Sensing and signaling of immunogenic extracellular RNAs restrain group 2 innate lymphoid cell-driven acute lung inflammation and airway hyperresponsiveness

Repeated exposures to environmental allergens in susceptible individuals drive the development of type 2 inflammatory conditions such as asthma, which have been traditionally considered to be mainly mediated by Th2 cells. However, emerging evidence suggest that a new innate cell type, group 2 innate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-07, Vol.15 (7), p.e0236744
Hauptverfasser: She, Li, Alanazi, Hamad H., Yan, Liping, Brooks, Edward G., Dube, Peter H., Xiang, Yan, Zhang, Fushun, Sun, Yilun, Liu, Yong, Zhang, Xin, Li, Xiao-Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page e0236744
container_title PloS one
container_volume 15
creator She, Li
Alanazi, Hamad H.
Yan, Liping
Brooks, Edward G.
Dube, Peter H.
Xiang, Yan
Zhang, Fushun
Sun, Yilun
Liu, Yong
Zhang, Xin
Li, Xiao-Dong
description Repeated exposures to environmental allergens in susceptible individuals drive the development of type 2 inflammatory conditions such as asthma, which have been traditionally considered to be mainly mediated by Th2 cells. However, emerging evidence suggest that a new innate cell type, group 2 innate lymphoid cells (ILC2), plays a central role in initiating and amplifying a type 2 response, even in the absence of adaptive immunity. At present, the regulatory mechanisms for controlling ILC2 activation remain poorly understood. Here we report that respiratory delivery of immunogenic extracellular RNA (exRNAs) derived from RNA- and DNA-virus infected cells, was able to activate a protective response against acute type 2 lung immunopathology and airway hyperresponsiveness (AHR) induced by IL-33 and a fungal allergen, A. flavus, in mice. Mechanistically, we found that the innate immune responses triggered by exRNAs had a potent suppressive effect in vivo on the proliferation and function of ILC2 without the involvement of adaptive immunity. We further provided the loss-of-function genetic evidence that the TLR3- and MAVS-mediated signaling axis is essential for the inhibitory effects of exRNAs in mouse lungs. Thus, our results indicate that the host detection of extracellular immunostimulatory RNAs generated during respiratory viral infections have an important function in the regulation of ILC2-driven acute lung inflammation.
doi_str_mv 10.1371/journal.pone.0236744
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2429056661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_97abba02bb994357ba6de8b43621c459</doaj_id><sourcerecordid>2429056661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-19788014ce6d6f42e420ca3b0ddab36769d7c88ca70e93eefb82d0e5f70d6aac3</originalsourceid><addsrcrecordid>eNp1ks9u1DAQxiMEoqXwBkhY4pzFsRMnviBVVYFKFUj8OVsTe5L1KrGDnRT2WXhZnG5A9MDJ9sw3v7E_T5a9LOiu4HXx5uCX4GDYTd7hjjIu6rJ8lJ0XkrNcMMof_7M_y57FeKC04o0QT7MzzmpOOZXn2a8v6KJ1PQFnSLR9Iq4n3xE7jovzPTqrCf6cA2gchmWAQD5_vIwkYEwx60gf_DIRRqxzMCMZjuO099aQVZ6bYO_QEdDLmloS2bpugHGE2Xp33xRs-AFHsj9OGBI0PSeuNRjj8-xJB0PEF9t6kX17d_316kN---n9zdXlba4ryue8kHXT0KLUKIzoSoYloxp4S42BNtkipKl102ioKUqO2LUNMxSrrqZGAGh-kb06cafBR7X5GhUrmaSVEKJIipuTwng4qCnYEcJRebDqPuBDryDMVg-oZA1tC5S1rZQlr-oWhMGmLblghS4rmVhvt25LO6LR6JKPwwPow4yze9X7O1VzyXjRJMDrDRD89yV9w3-uXJ5UOvgYA3Z_OxRUrQP0p0qtA6S2AeK_ASfWv94</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429056661</pqid></control><display><type>article</type><title>Sensing and signaling of immunogenic extracellular RNAs restrain group 2 innate lymphoid cell-driven acute lung inflammation and airway hyperresponsiveness</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>She, Li ; Alanazi, Hamad H. ; Yan, Liping ; Brooks, Edward G. ; Dube, Peter H. ; Xiang, Yan ; Zhang, Fushun ; Sun, Yilun ; Liu, Yong ; Zhang, Xin ; Li, Xiao-Dong</creator><contributor>Fehrenbach, Heinz</contributor><creatorcontrib>She, Li ; Alanazi, Hamad H. ; Yan, Liping ; Brooks, Edward G. ; Dube, Peter H. ; Xiang, Yan ; Zhang, Fushun ; Sun, Yilun ; Liu, Yong ; Zhang, Xin ; Li, Xiao-Dong ; Fehrenbach, Heinz</creatorcontrib><description>Repeated exposures to environmental allergens in susceptible individuals drive the development of type 2 inflammatory conditions such as asthma, which have been traditionally considered to be mainly mediated by Th2 cells. However, emerging evidence suggest that a new innate cell type, group 2 innate lymphoid cells (ILC2), plays a central role in initiating and amplifying a type 2 response, even in the absence of adaptive immunity. At present, the regulatory mechanisms for controlling ILC2 activation remain poorly understood. Here we report that respiratory delivery of immunogenic extracellular RNA (exRNAs) derived from RNA- and DNA-virus infected cells, was able to activate a protective response against acute type 2 lung immunopathology and airway hyperresponsiveness (AHR) induced by IL-33 and a fungal allergen, A. flavus, in mice. Mechanistically, we found that the innate immune responses triggered by exRNAs had a potent suppressive effect in vivo on the proliferation and function of ILC2 without the involvement of adaptive immunity. We further provided the loss-of-function genetic evidence that the TLR3- and MAVS-mediated signaling axis is essential for the inhibitory effects of exRNAs in mouse lungs. Thus, our results indicate that the host detection of extracellular immunostimulatory RNAs generated during respiratory viral infections have an important function in the regulation of ILC2-driven acute lung inflammation.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0236744</identifier><identifier>PMID: 32730309</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Adaptive immunity ; Allergens ; Antibiotics ; Asthma ; Biology and Life Sciences ; Cytokines ; Deoxyribonucleic acid ; DNA ; Genetics ; Helper cells ; Homeostasis ; Hospitals ; Immune response ; Immunity ; Immunogenicity ; Immunology ; Immunostimulation ; Inflammation ; Innate immunity ; Laboratory animals ; Lungs ; Lymphocytes T ; Lymphoid cells ; Medicine and Health Sciences ; Otolaryngology ; Regulatory mechanisms (biology) ; Respiratory tract ; Ribonucleic acid ; RNA ; RNA viruses ; Signaling ; Surgery ; TLR3 protein ; Toll-like receptors ; Viral infections ; Viruses</subject><ispartof>PloS one, 2020-07, Vol.15 (7), p.e0236744</ispartof><rights>2020 She et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 She et al 2020 She et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-19788014ce6d6f42e420ca3b0ddab36769d7c88ca70e93eefb82d0e5f70d6aac3</citedby><cites>FETCH-LOGICAL-c503t-19788014ce6d6f42e420ca3b0ddab36769d7c88ca70e93eefb82d0e5f70d6aac3</cites><orcidid>0000-0002-4349-6996 ; 0000-0002-5248-1489 ; 0000-0002-1962-3334 ; 0000-0002-5512-8349 ; 0000-0002-7633-1629</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392318/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392318/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids></links><search><contributor>Fehrenbach, Heinz</contributor><creatorcontrib>She, Li</creatorcontrib><creatorcontrib>Alanazi, Hamad H.</creatorcontrib><creatorcontrib>Yan, Liping</creatorcontrib><creatorcontrib>Brooks, Edward G.</creatorcontrib><creatorcontrib>Dube, Peter H.</creatorcontrib><creatorcontrib>Xiang, Yan</creatorcontrib><creatorcontrib>Zhang, Fushun</creatorcontrib><creatorcontrib>Sun, Yilun</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Li, Xiao-Dong</creatorcontrib><title>Sensing and signaling of immunogenic extracellular RNAs restrain group 2 innate lymphoid cell-driven acute lung inflammation and airway hyperresponsiveness</title><title>PloS one</title><description>Repeated exposures to environmental allergens in susceptible individuals drive the development of type 2 inflammatory conditions such as asthma, which have been traditionally considered to be mainly mediated by Th2 cells. However, emerging evidence suggest that a new innate cell type, group 2 innate lymphoid cells (ILC2), plays a central role in initiating and amplifying a type 2 response, even in the absence of adaptive immunity. At present, the regulatory mechanisms for controlling ILC2 activation remain poorly understood. Here we report that respiratory delivery of immunogenic extracellular RNA (exRNAs) derived from RNA- and DNA-virus infected cells, was able to activate a protective response against acute type 2 lung immunopathology and airway hyperresponsiveness (AHR) induced by IL-33 and a fungal allergen, A. flavus, in mice. Mechanistically, we found that the innate immune responses triggered by exRNAs had a potent suppressive effect in vivo on the proliferation and function of ILC2 without the involvement of adaptive immunity. We further provided the loss-of-function genetic evidence that the TLR3- and MAVS-mediated signaling axis is essential for the inhibitory effects of exRNAs in mouse lungs. Thus, our results indicate that the host detection of extracellular immunostimulatory RNAs generated during respiratory viral infections have an important function in the regulation of ILC2-driven acute lung inflammation.</description><subject>Adaptive immunity</subject><subject>Allergens</subject><subject>Antibiotics</subject><subject>Asthma</subject><subject>Biology and Life Sciences</subject><subject>Cytokines</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Genetics</subject><subject>Helper cells</subject><subject>Homeostasis</subject><subject>Hospitals</subject><subject>Immune response</subject><subject>Immunity</subject><subject>Immunogenicity</subject><subject>Immunology</subject><subject>Immunostimulation</subject><subject>Inflammation</subject><subject>Innate immunity</subject><subject>Laboratory animals</subject><subject>Lungs</subject><subject>Lymphocytes T</subject><subject>Lymphoid cells</subject><subject>Medicine and Health Sciences</subject><subject>Otolaryngology</subject><subject>Regulatory mechanisms (biology)</subject><subject>Respiratory tract</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA viruses</subject><subject>Signaling</subject><subject>Surgery</subject><subject>TLR3 protein</subject><subject>Toll-like receptors</subject><subject>Viral infections</subject><subject>Viruses</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp1ks9u1DAQxiMEoqXwBkhY4pzFsRMnviBVVYFKFUj8OVsTe5L1KrGDnRT2WXhZnG5A9MDJ9sw3v7E_T5a9LOiu4HXx5uCX4GDYTd7hjjIu6rJ8lJ0XkrNcMMof_7M_y57FeKC04o0QT7MzzmpOOZXn2a8v6KJ1PQFnSLR9Iq4n3xE7jovzPTqrCf6cA2gchmWAQD5_vIwkYEwx60gf_DIRRqxzMCMZjuO099aQVZ6bYO_QEdDLmloS2bpugHGE2Xp33xRs-AFHsj9OGBI0PSeuNRjj8-xJB0PEF9t6kX17d_316kN---n9zdXlba4ryue8kHXT0KLUKIzoSoYloxp4S42BNtkipKl102ioKUqO2LUNMxSrrqZGAGh-kb06cafBR7X5GhUrmaSVEKJIipuTwng4qCnYEcJRebDqPuBDryDMVg-oZA1tC5S1rZQlr-oWhMGmLblghS4rmVhvt25LO6LR6JKPwwPow4yze9X7O1VzyXjRJMDrDRD89yV9w3-uXJ5UOvgYA3Z_OxRUrQP0p0qtA6S2AeK_ASfWv94</recordid><startdate>20200730</startdate><enddate>20200730</enddate><creator>She, Li</creator><creator>Alanazi, Hamad H.</creator><creator>Yan, Liping</creator><creator>Brooks, Edward G.</creator><creator>Dube, Peter H.</creator><creator>Xiang, Yan</creator><creator>Zhang, Fushun</creator><creator>Sun, Yilun</creator><creator>Liu, Yong</creator><creator>Zhang, Xin</creator><creator>Li, Xiao-Dong</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4349-6996</orcidid><orcidid>https://orcid.org/0000-0002-5248-1489</orcidid><orcidid>https://orcid.org/0000-0002-1962-3334</orcidid><orcidid>https://orcid.org/0000-0002-5512-8349</orcidid><orcidid>https://orcid.org/0000-0002-7633-1629</orcidid></search><sort><creationdate>20200730</creationdate><title>Sensing and signaling of immunogenic extracellular RNAs restrain group 2 innate lymphoid cell-driven acute lung inflammation and airway hyperresponsiveness</title><author>She, Li ; Alanazi, Hamad H. ; Yan, Liping ; Brooks, Edward G. ; Dube, Peter H. ; Xiang, Yan ; Zhang, Fushun ; Sun, Yilun ; Liu, Yong ; Zhang, Xin ; Li, Xiao-Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-19788014ce6d6f42e420ca3b0ddab36769d7c88ca70e93eefb82d0e5f70d6aac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive immunity</topic><topic>Allergens</topic><topic>Antibiotics</topic><topic>Asthma</topic><topic>Biology and Life Sciences</topic><topic>Cytokines</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Genetics</topic><topic>Helper cells</topic><topic>Homeostasis</topic><topic>Hospitals</topic><topic>Immune response</topic><topic>Immunity</topic><topic>Immunogenicity</topic><topic>Immunology</topic><topic>Immunostimulation</topic><topic>Inflammation</topic><topic>Innate immunity</topic><topic>Laboratory animals</topic><topic>Lungs</topic><topic>Lymphocytes T</topic><topic>Lymphoid cells</topic><topic>Medicine and Health Sciences</topic><topic>Otolaryngology</topic><topic>Regulatory mechanisms (biology)</topic><topic>Respiratory tract</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA viruses</topic><topic>Signaling</topic><topic>Surgery</topic><topic>TLR3 protein</topic><topic>Toll-like receptors</topic><topic>Viral infections</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>She, Li</creatorcontrib><creatorcontrib>Alanazi, Hamad H.</creatorcontrib><creatorcontrib>Yan, Liping</creatorcontrib><creatorcontrib>Brooks, Edward G.</creatorcontrib><creatorcontrib>Dube, Peter H.</creatorcontrib><creatorcontrib>Xiang, Yan</creatorcontrib><creatorcontrib>Zhang, Fushun</creatorcontrib><creatorcontrib>Sun, Yilun</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Li, Xiao-Dong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>She, Li</au><au>Alanazi, Hamad H.</au><au>Yan, Liping</au><au>Brooks, Edward G.</au><au>Dube, Peter H.</au><au>Xiang, Yan</au><au>Zhang, Fushun</au><au>Sun, Yilun</au><au>Liu, Yong</au><au>Zhang, Xin</au><au>Li, Xiao-Dong</au><au>Fehrenbach, Heinz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensing and signaling of immunogenic extracellular RNAs restrain group 2 innate lymphoid cell-driven acute lung inflammation and airway hyperresponsiveness</atitle><jtitle>PloS one</jtitle><date>2020-07-30</date><risdate>2020</risdate><volume>15</volume><issue>7</issue><spage>e0236744</spage><pages>e0236744-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Repeated exposures to environmental allergens in susceptible individuals drive the development of type 2 inflammatory conditions such as asthma, which have been traditionally considered to be mainly mediated by Th2 cells. However, emerging evidence suggest that a new innate cell type, group 2 innate lymphoid cells (ILC2), plays a central role in initiating and amplifying a type 2 response, even in the absence of adaptive immunity. At present, the regulatory mechanisms for controlling ILC2 activation remain poorly understood. Here we report that respiratory delivery of immunogenic extracellular RNA (exRNAs) derived from RNA- and DNA-virus infected cells, was able to activate a protective response against acute type 2 lung immunopathology and airway hyperresponsiveness (AHR) induced by IL-33 and a fungal allergen, A. flavus, in mice. Mechanistically, we found that the innate immune responses triggered by exRNAs had a potent suppressive effect in vivo on the proliferation and function of ILC2 without the involvement of adaptive immunity. We further provided the loss-of-function genetic evidence that the TLR3- and MAVS-mediated signaling axis is essential for the inhibitory effects of exRNAs in mouse lungs. Thus, our results indicate that the host detection of extracellular immunostimulatory RNAs generated during respiratory viral infections have an important function in the regulation of ILC2-driven acute lung inflammation.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>32730309</pmid><doi>10.1371/journal.pone.0236744</doi><orcidid>https://orcid.org/0000-0002-4349-6996</orcidid><orcidid>https://orcid.org/0000-0002-5248-1489</orcidid><orcidid>https://orcid.org/0000-0002-1962-3334</orcidid><orcidid>https://orcid.org/0000-0002-5512-8349</orcidid><orcidid>https://orcid.org/0000-0002-7633-1629</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-07, Vol.15 (7), p.e0236744
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2429056661
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Adaptive immunity
Allergens
Antibiotics
Asthma
Biology and Life Sciences
Cytokines
Deoxyribonucleic acid
DNA
Genetics
Helper cells
Homeostasis
Hospitals
Immune response
Immunity
Immunogenicity
Immunology
Immunostimulation
Inflammation
Innate immunity
Laboratory animals
Lungs
Lymphocytes T
Lymphoid cells
Medicine and Health Sciences
Otolaryngology
Regulatory mechanisms (biology)
Respiratory tract
Ribonucleic acid
RNA
RNA viruses
Signaling
Surgery
TLR3 protein
Toll-like receptors
Viral infections
Viruses
title Sensing and signaling of immunogenic extracellular RNAs restrain group 2 innate lymphoid cell-driven acute lung inflammation and airway hyperresponsiveness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T03%3A56%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensing%20and%20signaling%20of%20immunogenic%20extracellular%20RNAs%20restrain%20group%202%20innate%20lymphoid%20cell-driven%20acute%20lung%20inflammation%20and%20airway%20hyperresponsiveness&rft.jtitle=PloS%20one&rft.au=She,%20Li&rft.date=2020-07-30&rft.volume=15&rft.issue=7&rft.spage=e0236744&rft.pages=e0236744-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0236744&rft_dat=%3Cproquest_plos_%3E2429056661%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429056661&rft_id=info:pmid/32730309&rft_doaj_id=oai_doaj_org_article_97abba02bb994357ba6de8b43621c459&rfr_iscdi=true