Adaptability and stability evaluation of maize hybrids using Bayesian segmented regression models
The occurrence of genotype by environment interaction (G x E), which is defined as the differential response of genotypes to environmental variation, is frequently reported in maize cultures, making it challenging to recommend cultivars. Methods allowing to study the potential nonlinear pattern of g...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-07, Vol.15 (7), p.e0236571-e0236571 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0236571 |
---|---|
container_issue | 7 |
container_start_page | e0236571 |
container_title | PloS one |
container_volume | 15 |
creator | Oliveira, Tâmara Rebecca A. Carvalho, Hélio Wilson L. Nascimento, Moysés Costa, Emiliano Fernandes N. Oliveira, Gustavo Hugo F. Gravina, Geraldo A. Junior, Antonio T. Amaral Filho, José Luiz S. Carvalho |
description | The occurrence of genotype by environment interaction (G x E), which is defined as the differential response of genotypes to environmental variation, is frequently reported in maize cultures, making it challenging to recommend cultivars. Methods allowing to study the potential nonlinear pattern of genotype responses to environmental variation allied to prior beliefs on unknown parameters are interesting to evaluate the phenotypic adaptability and stability of genotypes. In this context, the present study aimed to assess the adaptability and stability of maize hybrids, by using the Bayesian segmented regression model, and evaluate the efficacy of using informative and minimally informative prior distributions for the selection of cultivars. Randomized complete-block design experiments were carried out to study the yield (kg/ha) of 25 maize hybrids, in 22 different environments, in Northeastern Brazil. The Bayesian segmented regression model fitted using informative prior distributions presented lower credibility intervals and Deviance Criterium of Information values, compared to those obtained by fitting using minimally informative distributions. Therefore, the model using informative prior distributions was considered for the adaptability and stability evaluation of maize genotypes. Once most northeastern farmers in Brazil have limited capital, the genotype P4285HX should be considered for planting, due to its high yield performance and adaptability to unfavorable environments. |
doi_str_mv | 10.1371/journal.pone.0236571 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2429056265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_28689a795bbc4c2fb19798f40fe90a16</doaj_id><sourcerecordid>2429781340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-96e961ab0f93ef9d80e77fd332c8c2bf3bf5acc5ce9e41fe0e98f68fe31516253</originalsourceid><addsrcrecordid>eNptkstu1DAUhiMEoqXwBkhEYsNmBl9iJ94gtRWXSpXYwNo6to9Tj5x4sJNKw9OTYUJFESsf29_5z0V_Vb2mZEt5S9_v0pxHiNt9GnFLGJeipU-qc6o420hG-NO_4rPqRSk7QgTvpHxenXHWcsK65ryCSwf7CUyIYTrUMLq6PNzwHuIMU0hjnXw9QPiJ9d3B5OBKPZcw9vUVHLAEGOuC_YDjhK7O2Gcs5Zg0JIexvKyeeYgFX63nRfX908dv1182t18_31xf3m6sIHzaKIlKUjDEK45euY5g23rHObOdZcZz4wVYKywqbKhHgqrzsvPIqaCSCX5RvTnp7mMqet1O0axhigjJ5JG4OREuwU7vcxggH3SCoH8_pNxryFOwETXrZKegVcIY21jmDVXtUq8hHhUBKhetD2u12Qzo7DJ8hvhI9PHPGO50n-51yxVjQi0C71aBnH7MWCY9hGIxRhgxzae-247yhizo23_Q_0_XnCibUykZ_UMzlOijY_5k6aNj9OoY_gt5s7eT</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429056265</pqid></control><display><type>article</type><title>Adaptability and stability evaluation of maize hybrids using Bayesian segmented regression models</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Oliveira, Tâmara Rebecca A. ; Carvalho, Hélio Wilson L. ; Nascimento, Moysés ; Costa, Emiliano Fernandes N. ; Oliveira, Gustavo Hugo F. ; Gravina, Geraldo A. ; Junior, Antonio T. Amaral ; Filho, José Luiz S. Carvalho</creator><contributor>Teodoro, Paulo Eduardo</contributor><creatorcontrib>Oliveira, Tâmara Rebecca A. ; Carvalho, Hélio Wilson L. ; Nascimento, Moysés ; Costa, Emiliano Fernandes N. ; Oliveira, Gustavo Hugo F. ; Gravina, Geraldo A. ; Junior, Antonio T. Amaral ; Filho, José Luiz S. Carvalho ; Teodoro, Paulo Eduardo</creatorcontrib><description>The occurrence of genotype by environment interaction (G x E), which is defined as the differential response of genotypes to environmental variation, is frequently reported in maize cultures, making it challenging to recommend cultivars. Methods allowing to study the potential nonlinear pattern of genotype responses to environmental variation allied to prior beliefs on unknown parameters are interesting to evaluate the phenotypic adaptability and stability of genotypes. In this context, the present study aimed to assess the adaptability and stability of maize hybrids, by using the Bayesian segmented regression model, and evaluate the efficacy of using informative and minimally informative prior distributions for the selection of cultivars. Randomized complete-block design experiments were carried out to study the yield (kg/ha) of 25 maize hybrids, in 22 different environments, in Northeastern Brazil. The Bayesian segmented regression model fitted using informative prior distributions presented lower credibility intervals and Deviance Criterium of Information values, compared to those obtained by fitting using minimally informative distributions. Therefore, the model using informative prior distributions was considered for the adaptability and stability evaluation of maize genotypes. Once most northeastern farmers in Brazil have limited capital, the genotype P4285HX should be considered for planting, due to its high yield performance and adaptability to unfavorable environments.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0236571</identifier><identifier>PMID: 32730284</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Adaptability ; Bayesian analysis ; Biology and Life Sciences ; Computer and Information Sciences ; Corn ; Crop yield ; Cultivars ; Earth Sciences ; Ecology and Environmental Sciences ; Engineering and Technology ; Genotype & phenotype ; Genotype-environment interactions ; Genotypes ; Hybrids ; Mathematical models ; Methods ; People and places ; Physical Sciences ; Regression analysis ; Regression models ; Research and Analysis Methods ; Stability analysis ; Variance analysis</subject><ispartof>PloS one, 2020-07, Vol.15 (7), p.e0236571-e0236571</ispartof><rights>2020 Oliveira et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Oliveira et al 2020 Oliveira et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-96e961ab0f93ef9d80e77fd332c8c2bf3bf5acc5ce9e41fe0e98f68fe31516253</citedby><cites>FETCH-LOGICAL-c503t-96e961ab0f93ef9d80e77fd332c8c2bf3bf5acc5ce9e41fe0e98f68fe31516253</cites><orcidid>0000-0003-4418-1547 ; 0000-0002-8146-2084</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392259/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392259/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids></links><search><contributor>Teodoro, Paulo Eduardo</contributor><creatorcontrib>Oliveira, Tâmara Rebecca A.</creatorcontrib><creatorcontrib>Carvalho, Hélio Wilson L.</creatorcontrib><creatorcontrib>Nascimento, Moysés</creatorcontrib><creatorcontrib>Costa, Emiliano Fernandes N.</creatorcontrib><creatorcontrib>Oliveira, Gustavo Hugo F.</creatorcontrib><creatorcontrib>Gravina, Geraldo A.</creatorcontrib><creatorcontrib>Junior, Antonio T. Amaral</creatorcontrib><creatorcontrib>Filho, José Luiz S. Carvalho</creatorcontrib><title>Adaptability and stability evaluation of maize hybrids using Bayesian segmented regression models</title><title>PloS one</title><description>The occurrence of genotype by environment interaction (G x E), which is defined as the differential response of genotypes to environmental variation, is frequently reported in maize cultures, making it challenging to recommend cultivars. Methods allowing to study the potential nonlinear pattern of genotype responses to environmental variation allied to prior beliefs on unknown parameters are interesting to evaluate the phenotypic adaptability and stability of genotypes. In this context, the present study aimed to assess the adaptability and stability of maize hybrids, by using the Bayesian segmented regression model, and evaluate the efficacy of using informative and minimally informative prior distributions for the selection of cultivars. Randomized complete-block design experiments were carried out to study the yield (kg/ha) of 25 maize hybrids, in 22 different environments, in Northeastern Brazil. The Bayesian segmented regression model fitted using informative prior distributions presented lower credibility intervals and Deviance Criterium of Information values, compared to those obtained by fitting using minimally informative distributions. Therefore, the model using informative prior distributions was considered for the adaptability and stability evaluation of maize genotypes. Once most northeastern farmers in Brazil have limited capital, the genotype P4285HX should be considered for planting, due to its high yield performance and adaptability to unfavorable environments.</description><subject>Adaptability</subject><subject>Bayesian analysis</subject><subject>Biology and Life Sciences</subject><subject>Computer and Information Sciences</subject><subject>Corn</subject><subject>Crop yield</subject><subject>Cultivars</subject><subject>Earth Sciences</subject><subject>Ecology and Environmental Sciences</subject><subject>Engineering and Technology</subject><subject>Genotype & phenotype</subject><subject>Genotype-environment interactions</subject><subject>Genotypes</subject><subject>Hybrids</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>People and places</subject><subject>Physical Sciences</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Research and Analysis Methods</subject><subject>Stability analysis</subject><subject>Variance analysis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptkstu1DAUhiMEoqXwBkhEYsNmBl9iJ94gtRWXSpXYwNo6to9Tj5x4sJNKw9OTYUJFESsf29_5z0V_Vb2mZEt5S9_v0pxHiNt9GnFLGJeipU-qc6o420hG-NO_4rPqRSk7QgTvpHxenXHWcsK65ryCSwf7CUyIYTrUMLq6PNzwHuIMU0hjnXw9QPiJ9d3B5OBKPZcw9vUVHLAEGOuC_YDjhK7O2Gcs5Zg0JIexvKyeeYgFX63nRfX908dv1182t18_31xf3m6sIHzaKIlKUjDEK45euY5g23rHObOdZcZz4wVYKywqbKhHgqrzsvPIqaCSCX5RvTnp7mMqet1O0axhigjJ5JG4OREuwU7vcxggH3SCoH8_pNxryFOwETXrZKegVcIY21jmDVXtUq8hHhUBKhetD2u12Qzo7DJ8hvhI9PHPGO50n-51yxVjQi0C71aBnH7MWCY9hGIxRhgxzae-247yhizo23_Q_0_XnCibUykZ_UMzlOijY_5k6aNj9OoY_gt5s7eT</recordid><startdate>20200730</startdate><enddate>20200730</enddate><creator>Oliveira, Tâmara Rebecca A.</creator><creator>Carvalho, Hélio Wilson L.</creator><creator>Nascimento, Moysés</creator><creator>Costa, Emiliano Fernandes N.</creator><creator>Oliveira, Gustavo Hugo F.</creator><creator>Gravina, Geraldo A.</creator><creator>Junior, Antonio T. Amaral</creator><creator>Filho, José Luiz S. Carvalho</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4418-1547</orcidid><orcidid>https://orcid.org/0000-0002-8146-2084</orcidid></search><sort><creationdate>20200730</creationdate><title>Adaptability and stability evaluation of maize hybrids using Bayesian segmented regression models</title><author>Oliveira, Tâmara Rebecca A. ; Carvalho, Hélio Wilson L. ; Nascimento, Moysés ; Costa, Emiliano Fernandes N. ; Oliveira, Gustavo Hugo F. ; Gravina, Geraldo A. ; Junior, Antonio T. Amaral ; Filho, José Luiz S. Carvalho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-96e961ab0f93ef9d80e77fd332c8c2bf3bf5acc5ce9e41fe0e98f68fe31516253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptability</topic><topic>Bayesian analysis</topic><topic>Biology and Life Sciences</topic><topic>Computer and Information Sciences</topic><topic>Corn</topic><topic>Crop yield</topic><topic>Cultivars</topic><topic>Earth Sciences</topic><topic>Ecology and Environmental Sciences</topic><topic>Engineering and Technology</topic><topic>Genotype & phenotype</topic><topic>Genotype-environment interactions</topic><topic>Genotypes</topic><topic>Hybrids</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>People and places</topic><topic>Physical Sciences</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Research and Analysis Methods</topic><topic>Stability analysis</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oliveira, Tâmara Rebecca A.</creatorcontrib><creatorcontrib>Carvalho, Hélio Wilson L.</creatorcontrib><creatorcontrib>Nascimento, Moysés</creatorcontrib><creatorcontrib>Costa, Emiliano Fernandes N.</creatorcontrib><creatorcontrib>Oliveira, Gustavo Hugo F.</creatorcontrib><creatorcontrib>Gravina, Geraldo A.</creatorcontrib><creatorcontrib>Junior, Antonio T. Amaral</creatorcontrib><creatorcontrib>Filho, José Luiz S. Carvalho</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oliveira, Tâmara Rebecca A.</au><au>Carvalho, Hélio Wilson L.</au><au>Nascimento, Moysés</au><au>Costa, Emiliano Fernandes N.</au><au>Oliveira, Gustavo Hugo F.</au><au>Gravina, Geraldo A.</au><au>Junior, Antonio T. Amaral</au><au>Filho, José Luiz S. Carvalho</au><au>Teodoro, Paulo Eduardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptability and stability evaluation of maize hybrids using Bayesian segmented regression models</atitle><jtitle>PloS one</jtitle><date>2020-07-30</date><risdate>2020</risdate><volume>15</volume><issue>7</issue><spage>e0236571</spage><epage>e0236571</epage><pages>e0236571-e0236571</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The occurrence of genotype by environment interaction (G x E), which is defined as the differential response of genotypes to environmental variation, is frequently reported in maize cultures, making it challenging to recommend cultivars. Methods allowing to study the potential nonlinear pattern of genotype responses to environmental variation allied to prior beliefs on unknown parameters are interesting to evaluate the phenotypic adaptability and stability of genotypes. In this context, the present study aimed to assess the adaptability and stability of maize hybrids, by using the Bayesian segmented regression model, and evaluate the efficacy of using informative and minimally informative prior distributions for the selection of cultivars. Randomized complete-block design experiments were carried out to study the yield (kg/ha) of 25 maize hybrids, in 22 different environments, in Northeastern Brazil. The Bayesian segmented regression model fitted using informative prior distributions presented lower credibility intervals and Deviance Criterium of Information values, compared to those obtained by fitting using minimally informative distributions. Therefore, the model using informative prior distributions was considered for the adaptability and stability evaluation of maize genotypes. Once most northeastern farmers in Brazil have limited capital, the genotype P4285HX should be considered for planting, due to its high yield performance and adaptability to unfavorable environments.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>32730284</pmid><doi>10.1371/journal.pone.0236571</doi><orcidid>https://orcid.org/0000-0003-4418-1547</orcidid><orcidid>https://orcid.org/0000-0002-8146-2084</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-07, Vol.15 (7), p.e0236571-e0236571 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2429056265 |
source | DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adaptability Bayesian analysis Biology and Life Sciences Computer and Information Sciences Corn Crop yield Cultivars Earth Sciences Ecology and Environmental Sciences Engineering and Technology Genotype & phenotype Genotype-environment interactions Genotypes Hybrids Mathematical models Methods People and places Physical Sciences Regression analysis Regression models Research and Analysis Methods Stability analysis Variance analysis |
title | Adaptability and stability evaluation of maize hybrids using Bayesian segmented regression models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A55%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptability%20and%20stability%20evaluation%20of%20maize%20hybrids%20using%20Bayesian%20segmented%20regression%20models&rft.jtitle=PloS%20one&rft.au=Oliveira,%20T%C3%A2mara%20Rebecca%20A.&rft.date=2020-07-30&rft.volume=15&rft.issue=7&rft.spage=e0236571&rft.epage=e0236571&rft.pages=e0236571-e0236571&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0236571&rft_dat=%3Cproquest_plos_%3E2429781340%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429056265&rft_id=info:pmid/32730284&rft_doaj_id=oai_doaj_org_article_28689a795bbc4c2fb19798f40fe90a16&rfr_iscdi=true |