Understanding the spatial dimension of natural language by measuring the spatial semantic similarity of words through a scalable geospatial context window
Measuring the semantic similarity between words is important for natural language processing tasks. The traditional models of semantic similarity perform well in most cases, but when dealing with words that involve geographical context, spatial semantics of implied spatial information are rarely pre...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-07, Vol.15 (7), p.e0236347-e0236347 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0236347 |
---|---|
container_issue | 7 |
container_start_page | e0236347 |
container_title | PloS one |
container_volume | 15 |
creator | Wang, Bozhi Fei, Teng Kang, Yuhao Li, Meng Du, Qingyun Han, Meng Dong, Ning |
description | Measuring the semantic similarity between words is important for natural language processing tasks. The traditional models of semantic similarity perform well in most cases, but when dealing with words that involve geographical context, spatial semantics of implied spatial information are rarely preserved. Geographic information retrieval (GIR) methods have focused on this issue; however, they sometimes fail to solve the problem because the spatial and textual similarities of words are considered and calculated separately. In this paper, from the perspective of spatial context, we consider the two parts as a whole-spatial context semantics, and we propose a method that measures spatial semantic similarity using a sliding geospatial context window for geo-tagged words. The proposed method was first validated with a set of simulated data and then applied to a real-world dataset from Flickr. As a result, a spatial semantic similarity model at different scales is presented. We believe this model is a necessary supplement for traditional textual-language semantic analyses of words obtained by word-embedding technologies. This study has the potential to improve the quality of recommendation systems by considering relevant spatial context semantics, and benefits linguistic semantic research by emphasising the spatial cognition among words. |
doi_str_mv | 10.1371/journal.pone.0236347 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2426534028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0bf2203684ee4741a1c0fccab992a592</doaj_id><sourcerecordid>2427309599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-cc9c07af7295e19d516615272887e9093688bff1b8af485eaf8e1d9257e1ec6b3</originalsourceid><addsrcrecordid>eNptUk1v1DAQjRCIlsI_QGCJC5dd_JHY8QUJVXxUqsSFnq2JM8l6ldiLnXTZv8KvxdvdrdqKk63xe2_mjV9RvGV0yYRin9Zhjh6G5SZ4XFIupCjVs-KcacEXklPx_MH9rHiV0prSStRSvizOBFeUU87Pi783vsWYJvCt8z2ZVkjSBiYHA2ndiD654EnoiIdpjrk4gO9n6JE0OzIipDk-pSUcwU_OkuRGN0B0024vsA2xTRkYw9yvCJBkYYBmQNJjOFFt8BP-mcjW-TZsXxcvOhgSvjmeF8XNt6-_Ln8srn9-v7r8cr2wFZfTwlptqYJOcV0h023FpGQVV7yuFWqqhazrputYU0NX1hVCVyNrNa8UMrSyERfF-4PuZgjJHNeaDC-5rERJeZ0RVwdEG2BtNtGNEHcmgDN3hRB7AzFbHtDQpuN54bIuEUtVMmCWdtZCozWHSvOs9fnYbW5GbC36Ke_1kejjF-9Wpg-3RgmlSimzwMejQAy_Z0yTGV2yOOSfwTDfza0E1ZXWGfrhCfT_7soDysaQUsTufhhGzT5qJ5bZR80co5Zp7x4auSedsiX-Aef81js</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2426534028</pqid></control><display><type>article</type><title>Understanding the spatial dimension of natural language by measuring the spatial semantic similarity of words through a scalable geospatial context window</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Bozhi ; Fei, Teng ; Kang, Yuhao ; Li, Meng ; Du, Qingyun ; Han, Meng ; Dong, Ning</creator><contributor>Amancio, Diego Raphael</contributor><creatorcontrib>Wang, Bozhi ; Fei, Teng ; Kang, Yuhao ; Li, Meng ; Du, Qingyun ; Han, Meng ; Dong, Ning ; Amancio, Diego Raphael</creatorcontrib><description>Measuring the semantic similarity between words is important for natural language processing tasks. The traditional models of semantic similarity perform well in most cases, but when dealing with words that involve geographical context, spatial semantics of implied spatial information are rarely preserved. Geographic information retrieval (GIR) methods have focused on this issue; however, they sometimes fail to solve the problem because the spatial and textual similarities of words are considered and calculated separately. In this paper, from the perspective of spatial context, we consider the two parts as a whole-spatial context semantics, and we propose a method that measures spatial semantic similarity using a sliding geospatial context window for geo-tagged words. The proposed method was first validated with a set of simulated data and then applied to a real-world dataset from Flickr. As a result, a spatial semantic similarity model at different scales is presented. We believe this model is a necessary supplement for traditional textual-language semantic analyses of words obtained by word-embedding technologies. This study has the potential to improve the quality of recommendation systems by considering relevant spatial context semantics, and benefits linguistic semantic research by emphasising the spatial cognition among words.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0236347</identifier><identifier>PMID: 32702022</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Bars ; Biology and Life Sciences ; Cognition ; Cognition & reasoning ; Comprehension ; Computer and Information Sciences ; Computer simulation ; Context ; Earth Sciences ; Electric power ; Embedding ; Environmental science ; Humans ; Information processing ; Information retrieval ; Information Storage and Retrieval ; Keywords ; Language ; Linguistics - trends ; Medicine and Health Sciences ; Natural language ; Natural Language Processing ; PubMed ; Recommender systems ; Research and Analysis Methods ; Semantics ; Similarity ; Social Sciences ; Software ; Spatial data ; Visualization ; Words (language)</subject><ispartof>PloS one, 2020-07, Vol.15 (7), p.e0236347-e0236347</ispartof><rights>2020 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Wang et al 2020 Wang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-cc9c07af7295e19d516615272887e9093688bff1b8af485eaf8e1d9257e1ec6b3</citedby><cites>FETCH-LOGICAL-c526t-cc9c07af7295e19d516615272887e9093688bff1b8af485eaf8e1d9257e1ec6b3</cites><orcidid>0000-0002-3415-1654 ; 0000-0001-7040-2206</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7377466/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7377466/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32702022$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Amancio, Diego Raphael</contributor><creatorcontrib>Wang, Bozhi</creatorcontrib><creatorcontrib>Fei, Teng</creatorcontrib><creatorcontrib>Kang, Yuhao</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Du, Qingyun</creatorcontrib><creatorcontrib>Han, Meng</creatorcontrib><creatorcontrib>Dong, Ning</creatorcontrib><title>Understanding the spatial dimension of natural language by measuring the spatial semantic similarity of words through a scalable geospatial context window</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Measuring the semantic similarity between words is important for natural language processing tasks. The traditional models of semantic similarity perform well in most cases, but when dealing with words that involve geographical context, spatial semantics of implied spatial information are rarely preserved. Geographic information retrieval (GIR) methods have focused on this issue; however, they sometimes fail to solve the problem because the spatial and textual similarities of words are considered and calculated separately. In this paper, from the perspective of spatial context, we consider the two parts as a whole-spatial context semantics, and we propose a method that measures spatial semantic similarity using a sliding geospatial context window for geo-tagged words. The proposed method was first validated with a set of simulated data and then applied to a real-world dataset from Flickr. As a result, a spatial semantic similarity model at different scales is presented. We believe this model is a necessary supplement for traditional textual-language semantic analyses of words obtained by word-embedding technologies. This study has the potential to improve the quality of recommendation systems by considering relevant spatial context semantics, and benefits linguistic semantic research by emphasising the spatial cognition among words.</description><subject>Algorithms</subject><subject>Bars</subject><subject>Biology and Life Sciences</subject><subject>Cognition</subject><subject>Cognition & reasoning</subject><subject>Comprehension</subject><subject>Computer and Information Sciences</subject><subject>Computer simulation</subject><subject>Context</subject><subject>Earth Sciences</subject><subject>Electric power</subject><subject>Embedding</subject><subject>Environmental science</subject><subject>Humans</subject><subject>Information processing</subject><subject>Information retrieval</subject><subject>Information Storage and Retrieval</subject><subject>Keywords</subject><subject>Language</subject><subject>Linguistics - trends</subject><subject>Medicine and Health Sciences</subject><subject>Natural language</subject><subject>Natural Language Processing</subject><subject>PubMed</subject><subject>Recommender systems</subject><subject>Research and Analysis Methods</subject><subject>Semantics</subject><subject>Similarity</subject><subject>Social Sciences</subject><subject>Software</subject><subject>Spatial data</subject><subject>Visualization</subject><subject>Words (language)</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1v1DAQjRCIlsI_QGCJC5dd_JHY8QUJVXxUqsSFnq2JM8l6ldiLnXTZv8KvxdvdrdqKk63xe2_mjV9RvGV0yYRin9Zhjh6G5SZ4XFIupCjVs-KcacEXklPx_MH9rHiV0prSStRSvizOBFeUU87Pi783vsWYJvCt8z2ZVkjSBiYHA2ndiD654EnoiIdpjrk4gO9n6JE0OzIipDk-pSUcwU_OkuRGN0B0024vsA2xTRkYw9yvCJBkYYBmQNJjOFFt8BP-mcjW-TZsXxcvOhgSvjmeF8XNt6-_Ln8srn9-v7r8cr2wFZfTwlptqYJOcV0h023FpGQVV7yuFWqqhazrputYU0NX1hVCVyNrNa8UMrSyERfF-4PuZgjJHNeaDC-5rERJeZ0RVwdEG2BtNtGNEHcmgDN3hRB7AzFbHtDQpuN54bIuEUtVMmCWdtZCozWHSvOs9fnYbW5GbC36Ke_1kejjF-9Wpg-3RgmlSimzwMejQAy_Z0yTGV2yOOSfwTDfza0E1ZXWGfrhCfT_7soDysaQUsTufhhGzT5qJ5bZR80co5Zp7x4auSedsiX-Aef81js</recordid><startdate>20200723</startdate><enddate>20200723</enddate><creator>Wang, Bozhi</creator><creator>Fei, Teng</creator><creator>Kang, Yuhao</creator><creator>Li, Meng</creator><creator>Du, Qingyun</creator><creator>Han, Meng</creator><creator>Dong, Ning</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3415-1654</orcidid><orcidid>https://orcid.org/0000-0001-7040-2206</orcidid></search><sort><creationdate>20200723</creationdate><title>Understanding the spatial dimension of natural language by measuring the spatial semantic similarity of words through a scalable geospatial context window</title><author>Wang, Bozhi ; Fei, Teng ; Kang, Yuhao ; Li, Meng ; Du, Qingyun ; Han, Meng ; Dong, Ning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-cc9c07af7295e19d516615272887e9093688bff1b8af485eaf8e1d9257e1ec6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Bars</topic><topic>Biology and Life Sciences</topic><topic>Cognition</topic><topic>Cognition & reasoning</topic><topic>Comprehension</topic><topic>Computer and Information Sciences</topic><topic>Computer simulation</topic><topic>Context</topic><topic>Earth Sciences</topic><topic>Electric power</topic><topic>Embedding</topic><topic>Environmental science</topic><topic>Humans</topic><topic>Information processing</topic><topic>Information retrieval</topic><topic>Information Storage and Retrieval</topic><topic>Keywords</topic><topic>Language</topic><topic>Linguistics - trends</topic><topic>Medicine and Health Sciences</topic><topic>Natural language</topic><topic>Natural Language Processing</topic><topic>PubMed</topic><topic>Recommender systems</topic><topic>Research and Analysis Methods</topic><topic>Semantics</topic><topic>Similarity</topic><topic>Social Sciences</topic><topic>Software</topic><topic>Spatial data</topic><topic>Visualization</topic><topic>Words (language)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Bozhi</creatorcontrib><creatorcontrib>Fei, Teng</creatorcontrib><creatorcontrib>Kang, Yuhao</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Du, Qingyun</creatorcontrib><creatorcontrib>Han, Meng</creatorcontrib><creatorcontrib>Dong, Ning</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Bozhi</au><au>Fei, Teng</au><au>Kang, Yuhao</au><au>Li, Meng</au><au>Du, Qingyun</au><au>Han, Meng</au><au>Dong, Ning</au><au>Amancio, Diego Raphael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the spatial dimension of natural language by measuring the spatial semantic similarity of words through a scalable geospatial context window</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-07-23</date><risdate>2020</risdate><volume>15</volume><issue>7</issue><spage>e0236347</spage><epage>e0236347</epage><pages>e0236347-e0236347</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Measuring the semantic similarity between words is important for natural language processing tasks. The traditional models of semantic similarity perform well in most cases, but when dealing with words that involve geographical context, spatial semantics of implied spatial information are rarely preserved. Geographic information retrieval (GIR) methods have focused on this issue; however, they sometimes fail to solve the problem because the spatial and textual similarities of words are considered and calculated separately. In this paper, from the perspective of spatial context, we consider the two parts as a whole-spatial context semantics, and we propose a method that measures spatial semantic similarity using a sliding geospatial context window for geo-tagged words. The proposed method was first validated with a set of simulated data and then applied to a real-world dataset from Flickr. As a result, a spatial semantic similarity model at different scales is presented. We believe this model is a necessary supplement for traditional textual-language semantic analyses of words obtained by word-embedding technologies. This study has the potential to improve the quality of recommendation systems by considering relevant spatial context semantics, and benefits linguistic semantic research by emphasising the spatial cognition among words.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32702022</pmid><doi>10.1371/journal.pone.0236347</doi><orcidid>https://orcid.org/0000-0002-3415-1654</orcidid><orcidid>https://orcid.org/0000-0001-7040-2206</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-07, Vol.15 (7), p.e0236347-e0236347 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2426534028 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Bars Biology and Life Sciences Cognition Cognition & reasoning Comprehension Computer and Information Sciences Computer simulation Context Earth Sciences Electric power Embedding Environmental science Humans Information processing Information retrieval Information Storage and Retrieval Keywords Language Linguistics - trends Medicine and Health Sciences Natural language Natural Language Processing PubMed Recommender systems Research and Analysis Methods Semantics Similarity Social Sciences Software Spatial data Visualization Words (language) |
title | Understanding the spatial dimension of natural language by measuring the spatial semantic similarity of words through a scalable geospatial context window |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A55%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20spatial%20dimension%20of%20natural%20language%20by%20measuring%20the%20spatial%20semantic%20similarity%20of%20words%20through%20a%20scalable%20geospatial%20context%20window&rft.jtitle=PloS%20one&rft.au=Wang,%20Bozhi&rft.date=2020-07-23&rft.volume=15&rft.issue=7&rft.spage=e0236347&rft.epage=e0236347&rft.pages=e0236347-e0236347&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0236347&rft_dat=%3Cproquest_plos_%3E2427309599%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2426534028&rft_id=info:pmid/32702022&rft_doaj_id=oai_doaj_org_article_0bf2203684ee4741a1c0fccab992a592&rfr_iscdi=true |