Understanding the spatial dimension of natural language by measuring the spatial semantic similarity of words through a scalable geospatial context window

Measuring the semantic similarity between words is important for natural language processing tasks. The traditional models of semantic similarity perform well in most cases, but when dealing with words that involve geographical context, spatial semantics of implied spatial information are rarely pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-07, Vol.15 (7), p.e0236347-e0236347
Hauptverfasser: Wang, Bozhi, Fei, Teng, Kang, Yuhao, Li, Meng, Du, Qingyun, Han, Meng, Dong, Ning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0236347
container_issue 7
container_start_page e0236347
container_title PloS one
container_volume 15
creator Wang, Bozhi
Fei, Teng
Kang, Yuhao
Li, Meng
Du, Qingyun
Han, Meng
Dong, Ning
description Measuring the semantic similarity between words is important for natural language processing tasks. The traditional models of semantic similarity perform well in most cases, but when dealing with words that involve geographical context, spatial semantics of implied spatial information are rarely preserved. Geographic information retrieval (GIR) methods have focused on this issue; however, they sometimes fail to solve the problem because the spatial and textual similarities of words are considered and calculated separately. In this paper, from the perspective of spatial context, we consider the two parts as a whole-spatial context semantics, and we propose a method that measures spatial semantic similarity using a sliding geospatial context window for geo-tagged words. The proposed method was first validated with a set of simulated data and then applied to a real-world dataset from Flickr. As a result, a spatial semantic similarity model at different scales is presented. We believe this model is a necessary supplement for traditional textual-language semantic analyses of words obtained by word-embedding technologies. This study has the potential to improve the quality of recommendation systems by considering relevant spatial context semantics, and benefits linguistic semantic research by emphasising the spatial cognition among words.
doi_str_mv 10.1371/journal.pone.0236347
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2426534028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0bf2203684ee4741a1c0fccab992a592</doaj_id><sourcerecordid>2427309599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-cc9c07af7295e19d516615272887e9093688bff1b8af485eaf8e1d9257e1ec6b3</originalsourceid><addsrcrecordid>eNptUk1v1DAQjRCIlsI_QGCJC5dd_JHY8QUJVXxUqsSFnq2JM8l6ldiLnXTZv8KvxdvdrdqKk63xe2_mjV9RvGV0yYRin9Zhjh6G5SZ4XFIupCjVs-KcacEXklPx_MH9rHiV0prSStRSvizOBFeUU87Pi783vsWYJvCt8z2ZVkjSBiYHA2ndiD654EnoiIdpjrk4gO9n6JE0OzIipDk-pSUcwU_OkuRGN0B0024vsA2xTRkYw9yvCJBkYYBmQNJjOFFt8BP-mcjW-TZsXxcvOhgSvjmeF8XNt6-_Ln8srn9-v7r8cr2wFZfTwlptqYJOcV0h023FpGQVV7yuFWqqhazrputYU0NX1hVCVyNrNa8UMrSyERfF-4PuZgjJHNeaDC-5rERJeZ0RVwdEG2BtNtGNEHcmgDN3hRB7AzFbHtDQpuN54bIuEUtVMmCWdtZCozWHSvOs9fnYbW5GbC36Ke_1kejjF-9Wpg-3RgmlSimzwMejQAy_Z0yTGV2yOOSfwTDfza0E1ZXWGfrhCfT_7soDysaQUsTufhhGzT5qJ5bZR80co5Zp7x4auSedsiX-Aef81js</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2426534028</pqid></control><display><type>article</type><title>Understanding the spatial dimension of natural language by measuring the spatial semantic similarity of words through a scalable geospatial context window</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Bozhi ; Fei, Teng ; Kang, Yuhao ; Li, Meng ; Du, Qingyun ; Han, Meng ; Dong, Ning</creator><contributor>Amancio, Diego Raphael</contributor><creatorcontrib>Wang, Bozhi ; Fei, Teng ; Kang, Yuhao ; Li, Meng ; Du, Qingyun ; Han, Meng ; Dong, Ning ; Amancio, Diego Raphael</creatorcontrib><description>Measuring the semantic similarity between words is important for natural language processing tasks. The traditional models of semantic similarity perform well in most cases, but when dealing with words that involve geographical context, spatial semantics of implied spatial information are rarely preserved. Geographic information retrieval (GIR) methods have focused on this issue; however, they sometimes fail to solve the problem because the spatial and textual similarities of words are considered and calculated separately. In this paper, from the perspective of spatial context, we consider the two parts as a whole-spatial context semantics, and we propose a method that measures spatial semantic similarity using a sliding geospatial context window for geo-tagged words. The proposed method was first validated with a set of simulated data and then applied to a real-world dataset from Flickr. As a result, a spatial semantic similarity model at different scales is presented. We believe this model is a necessary supplement for traditional textual-language semantic analyses of words obtained by word-embedding technologies. This study has the potential to improve the quality of recommendation systems by considering relevant spatial context semantics, and benefits linguistic semantic research by emphasising the spatial cognition among words.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0236347</identifier><identifier>PMID: 32702022</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Bars ; Biology and Life Sciences ; Cognition ; Cognition &amp; reasoning ; Comprehension ; Computer and Information Sciences ; Computer simulation ; Context ; Earth Sciences ; Electric power ; Embedding ; Environmental science ; Humans ; Information processing ; Information retrieval ; Information Storage and Retrieval ; Keywords ; Language ; Linguistics - trends ; Medicine and Health Sciences ; Natural language ; Natural Language Processing ; PubMed ; Recommender systems ; Research and Analysis Methods ; Semantics ; Similarity ; Social Sciences ; Software ; Spatial data ; Visualization ; Words (language)</subject><ispartof>PloS one, 2020-07, Vol.15 (7), p.e0236347-e0236347</ispartof><rights>2020 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Wang et al 2020 Wang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-cc9c07af7295e19d516615272887e9093688bff1b8af485eaf8e1d9257e1ec6b3</citedby><cites>FETCH-LOGICAL-c526t-cc9c07af7295e19d516615272887e9093688bff1b8af485eaf8e1d9257e1ec6b3</cites><orcidid>0000-0002-3415-1654 ; 0000-0001-7040-2206</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7377466/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7377466/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32702022$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Amancio, Diego Raphael</contributor><creatorcontrib>Wang, Bozhi</creatorcontrib><creatorcontrib>Fei, Teng</creatorcontrib><creatorcontrib>Kang, Yuhao</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Du, Qingyun</creatorcontrib><creatorcontrib>Han, Meng</creatorcontrib><creatorcontrib>Dong, Ning</creatorcontrib><title>Understanding the spatial dimension of natural language by measuring the spatial semantic similarity of words through a scalable geospatial context window</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Measuring the semantic similarity between words is important for natural language processing tasks. The traditional models of semantic similarity perform well in most cases, but when dealing with words that involve geographical context, spatial semantics of implied spatial information are rarely preserved. Geographic information retrieval (GIR) methods have focused on this issue; however, they sometimes fail to solve the problem because the spatial and textual similarities of words are considered and calculated separately. In this paper, from the perspective of spatial context, we consider the two parts as a whole-spatial context semantics, and we propose a method that measures spatial semantic similarity using a sliding geospatial context window for geo-tagged words. The proposed method was first validated with a set of simulated data and then applied to a real-world dataset from Flickr. As a result, a spatial semantic similarity model at different scales is presented. We believe this model is a necessary supplement for traditional textual-language semantic analyses of words obtained by word-embedding technologies. This study has the potential to improve the quality of recommendation systems by considering relevant spatial context semantics, and benefits linguistic semantic research by emphasising the spatial cognition among words.</description><subject>Algorithms</subject><subject>Bars</subject><subject>Biology and Life Sciences</subject><subject>Cognition</subject><subject>Cognition &amp; reasoning</subject><subject>Comprehension</subject><subject>Computer and Information Sciences</subject><subject>Computer simulation</subject><subject>Context</subject><subject>Earth Sciences</subject><subject>Electric power</subject><subject>Embedding</subject><subject>Environmental science</subject><subject>Humans</subject><subject>Information processing</subject><subject>Information retrieval</subject><subject>Information Storage and Retrieval</subject><subject>Keywords</subject><subject>Language</subject><subject>Linguistics - trends</subject><subject>Medicine and Health Sciences</subject><subject>Natural language</subject><subject>Natural Language Processing</subject><subject>PubMed</subject><subject>Recommender systems</subject><subject>Research and Analysis Methods</subject><subject>Semantics</subject><subject>Similarity</subject><subject>Social Sciences</subject><subject>Software</subject><subject>Spatial data</subject><subject>Visualization</subject><subject>Words (language)</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1v1DAQjRCIlsI_QGCJC5dd_JHY8QUJVXxUqsSFnq2JM8l6ldiLnXTZv8KvxdvdrdqKk63xe2_mjV9RvGV0yYRin9Zhjh6G5SZ4XFIupCjVs-KcacEXklPx_MH9rHiV0prSStRSvizOBFeUU87Pi783vsWYJvCt8z2ZVkjSBiYHA2ndiD654EnoiIdpjrk4gO9n6JE0OzIipDk-pSUcwU_OkuRGN0B0024vsA2xTRkYw9yvCJBkYYBmQNJjOFFt8BP-mcjW-TZsXxcvOhgSvjmeF8XNt6-_Ln8srn9-v7r8cr2wFZfTwlptqYJOcV0h023FpGQVV7yuFWqqhazrputYU0NX1hVCVyNrNa8UMrSyERfF-4PuZgjJHNeaDC-5rERJeZ0RVwdEG2BtNtGNEHcmgDN3hRB7AzFbHtDQpuN54bIuEUtVMmCWdtZCozWHSvOs9fnYbW5GbC36Ke_1kejjF-9Wpg-3RgmlSimzwMejQAy_Z0yTGV2yOOSfwTDfza0E1ZXWGfrhCfT_7soDysaQUsTufhhGzT5qJ5bZR80co5Zp7x4auSedsiX-Aef81js</recordid><startdate>20200723</startdate><enddate>20200723</enddate><creator>Wang, Bozhi</creator><creator>Fei, Teng</creator><creator>Kang, Yuhao</creator><creator>Li, Meng</creator><creator>Du, Qingyun</creator><creator>Han, Meng</creator><creator>Dong, Ning</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3415-1654</orcidid><orcidid>https://orcid.org/0000-0001-7040-2206</orcidid></search><sort><creationdate>20200723</creationdate><title>Understanding the spatial dimension of natural language by measuring the spatial semantic similarity of words through a scalable geospatial context window</title><author>Wang, Bozhi ; Fei, Teng ; Kang, Yuhao ; Li, Meng ; Du, Qingyun ; Han, Meng ; Dong, Ning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-cc9c07af7295e19d516615272887e9093688bff1b8af485eaf8e1d9257e1ec6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Bars</topic><topic>Biology and Life Sciences</topic><topic>Cognition</topic><topic>Cognition &amp; reasoning</topic><topic>Comprehension</topic><topic>Computer and Information Sciences</topic><topic>Computer simulation</topic><topic>Context</topic><topic>Earth Sciences</topic><topic>Electric power</topic><topic>Embedding</topic><topic>Environmental science</topic><topic>Humans</topic><topic>Information processing</topic><topic>Information retrieval</topic><topic>Information Storage and Retrieval</topic><topic>Keywords</topic><topic>Language</topic><topic>Linguistics - trends</topic><topic>Medicine and Health Sciences</topic><topic>Natural language</topic><topic>Natural Language Processing</topic><topic>PubMed</topic><topic>Recommender systems</topic><topic>Research and Analysis Methods</topic><topic>Semantics</topic><topic>Similarity</topic><topic>Social Sciences</topic><topic>Software</topic><topic>Spatial data</topic><topic>Visualization</topic><topic>Words (language)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Bozhi</creatorcontrib><creatorcontrib>Fei, Teng</creatorcontrib><creatorcontrib>Kang, Yuhao</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Du, Qingyun</creatorcontrib><creatorcontrib>Han, Meng</creatorcontrib><creatorcontrib>Dong, Ning</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Bozhi</au><au>Fei, Teng</au><au>Kang, Yuhao</au><au>Li, Meng</au><au>Du, Qingyun</au><au>Han, Meng</au><au>Dong, Ning</au><au>Amancio, Diego Raphael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the spatial dimension of natural language by measuring the spatial semantic similarity of words through a scalable geospatial context window</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-07-23</date><risdate>2020</risdate><volume>15</volume><issue>7</issue><spage>e0236347</spage><epage>e0236347</epage><pages>e0236347-e0236347</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Measuring the semantic similarity between words is important for natural language processing tasks. The traditional models of semantic similarity perform well in most cases, but when dealing with words that involve geographical context, spatial semantics of implied spatial information are rarely preserved. Geographic information retrieval (GIR) methods have focused on this issue; however, they sometimes fail to solve the problem because the spatial and textual similarities of words are considered and calculated separately. In this paper, from the perspective of spatial context, we consider the two parts as a whole-spatial context semantics, and we propose a method that measures spatial semantic similarity using a sliding geospatial context window for geo-tagged words. The proposed method was first validated with a set of simulated data and then applied to a real-world dataset from Flickr. As a result, a spatial semantic similarity model at different scales is presented. We believe this model is a necessary supplement for traditional textual-language semantic analyses of words obtained by word-embedding technologies. This study has the potential to improve the quality of recommendation systems by considering relevant spatial context semantics, and benefits linguistic semantic research by emphasising the spatial cognition among words.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32702022</pmid><doi>10.1371/journal.pone.0236347</doi><orcidid>https://orcid.org/0000-0002-3415-1654</orcidid><orcidid>https://orcid.org/0000-0001-7040-2206</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-07, Vol.15 (7), p.e0236347-e0236347
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2426534028
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Bars
Biology and Life Sciences
Cognition
Cognition & reasoning
Comprehension
Computer and Information Sciences
Computer simulation
Context
Earth Sciences
Electric power
Embedding
Environmental science
Humans
Information processing
Information retrieval
Information Storage and Retrieval
Keywords
Language
Linguistics - trends
Medicine and Health Sciences
Natural language
Natural Language Processing
PubMed
Recommender systems
Research and Analysis Methods
Semantics
Similarity
Social Sciences
Software
Spatial data
Visualization
Words (language)
title Understanding the spatial dimension of natural language by measuring the spatial semantic similarity of words through a scalable geospatial context window
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A55%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20spatial%20dimension%20of%20natural%20language%20by%20measuring%20the%20spatial%20semantic%20similarity%20of%20words%20through%20a%20scalable%20geospatial%20context%20window&rft.jtitle=PloS%20one&rft.au=Wang,%20Bozhi&rft.date=2020-07-23&rft.volume=15&rft.issue=7&rft.spage=e0236347&rft.epage=e0236347&rft.pages=e0236347-e0236347&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0236347&rft_dat=%3Cproquest_plos_%3E2427309599%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2426534028&rft_id=info:pmid/32702022&rft_doaj_id=oai_doaj_org_article_0bf2203684ee4741a1c0fccab992a592&rfr_iscdi=true