Spiking network optimized for word recognition in noise predicts auditory system hierarchy

The auditory neural code is resilient to acoustic variability and capable of recognizing sounds amongst competing sound sources, yet, the transformations enabling noise robust abilities are largely unknown. We report that a hierarchical spiking neural network (HSNN) optimized to maximize word recogn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2020-06, Vol.16 (6), p.e1007558
Hauptverfasser: Khatami, Fatemeh, Escabí, Monty A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page e1007558
container_title PLoS computational biology
container_volume 16
creator Khatami, Fatemeh
Escabí, Monty A
description The auditory neural code is resilient to acoustic variability and capable of recognizing sounds amongst competing sound sources, yet, the transformations enabling noise robust abilities are largely unknown. We report that a hierarchical spiking neural network (HSNN) optimized to maximize word recognition accuracy in noise and multiple talkers predicts organizational hierarchy of the ascending auditory pathway. Comparisons with data from auditory nerve, midbrain, thalamus and cortex reveals that the optimal HSNN predicts several transformations of the ascending auditory pathway including a sequential loss of temporal resolution and synchronization ability, increasing sparseness, and selectivity. The optimal organizational scheme enhances performance by selectively filtering out noise and fast temporal cues such as voicing periodicity, that are not directly relevant to the word recognition task. An identical network arranged to enable high information transfer fails to predict auditory pathway organization and has substantially poorer performance. Furthermore, conventional single-layer linear and nonlinear receptive field networks that capture the overall feature extraction of the HSNN fail to achieve similar performance. The findings suggest that the auditory pathway hierarchy and its sequential nonlinear feature extraction computations enhance relevant cues while removing non-informative sources of noise, thus enhancing the representation of sounds in noise impoverished conditions.
doi_str_mv 10.1371/journal.pcbi.1007558
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2424468465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632942820</galeid><doaj_id>oai_doaj_org_article_4c70a1f5f3df445286c58974906f1f93</doaj_id><sourcerecordid>A632942820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c680t-3826f50d630667f78f96903e204e9095fa952ef248316b4ee3639e45e312586a3</originalsourceid><addsrcrecordid>eNqVkk-LUzEUxR-iOOPoNxAMuHLRmv_vZSMMw6iFQcHRjZuQ5t28pvOaPJNUrZ_e1FaxCxeSRS4nJ7-cXG7TPCV4TlhLXq7jNgUzzie79HOCcStEd685J0KwWctEd_-v-qx5lPMa41oq-bA5Y1QIRTE_bz7fTv7OhwEFKN9iukNxKn7jf0CPXEyoSj1KYOMQfPExIB9QiD4DmhL03paMzLb3JaYdyrtcYINWHpJJdrV73DxwZszw5LhfNJ9eX3-8eju7ef9mcXV5M7Oyw2XGOiqdwL1kWMrWtZ1TUmEGNR4orIQzSlBwlHeMyCUHYJIp4AIYoaKThl00zw7caYxZH9uSNeWUc9lxKapjcXD00az1lPzGpJ2OxutfQkyDNql4O4LmtsWGOOFY7zgXtJO29qzlCktHnGKV9er42na5gd5CKMmMJ9DTk-BXeohfdcuoIhxXwPMjIMUvW8jlH5HnB9dgaiofXKwwW1cPG29jAOerfikrlNOO7rEvTi5UT4HvZTDbnPXi9sN_eN-devnBa1PMOYH781WC9X4Qf8fX-0HUx0FkPwHpo9AZ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424468465</pqid></control><display><type>article</type><title>Spiking network optimized for word recognition in noise predicts auditory system hierarchy</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><creator>Khatami, Fatemeh ; Escabí, Monty A</creator><contributor>Cohen, Yale E.</contributor><creatorcontrib>Khatami, Fatemeh ; Escabí, Monty A ; Cohen, Yale E.</creatorcontrib><description>The auditory neural code is resilient to acoustic variability and capable of recognizing sounds amongst competing sound sources, yet, the transformations enabling noise robust abilities are largely unknown. We report that a hierarchical spiking neural network (HSNN) optimized to maximize word recognition accuracy in noise and multiple talkers predicts organizational hierarchy of the ascending auditory pathway. Comparisons with data from auditory nerve, midbrain, thalamus and cortex reveals that the optimal HSNN predicts several transformations of the ascending auditory pathway including a sequential loss of temporal resolution and synchronization ability, increasing sparseness, and selectivity. The optimal organizational scheme enhances performance by selectively filtering out noise and fast temporal cues such as voicing periodicity, that are not directly relevant to the word recognition task. An identical network arranged to enable high information transfer fails to predict auditory pathway organization and has substantially poorer performance. Furthermore, conventional single-layer linear and nonlinear receptive field networks that capture the overall feature extraction of the HSNN fail to achieve similar performance. The findings suggest that the auditory pathway hierarchy and its sequential nonlinear feature extraction computations enhance relevant cues while removing non-informative sources of noise, thus enhancing the representation of sounds in noise impoverished conditions.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1007558</identifier><identifier>PMID: 32559204</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Acoustic noise ; Acoustics ; Artificial neural networks ; Auditory nerve ; Auditory perception ; Auditory system ; Biology and Life Sciences ; Biomedical engineering ; Computer and Information Sciences ; Computer engineering ; Cortex (auditory) ; Cortex (temporal) ; Engineering and Technology ; Feature extraction ; Firing pattern ; Hearing ; Information transfer ; Language ; Medicine and Health Sciences ; Mesencephalon ; Neural circuitry ; Neural networks ; Neurons ; Noise ; Noise (Sound) ; Noise prediction ; Pattern recognition ; Periodicity ; Physical Sciences ; Physiological aspects ; Receptive field ; Recognition ; Selectivity ; Social Sciences ; Software ; Sound ; Sound sources ; Speech ; Spiking ; Synchronism ; Synchronization ; Temporal lobe ; Temporal resolution ; Thalamus ; Word recognition</subject><ispartof>PLoS computational biology, 2020-06, Vol.16 (6), p.e1007558</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Khatami, Escabí. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Khatami, Escabí 2020 Khatami, Escabí</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c680t-3826f50d630667f78f96903e204e9095fa952ef248316b4ee3639e45e312586a3</citedby><cites>FETCH-LOGICAL-c680t-3826f50d630667f78f96903e204e9095fa952ef248316b4ee3639e45e312586a3</cites><orcidid>0000-0002-0278-9012 ; 0000-0001-7271-1061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7329140/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7329140/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids></links><search><contributor>Cohen, Yale E.</contributor><creatorcontrib>Khatami, Fatemeh</creatorcontrib><creatorcontrib>Escabí, Monty A</creatorcontrib><title>Spiking network optimized for word recognition in noise predicts auditory system hierarchy</title><title>PLoS computational biology</title><description>The auditory neural code is resilient to acoustic variability and capable of recognizing sounds amongst competing sound sources, yet, the transformations enabling noise robust abilities are largely unknown. We report that a hierarchical spiking neural network (HSNN) optimized to maximize word recognition accuracy in noise and multiple talkers predicts organizational hierarchy of the ascending auditory pathway. Comparisons with data from auditory nerve, midbrain, thalamus and cortex reveals that the optimal HSNN predicts several transformations of the ascending auditory pathway including a sequential loss of temporal resolution and synchronization ability, increasing sparseness, and selectivity. The optimal organizational scheme enhances performance by selectively filtering out noise and fast temporal cues such as voicing periodicity, that are not directly relevant to the word recognition task. An identical network arranged to enable high information transfer fails to predict auditory pathway organization and has substantially poorer performance. Furthermore, conventional single-layer linear and nonlinear receptive field networks that capture the overall feature extraction of the HSNN fail to achieve similar performance. The findings suggest that the auditory pathway hierarchy and its sequential nonlinear feature extraction computations enhance relevant cues while removing non-informative sources of noise, thus enhancing the representation of sounds in noise impoverished conditions.</description><subject>Acoustic noise</subject><subject>Acoustics</subject><subject>Artificial neural networks</subject><subject>Auditory nerve</subject><subject>Auditory perception</subject><subject>Auditory system</subject><subject>Biology and Life Sciences</subject><subject>Biomedical engineering</subject><subject>Computer and Information Sciences</subject><subject>Computer engineering</subject><subject>Cortex (auditory)</subject><subject>Cortex (temporal)</subject><subject>Engineering and Technology</subject><subject>Feature extraction</subject><subject>Firing pattern</subject><subject>Hearing</subject><subject>Information transfer</subject><subject>Language</subject><subject>Medicine and Health Sciences</subject><subject>Mesencephalon</subject><subject>Neural circuitry</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Noise</subject><subject>Noise (Sound)</subject><subject>Noise prediction</subject><subject>Pattern recognition</subject><subject>Periodicity</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Receptive field</subject><subject>Recognition</subject><subject>Selectivity</subject><subject>Social Sciences</subject><subject>Software</subject><subject>Sound</subject><subject>Sound sources</subject><subject>Speech</subject><subject>Spiking</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Temporal lobe</subject><subject>Temporal resolution</subject><subject>Thalamus</subject><subject>Word recognition</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk-LUzEUxR-iOOPoNxAMuHLRmv_vZSMMw6iFQcHRjZuQ5t28pvOaPJNUrZ_e1FaxCxeSRS4nJ7-cXG7TPCV4TlhLXq7jNgUzzie79HOCcStEd685J0KwWctEd_-v-qx5lPMa41oq-bA5Y1QIRTE_bz7fTv7OhwEFKN9iukNxKn7jf0CPXEyoSj1KYOMQfPExIB9QiD4DmhL03paMzLb3JaYdyrtcYINWHpJJdrV73DxwZszw5LhfNJ9eX3-8eju7ef9mcXV5M7Oyw2XGOiqdwL1kWMrWtZ1TUmEGNR4orIQzSlBwlHeMyCUHYJIp4AIYoaKThl00zw7caYxZH9uSNeWUc9lxKapjcXD00az1lPzGpJ2OxutfQkyDNql4O4LmtsWGOOFY7zgXtJO29qzlCktHnGKV9er42na5gd5CKMmMJ9DTk-BXeohfdcuoIhxXwPMjIMUvW8jlH5HnB9dgaiofXKwwW1cPG29jAOerfikrlNOO7rEvTi5UT4HvZTDbnPXi9sN_eN-devnBa1PMOYH781WC9X4Qf8fX-0HUx0FkPwHpo9AZ</recordid><startdate>20200619</startdate><enddate>20200619</enddate><creator>Khatami, Fatemeh</creator><creator>Escabí, Monty A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0278-9012</orcidid><orcidid>https://orcid.org/0000-0001-7271-1061</orcidid></search><sort><creationdate>20200619</creationdate><title>Spiking network optimized for word recognition in noise predicts auditory system hierarchy</title><author>Khatami, Fatemeh ; Escabí, Monty A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c680t-3826f50d630667f78f96903e204e9095fa952ef248316b4ee3639e45e312586a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustic noise</topic><topic>Acoustics</topic><topic>Artificial neural networks</topic><topic>Auditory nerve</topic><topic>Auditory perception</topic><topic>Auditory system</topic><topic>Biology and Life Sciences</topic><topic>Biomedical engineering</topic><topic>Computer and Information Sciences</topic><topic>Computer engineering</topic><topic>Cortex (auditory)</topic><topic>Cortex (temporal)</topic><topic>Engineering and Technology</topic><topic>Feature extraction</topic><topic>Firing pattern</topic><topic>Hearing</topic><topic>Information transfer</topic><topic>Language</topic><topic>Medicine and Health Sciences</topic><topic>Mesencephalon</topic><topic>Neural circuitry</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Noise</topic><topic>Noise (Sound)</topic><topic>Noise prediction</topic><topic>Pattern recognition</topic><topic>Periodicity</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Receptive field</topic><topic>Recognition</topic><topic>Selectivity</topic><topic>Social Sciences</topic><topic>Software</topic><topic>Sound</topic><topic>Sound sources</topic><topic>Speech</topic><topic>Spiking</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Temporal lobe</topic><topic>Temporal resolution</topic><topic>Thalamus</topic><topic>Word recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khatami, Fatemeh</creatorcontrib><creatorcontrib>Escabí, Monty A</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khatami, Fatemeh</au><au>Escabí, Monty A</au><au>Cohen, Yale E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spiking network optimized for word recognition in noise predicts auditory system hierarchy</atitle><jtitle>PLoS computational biology</jtitle><date>2020-06-19</date><risdate>2020</risdate><volume>16</volume><issue>6</issue><spage>e1007558</spage><pages>e1007558-</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>The auditory neural code is resilient to acoustic variability and capable of recognizing sounds amongst competing sound sources, yet, the transformations enabling noise robust abilities are largely unknown. We report that a hierarchical spiking neural network (HSNN) optimized to maximize word recognition accuracy in noise and multiple talkers predicts organizational hierarchy of the ascending auditory pathway. Comparisons with data from auditory nerve, midbrain, thalamus and cortex reveals that the optimal HSNN predicts several transformations of the ascending auditory pathway including a sequential loss of temporal resolution and synchronization ability, increasing sparseness, and selectivity. The optimal organizational scheme enhances performance by selectively filtering out noise and fast temporal cues such as voicing periodicity, that are not directly relevant to the word recognition task. An identical network arranged to enable high information transfer fails to predict auditory pathway organization and has substantially poorer performance. Furthermore, conventional single-layer linear and nonlinear receptive field networks that capture the overall feature extraction of the HSNN fail to achieve similar performance. The findings suggest that the auditory pathway hierarchy and its sequential nonlinear feature extraction computations enhance relevant cues while removing non-informative sources of noise, thus enhancing the representation of sounds in noise impoverished conditions.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>32559204</pmid><doi>10.1371/journal.pcbi.1007558</doi><orcidid>https://orcid.org/0000-0002-0278-9012</orcidid><orcidid>https://orcid.org/0000-0001-7271-1061</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2020-06, Vol.16 (6), p.e1007558
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2424468465
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central
subjects Acoustic noise
Acoustics
Artificial neural networks
Auditory nerve
Auditory perception
Auditory system
Biology and Life Sciences
Biomedical engineering
Computer and Information Sciences
Computer engineering
Cortex (auditory)
Cortex (temporal)
Engineering and Technology
Feature extraction
Firing pattern
Hearing
Information transfer
Language
Medicine and Health Sciences
Mesencephalon
Neural circuitry
Neural networks
Neurons
Noise
Noise (Sound)
Noise prediction
Pattern recognition
Periodicity
Physical Sciences
Physiological aspects
Receptive field
Recognition
Selectivity
Social Sciences
Software
Sound
Sound sources
Speech
Spiking
Synchronism
Synchronization
Temporal lobe
Temporal resolution
Thalamus
Word recognition
title Spiking network optimized for word recognition in noise predicts auditory system hierarchy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A28%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spiking%20network%20optimized%20for%20word%20recognition%20in%20noise%20predicts%20auditory%20system%20hierarchy&rft.jtitle=PLoS%20computational%20biology&rft.au=Khatami,%20Fatemeh&rft.date=2020-06-19&rft.volume=16&rft.issue=6&rft.spage=e1007558&rft.pages=e1007558-&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1007558&rft_dat=%3Cgale_plos_%3EA632942820%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424468465&rft_id=info:pmid/32559204&rft_galeid=A632942820&rft_doaj_id=oai_doaj_org_article_4c70a1f5f3df445286c58974906f1f93&rfr_iscdi=true