - virology ; Coronaviruses ; COVID-19 ; Disease control ; Disease transmission ; Disease Transmission, Infectious - prevention & control ; Epidemic models ; Epidemics ; Epidemiology ; Female ; Forecasting ; Hospitals ; Humans ; Infant ; Infant, Newborn ; Infections ; Intensive care units ; Investigations ; Male ; Medicine and Health Sciences ; Middle Aged ; Models, Theoretical ; Ordinary differential equations ; Pandemics ; Pandemics - prevention & control ; People and places ; Physics ; Pneumonia, Viral - epidemiology ; Pneumonia, Viral - mortality ; Pneumonia, Viral - prevention & control ; Pneumonia, Viral - virology ; Population ; Prognosis ; Public health ; Quarantine ; Quarantine - methods ; SARS-CoV-2 ; Schools ; Severe acute respiratory syndrome coronavirus 2 ; Social distancing ; Social Sciences ; Vaccines ; Young Adult</subject><ispartof>PloS one, 2020-07, Vol.15 (7), p.e0236310-e0236310</ispartof><rights>2020 Canabarro et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Canabarro et al 2020 Canabarro et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-27e1d4aa6c93d8b70a29b273a4d067e5527f39cbb290a5675254f96b10893faf3</citedby><cites>FETCH-LOGICAL-c526t-27e1d4aa6c93d8b70a29b273a4d067e5527f39cbb290a5675254f96b10893faf3</cites><orcidid>0000-0001-5048-2317</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392258/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392258/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32730352$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Braunstein, Lidia Adriana</contributor><creatorcontrib>Canabarro, Askery</creatorcontrib><creatorcontrib>Tenório, Elayne</creatorcontrib><creatorcontrib>Martins, Renato</creatorcontrib><creatorcontrib>Martins, Laís</creatorcontrib><creatorcontrib>Brito, Samuraí</creatorcontrib><creatorcontrib>Chaves, Rafael</creatorcontrib><title>Data-driven study of the COVID-19 pandemic via age-structured modelling and prediction of the health system failure in Brazil amid diverse intervention strategies</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In this work we propose a data-driven age-structured census-based SIRD-like epidemiological model capable of forecasting the spread of COVID-19 in Brazil. We model the current scenario of closed schools and universities, social distancing of people above sixty years old and voluntary home quarantine to show that it is still not enough to protect the health system by explicitly computing the demand for hospital intensive care units. We also show that an urgent intense quarantine might be the only solution to avoid the collapse of the health system and, consequently, to minimize the quantity of deaths. On the other hand, we demonstrate that the relaxation of the already imposed control measures in the next days would be catastrophic.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Age</subject><subject>Age Distribution</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Betacoronavirus</subject><subject>Brazil - epidemiology</subject><subject>Catastrophic failure analysis</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Coronavirus Infections - epidemiology</subject><subject>Coronavirus Infections - mortality</subject><subject>Coronavirus Infections - prevention & control</subject><subject>Coronavirus Infections - virology</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Disease control</subject><subject>Disease transmission</subject><subject>Disease Transmission, Infectious - prevention & control</subject><subject>Epidemic models</subject><subject>Epidemics</subject><subject>Epidemiology</subject><subject>Female</subject><subject>Forecasting</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Infections</subject><subject>Intensive care units</subject><subject>Investigations</subject><subject>Male</subject><subject>Medicine and Health Sciences</subject><subject>Middle Aged</subject><subject>Models, Theoretical</subject><subject>Ordinary differential equations</subject><subject>Pandemics</subject><subject>Pandemics - prevention & control</subject><subject>People and places</subject><subject>Physics</subject><subject>Pneumonia, Viral - epidemiology</subject><subject>Pneumonia, Viral - mortality</subject><subject>Pneumonia, Viral - prevention & control</subject><subject>Pneumonia, Viral - virology</subject><subject>Population</subject><subject>Prognosis</subject><subject>Public health</subject><subject>Quarantine</subject><subject>Quarantine - methods</subject><subject>SARS-CoV-2</subject><subject>Schools</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Social distancing</subject><subject>Social Sciences</subject><subject>Vaccines</subject><subject>Young Adult</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUkuP0zAQjhCIXQr_AIElLlxS_Iid5IK0dHlUWmkvwNWaxJPWVRIX26lUfg6_FHfbrnYRJ1vj7zHfeLLsNaNzJkr2YeMmP0I_37oR55QLJRh9kl2yWvBccSqePrhfZC9C2FAqRaXU8-xC8FJQIfll9ucaIuTG2x2OJMTJ7InrSFwjWdz-XF7nrCZbGA0OtiU7CwRWmIfopzZOHg0ZnMG-t-OKJBDZppJto3XjWWSN0Mc1CfsQcSAd2D7RiB3JJw-_bU9gsIaYZO7DoRzRpz7uBJIJRFxZDC-zZx30AV-dzln248vn74tv-c3t1-Xi6iZvJVcx5yUyUwCothamakoKvG5STigMVSVKyctO1G3T8JqCVKXksuhq1TBa1aKDTsyyt0fdbe-CPo03aF4kglRVGvEsWx4RxsFGb70dwO-1A6vvCs6vNPho2x41B9EyWiBQ3hVIRcOUQVkpLCFZSZG0Pp7cpmZA06bYHvpHoo9fRrvWK7fTpag5l1USeH8S8O7XhCHqwYY2_QaM6KZj32UlmDpA3_0D_X-64ohqvQvBY3ffDKP6sHJnlj6snD6tXKK9eRjknnTeMfEX3CvXHA</recordid><startdate>20200730</startdate><enddate>20200730</enddate><creator>Canabarro, Askery</creator><creator>Tenório, Elayne</creator><creator>Martins, Renato</creator><creator>Martins, Laís</creator><creator>Brito, Samuraí</creator><creator>Chaves, Rafael</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5048-2317</orcidid></search><sort><creationdate>20200730</creationdate><title>Data-driven study of the COVID-19 pandemic via age-structured modelling and prediction of the health system failure in Brazil amid diverse intervention strategies</title><author>Canabarro, Askery ; Tenório, Elayne ; Martins, Renato ; Martins, Laís ; Brito, Samuraí ; Chaves, Rafael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-27e1d4aa6c93d8b70a29b273a4d067e5527f39cbb290a5675254f96b10893faf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Age</topic><topic>Age Distribution</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Betacoronavirus</topic><topic>Brazil - epidemiology</topic><topic>Catastrophic failure analysis</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Coronavirus Infections - epidemiology</topic><topic>Coronavirus Infections - mortality</topic><topic>Coronavirus Infections - prevention & control</topic><topic>Coronavirus Infections - virology</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Disease control</topic><topic>Disease transmission</topic><topic>Disease Transmission, Infectious - prevention & control</topic><topic>Epidemic models</topic><topic>Epidemics</topic><topic>Epidemiology</topic><topic>Female</topic><topic>Forecasting</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Infections</topic><topic>Intensive care units</topic><topic>Investigations</topic><topic>Male</topic><topic>Medicine and Health Sciences</topic><topic>Middle Aged</topic><topic>Models, Theoretical</topic><topic>Ordinary differential equations</topic><topic>Pandemics</topic><topic>Pandemics - prevention & control</topic><topic>People and places</topic><topic>Physics</topic><topic>Pneumonia, Viral - epidemiology</topic><topic>Pneumonia, Viral - mortality</topic><topic>Pneumonia, Viral - prevention & control</topic><topic>Pneumonia, Viral - virology</topic><topic>Population</topic><topic>Prognosis</topic><topic>Public health</topic><topic>Quarantine</topic><topic>Quarantine - methods</topic><topic>SARS-CoV-2</topic><topic>Schools</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Social distancing</topic><topic>Social Sciences</topic><topic>Vaccines</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Canabarro, Askery</creatorcontrib><creatorcontrib>Tenório, Elayne</creatorcontrib><creatorcontrib>Martins, Renato</creatorcontrib><creatorcontrib>Martins, Laís</creatorcontrib><creatorcontrib>Brito, Samuraí</creatorcontrib><creatorcontrib>Chaves, Rafael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Canabarro, Askery</au><au>Tenório, Elayne</au><au>Martins, Renato</au><au>Martins, Laís</au><au>Brito, Samuraí</au><au>Chaves, Rafael</au><au>Braunstein, Lidia Adriana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-driven study of the COVID-19 pandemic via age-structured modelling and prediction of the health system failure in Brazil amid diverse intervention strategies</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-07-30</date><risdate>2020</risdate><volume>15</volume><issue>7</issue><spage>e0236310</spage><epage>e0236310</epage><pages>e0236310-e0236310</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In this work we propose a data-driven age-structured census-based SIRD-like epidemiological model capable of forecasting the spread of COVID-19 in Brazil. We model the current scenario of closed schools and universities, social distancing of people above sixty years old and voluntary home quarantine to show that it is still not enough to protect the health system by explicitly computing the demand for hospital intensive care units. We also show that an urgent intense quarantine might be the only solution to avoid the collapse of the health system and, consequently, to minimize the quantity of deaths. On the other hand, we demonstrate that the relaxation of the already imposed control measures in the next days would be catastrophic.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32730352</pmid><doi>10.1371/journal.pone.0236310</doi><orcidid>https://orcid.org/0000-0001-5048-2317</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-07, Vol.15 (7), p.e0236310-e0236310 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2429056802 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adolescent Adult Age Age Distribution Aged Aged, 80 and over Betacoronavirus Brazil - epidemiology Catastrophic failure analysis Child Child, Preschool Coronavirus Infections - epidemiology Coronavirus Infections - mortality Coronavirus Infections - prevention & control Coronavirus Infections - virology Coronaviruses COVID-19 Disease control Disease transmission Disease Transmission, Infectious - prevention & control Epidemic models Epidemics Epidemiology Female Forecasting Hospitals Humans Infant Infant, Newborn Infections Intensive care units Investigations Male Medicine and Health Sciences Middle Aged Models, Theoretical Ordinary differential equations Pandemics Pandemics - prevention & control People and places Physics Pneumonia, Viral - epidemiology Pneumonia, Viral - mortality Pneumonia, Viral - prevention & control Pneumonia, Viral - virology Population Prognosis Public health Quarantine Quarantine - methods SARS-CoV-2 Schools Severe acute respiratory syndrome coronavirus 2 Social distancing Social Sciences Vaccines Young Adult |
title | Data-driven study of the COVID-19 pandemic via age-structured modelling and prediction of the health system failure in Brazil amid diverse intervention strategies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A48%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-driven%20study%20of%20the%20COVID-19%20pandemic%20via%20age-structured%20modelling%20and%20prediction%20of%20the%20health%20system%20failure%20in%20Brazil%20amid%20diverse%20intervention%20strategies&rft.jtitle=PloS%20one&rft.au=Canabarro,%20Askery&rft.date=2020-07-30&rft.volume=15&rft.issue=7&rft.spage=e0236310&rft.epage=e0236310&rft.pages=e0236310-e0236310&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0236310&rft_dat=%3Cproquest_plos_%3E2429783168%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429056802&rft_id=info:pmid/32730352&rft_doaj_id=oai_doaj_org_article_2a3c104ea02f4e03b16de586e7aaf353&rfr_iscdi=true |