A systematic evaluation of Mycobacterium tuberculosis Genome-Scale Metabolic Networks
Metabolism underpins the pathogenic strategy of the causative agent of TB, Mycobacterium tuberculosis (Mtb), and therefore metabolic pathways have recently re-emerged as attractive drug targets. A powerful approach to study Mtb metabolism as a whole, rather than just individual enzymatic components,...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2020-06, Vol.16 (6), p.e1007533 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | e1007533 |
container_title | PLoS computational biology |
container_volume | 16 |
creator | López-Agudelo, Víctor A Mendum, Tom A Laing, Emma Wu, HuiHai Baena, Andres Barrera, Luis F Beste, Dany J V Rios-Estepa, Rigoberto |
description | Metabolism underpins the pathogenic strategy of the causative agent of TB, Mycobacterium tuberculosis (Mtb), and therefore metabolic pathways have recently re-emerged as attractive drug targets. A powerful approach to study Mtb metabolism as a whole, rather than just individual enzymatic components, is to use a systems biology framework, such as a Genome-Scale Metabolic Network (GSMN) that allows the dynamic interactions of all the components of metabolism to be interrogated together. Several GSMNs networks have been constructed for Mtb and used to study the complex relationship between the Mtb genotype and its phenotype. However, the utility of this approach is hampered by the existence of multiple models, each with varying properties and performances. Here we systematically evaluate eight recently published metabolic models of Mtb-H37Rv to facilitate model choice. The best performing models, sMtb2018 and iEK1011, were refined and improved for use in future studies by the TB research community. |
doi_str_mv | 10.1371/journal.pcbi.1007533 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2424468608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632942426</galeid><doaj_id>oai_doaj_org_article_847621de483242a291eaea97cab373fe</doaj_id><sourcerecordid>A632942426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-3be16e37ac97f5a6f7aec420313465f403b15847dc41978f7edbcef8bf785a123</originalsourceid><addsrcrecordid>eNqVks9v0zAUxyMEYlvhP0AQiQscWuLYsZMLUjXBqLQNibGz9eI8F5ckLrYz1v8el2bTgnZBPvjJ_rzv-5kkr0i2IFSQDxs7uB7axVbVZkGyTBSUPkmOSVHQuaBF-fSBfZSceL_JsmhW_HlyRPOC5VlOjpPrZep3PmAHwagUb6AdomX71Or0YqdsDSqgM0OXhqFGp4bWeuPTM-xth_MrBS2mFxigtm30v8Tw27qf_kXyTEPr8eV4z5Lrz5--n36Zn389W50uz-eKcxLmtEbCkQpQldAFcC0AVUyMEsp4oVlGa1KUTDSKkUqUWmBTK9RlrUVZAMnpLHlz0N3GtOTYES9zljPGS56VkVgdiMbCRm6d6cDtpAUj_z5Yt5bgYuktyhiI56RBVtIoAHlFEBAqoaCmgmqMWh_HaEPdYaOwDw7aiej0pzc_5NreSEEJp3EWs-TdKODsrwF9kJ3xCtsWerTDPm_C4iAF3Vf29h_08epGah3nIE2vbYyr9qJyyWleRTLnkVo8QsXTYGeU7VGb-D5xeD9xiEzA27CGwXu5uvr2H-zllGUHVjnrvUN93zuSyf1S3xUp90stx6WObq8f9v3e6W6L6R8Qq_J_</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424468608</pqid></control><display><type>article</type><title>A systematic evaluation of Mycobacterium tuberculosis Genome-Scale Metabolic Networks</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>López-Agudelo, Víctor A ; Mendum, Tom A ; Laing, Emma ; Wu, HuiHai ; Baena, Andres ; Barrera, Luis F ; Beste, Dany J V ; Rios-Estepa, Rigoberto</creator><creatorcontrib>López-Agudelo, Víctor A ; Mendum, Tom A ; Laing, Emma ; Wu, HuiHai ; Baena, Andres ; Barrera, Luis F ; Beste, Dany J V ; Rios-Estepa, Rigoberto</creatorcontrib><description>Metabolism underpins the pathogenic strategy of the causative agent of TB, Mycobacterium tuberculosis (Mtb), and therefore metabolic pathways have recently re-emerged as attractive drug targets. A powerful approach to study Mtb metabolism as a whole, rather than just individual enzymatic components, is to use a systems biology framework, such as a Genome-Scale Metabolic Network (GSMN) that allows the dynamic interactions of all the components of metabolism to be interrogated together. Several GSMNs networks have been constructed for Mtb and used to study the complex relationship between the Mtb genotype and its phenotype. However, the utility of this approach is hampered by the existence of multiple models, each with varying properties and performances. Here we systematically evaluate eight recently published metabolic models of Mtb-H37Rv to facilitate model choice. The best performing models, sMtb2018 and iEK1011, were refined and improved for use in future studies by the TB research community.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1007533</identifier><identifier>PMID: 32542021</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Bayes Theorem ; Biology and Life Sciences ; Biomass ; Biosynthesis ; Carbon ; Carbon - metabolism ; Cholesterol ; Cholesterol - metabolism ; Computer and Information Sciences ; Culture Media ; False Positive Reactions ; Fatty acids ; Genes ; Genetic aspects ; Genome, Bacterial ; Genomes ; Genomics ; Genotype ; Genotypes ; Glycerol - metabolism ; Lipids ; Medicine and Health Sciences ; Metabolic networks ; Metabolic Networks and Pathways ; Metabolic pathways ; Metabolism ; Metabolites ; Methods ; Microbial metabolism ; Models, Biological ; Mycobacterium tuberculosis ; Mycobacterium tuberculosis - genetics ; Mycobacterium tuberculosis - metabolism ; Nitrogen ; Pathogens ; Phenotype ; Phenotypes ; Predictive Value of Tests ; Research and Analysis Methods ; Software ; Software upgrading ; Systems Biology ; Therapeutic targets ; Thermodynamics ; Tuberculosis ; Virulence</subject><ispartof>PLoS computational biology, 2020-06, Vol.16 (6), p.e1007533</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 López-Agudelo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 López-Agudelo et al 2020 López-Agudelo et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-3be16e37ac97f5a6f7aec420313465f403b15847dc41978f7edbcef8bf785a123</citedby><cites>FETCH-LOGICAL-c661t-3be16e37ac97f5a6f7aec420313465f403b15847dc41978f7edbcef8bf785a123</cites><orcidid>0000-0002-3287-7056 ; 0000-0002-3673-7480 ; 0000-0003-1339-972X ; 0000-0001-6579-1366 ; 0000-0002-6108-6747</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7316355/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7316355/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32542021$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>López-Agudelo, Víctor A</creatorcontrib><creatorcontrib>Mendum, Tom A</creatorcontrib><creatorcontrib>Laing, Emma</creatorcontrib><creatorcontrib>Wu, HuiHai</creatorcontrib><creatorcontrib>Baena, Andres</creatorcontrib><creatorcontrib>Barrera, Luis F</creatorcontrib><creatorcontrib>Beste, Dany J V</creatorcontrib><creatorcontrib>Rios-Estepa, Rigoberto</creatorcontrib><title>A systematic evaluation of Mycobacterium tuberculosis Genome-Scale Metabolic Networks</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Metabolism underpins the pathogenic strategy of the causative agent of TB, Mycobacterium tuberculosis (Mtb), and therefore metabolic pathways have recently re-emerged as attractive drug targets. A powerful approach to study Mtb metabolism as a whole, rather than just individual enzymatic components, is to use a systems biology framework, such as a Genome-Scale Metabolic Network (GSMN) that allows the dynamic interactions of all the components of metabolism to be interrogated together. Several GSMNs networks have been constructed for Mtb and used to study the complex relationship between the Mtb genotype and its phenotype. However, the utility of this approach is hampered by the existence of multiple models, each with varying properties and performances. Here we systematically evaluate eight recently published metabolic models of Mtb-H37Rv to facilitate model choice. The best performing models, sMtb2018 and iEK1011, were refined and improved for use in future studies by the TB research community.</description><subject>Accuracy</subject><subject>Bayes Theorem</subject><subject>Biology and Life Sciences</subject><subject>Biomass</subject><subject>Biosynthesis</subject><subject>Carbon</subject><subject>Carbon - metabolism</subject><subject>Cholesterol</subject><subject>Cholesterol - metabolism</subject><subject>Computer and Information Sciences</subject><subject>Culture Media</subject><subject>False Positive Reactions</subject><subject>Fatty acids</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genome, Bacterial</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Glycerol - metabolism</subject><subject>Lipids</subject><subject>Medicine and Health Sciences</subject><subject>Metabolic networks</subject><subject>Metabolic Networks and Pathways</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Methods</subject><subject>Microbial metabolism</subject><subject>Models, Biological</subject><subject>Mycobacterium tuberculosis</subject><subject>Mycobacterium tuberculosis - genetics</subject><subject>Mycobacterium tuberculosis - metabolism</subject><subject>Nitrogen</subject><subject>Pathogens</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Predictive Value of Tests</subject><subject>Research and Analysis Methods</subject><subject>Software</subject><subject>Software upgrading</subject><subject>Systems Biology</subject><subject>Therapeutic targets</subject><subject>Thermodynamics</subject><subject>Tuberculosis</subject><subject>Virulence</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVks9v0zAUxyMEYlvhP0AQiQscWuLYsZMLUjXBqLQNibGz9eI8F5ckLrYz1v8el2bTgnZBPvjJ_rzv-5kkr0i2IFSQDxs7uB7axVbVZkGyTBSUPkmOSVHQuaBF-fSBfZSceL_JsmhW_HlyRPOC5VlOjpPrZep3PmAHwagUb6AdomX71Or0YqdsDSqgM0OXhqFGp4bWeuPTM-xth_MrBS2mFxigtm30v8Tw27qf_kXyTEPr8eV4z5Lrz5--n36Zn389W50uz-eKcxLmtEbCkQpQldAFcC0AVUyMEsp4oVlGa1KUTDSKkUqUWmBTK9RlrUVZAMnpLHlz0N3GtOTYES9zljPGS56VkVgdiMbCRm6d6cDtpAUj_z5Yt5bgYuktyhiI56RBVtIoAHlFEBAqoaCmgmqMWh_HaEPdYaOwDw7aiej0pzc_5NreSEEJp3EWs-TdKODsrwF9kJ3xCtsWerTDPm_C4iAF3Vf29h_08epGah3nIE2vbYyr9qJyyWleRTLnkVo8QsXTYGeU7VGb-D5xeD9xiEzA27CGwXu5uvr2H-zllGUHVjnrvUN93zuSyf1S3xUp90stx6WObq8f9v3e6W6L6R8Qq_J_</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>López-Agudelo, Víctor A</creator><creator>Mendum, Tom A</creator><creator>Laing, Emma</creator><creator>Wu, HuiHai</creator><creator>Baena, Andres</creator><creator>Barrera, Luis F</creator><creator>Beste, Dany J V</creator><creator>Rios-Estepa, Rigoberto</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3287-7056</orcidid><orcidid>https://orcid.org/0000-0002-3673-7480</orcidid><orcidid>https://orcid.org/0000-0003-1339-972X</orcidid><orcidid>https://orcid.org/0000-0001-6579-1366</orcidid><orcidid>https://orcid.org/0000-0002-6108-6747</orcidid></search><sort><creationdate>20200601</creationdate><title>A systematic evaluation of Mycobacterium tuberculosis Genome-Scale Metabolic Networks</title><author>López-Agudelo, Víctor A ; Mendum, Tom A ; Laing, Emma ; Wu, HuiHai ; Baena, Andres ; Barrera, Luis F ; Beste, Dany J V ; Rios-Estepa, Rigoberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-3be16e37ac97f5a6f7aec420313465f403b15847dc41978f7edbcef8bf785a123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Bayes Theorem</topic><topic>Biology and Life Sciences</topic><topic>Biomass</topic><topic>Biosynthesis</topic><topic>Carbon</topic><topic>Carbon - metabolism</topic><topic>Cholesterol</topic><topic>Cholesterol - metabolism</topic><topic>Computer and Information Sciences</topic><topic>Culture Media</topic><topic>False Positive Reactions</topic><topic>Fatty acids</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genome, Bacterial</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Glycerol - metabolism</topic><topic>Lipids</topic><topic>Medicine and Health Sciences</topic><topic>Metabolic networks</topic><topic>Metabolic Networks and Pathways</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Methods</topic><topic>Microbial metabolism</topic><topic>Models, Biological</topic><topic>Mycobacterium tuberculosis</topic><topic>Mycobacterium tuberculosis - genetics</topic><topic>Mycobacterium tuberculosis - metabolism</topic><topic>Nitrogen</topic><topic>Pathogens</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Predictive Value of Tests</topic><topic>Research and Analysis Methods</topic><topic>Software</topic><topic>Software upgrading</topic><topic>Systems Biology</topic><topic>Therapeutic targets</topic><topic>Thermodynamics</topic><topic>Tuberculosis</topic><topic>Virulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López-Agudelo, Víctor A</creatorcontrib><creatorcontrib>Mendum, Tom A</creatorcontrib><creatorcontrib>Laing, Emma</creatorcontrib><creatorcontrib>Wu, HuiHai</creatorcontrib><creatorcontrib>Baena, Andres</creatorcontrib><creatorcontrib>Barrera, Luis F</creatorcontrib><creatorcontrib>Beste, Dany J V</creatorcontrib><creatorcontrib>Rios-Estepa, Rigoberto</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López-Agudelo, Víctor A</au><au>Mendum, Tom A</au><au>Laing, Emma</au><au>Wu, HuiHai</au><au>Baena, Andres</au><au>Barrera, Luis F</au><au>Beste, Dany J V</au><au>Rios-Estepa, Rigoberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A systematic evaluation of Mycobacterium tuberculosis Genome-Scale Metabolic Networks</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>16</volume><issue>6</issue><spage>e1007533</spage><pages>e1007533-</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Metabolism underpins the pathogenic strategy of the causative agent of TB, Mycobacterium tuberculosis (Mtb), and therefore metabolic pathways have recently re-emerged as attractive drug targets. A powerful approach to study Mtb metabolism as a whole, rather than just individual enzymatic components, is to use a systems biology framework, such as a Genome-Scale Metabolic Network (GSMN) that allows the dynamic interactions of all the components of metabolism to be interrogated together. Several GSMNs networks have been constructed for Mtb and used to study the complex relationship between the Mtb genotype and its phenotype. However, the utility of this approach is hampered by the existence of multiple models, each with varying properties and performances. Here we systematically evaluate eight recently published metabolic models of Mtb-H37Rv to facilitate model choice. The best performing models, sMtb2018 and iEK1011, were refined and improved for use in future studies by the TB research community.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32542021</pmid><doi>10.1371/journal.pcbi.1007533</doi><orcidid>https://orcid.org/0000-0002-3287-7056</orcidid><orcidid>https://orcid.org/0000-0002-3673-7480</orcidid><orcidid>https://orcid.org/0000-0003-1339-972X</orcidid><orcidid>https://orcid.org/0000-0001-6579-1366</orcidid><orcidid>https://orcid.org/0000-0002-6108-6747</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2020-06, Vol.16 (6), p.e1007533 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2424468608 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS) |
subjects | Accuracy Bayes Theorem Biology and Life Sciences Biomass Biosynthesis Carbon Carbon - metabolism Cholesterol Cholesterol - metabolism Computer and Information Sciences Culture Media False Positive Reactions Fatty acids Genes Genetic aspects Genome, Bacterial Genomes Genomics Genotype Genotypes Glycerol - metabolism Lipids Medicine and Health Sciences Metabolic networks Metabolic Networks and Pathways Metabolic pathways Metabolism Metabolites Methods Microbial metabolism Models, Biological Mycobacterium tuberculosis Mycobacterium tuberculosis - genetics Mycobacterium tuberculosis - metabolism Nitrogen Pathogens Phenotype Phenotypes Predictive Value of Tests Research and Analysis Methods Software Software upgrading Systems Biology Therapeutic targets Thermodynamics Tuberculosis Virulence |
title | A systematic evaluation of Mycobacterium tuberculosis Genome-Scale Metabolic Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A52%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20systematic%20evaluation%20of%20Mycobacterium%20tuberculosis%20Genome-Scale%20Metabolic%20Networks&rft.jtitle=PLoS%20computational%20biology&rft.au=L%C3%B3pez-Agudelo,%20V%C3%ADctor%20A&rft.date=2020-06-01&rft.volume=16&rft.issue=6&rft.spage=e1007533&rft.pages=e1007533-&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1007533&rft_dat=%3Cgale_plos_%3EA632942426%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424468608&rft_id=info:pmid/32542021&rft_galeid=A632942426&rft_doaj_id=oai_doaj_org_article_847621de483242a291eaea97cab373fe&rfr_iscdi=true |