Spiking network optimized for word recognition in noise predicts auditory system hierarchy
The auditory neural code is resilient to acoustic variability and capable of recognizing sounds amongst competing sound sources, yet, the transformations enabling noise robust abilities are largely unknown. We report that a hierarchical spiking neural network (HSNN) optimized to maximize word recogn...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2020-06, Vol.16 (6), p.e1007558 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | e1007558 |
container_title | PLoS computational biology |
container_volume | 16 |
creator | Khatami, Fatemeh Escabí, Monty A |
description | The auditory neural code is resilient to acoustic variability and capable of recognizing sounds amongst competing sound sources, yet, the transformations enabling noise robust abilities are largely unknown. We report that a hierarchical spiking neural network (HSNN) optimized to maximize word recognition accuracy in noise and multiple talkers predicts organizational hierarchy of the ascending auditory pathway. Comparisons with data from auditory nerve, midbrain, thalamus and cortex reveals that the optimal HSNN predicts several transformations of the ascending auditory pathway including a sequential loss of temporal resolution and synchronization ability, increasing sparseness, and selectivity. The optimal organizational scheme enhances performance by selectively filtering out noise and fast temporal cues such as voicing periodicity, that are not directly relevant to the word recognition task. An identical network arranged to enable high information transfer fails to predict auditory pathway organization and has substantially poorer performance. Furthermore, conventional single-layer linear and nonlinear receptive field networks that capture the overall feature extraction of the HSNN fail to achieve similar performance. The findings suggest that the auditory pathway hierarchy and its sequential nonlinear feature extraction computations enhance relevant cues while removing non-informative sources of noise, thus enhancing the representation of sounds in noise impoverished conditions. |
doi_str_mv | 10.1371/journal.pcbi.1007558 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2424468465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632942820</galeid><doaj_id>oai_doaj_org_article_4c70a1f5f3df445286c58974906f1f93</doaj_id><sourcerecordid>A632942820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c680t-3826f50d630667f78f96903e204e9095fa952ef248316b4ee3639e45e312586a3</originalsourceid><addsrcrecordid>eNqVkk-LUzEUxR-iOOPoNxAMuHLRmv_vZSMMw6iFQcHRjZuQ5t28pvOaPJNUrZ_e1FaxCxeSRS4nJ7-cXG7TPCV4TlhLXq7jNgUzzie79HOCcStEd685J0KwWctEd_-v-qx5lPMa41oq-bA5Y1QIRTE_bz7fTv7OhwEFKN9iukNxKn7jf0CPXEyoSj1KYOMQfPExIB9QiD4DmhL03paMzLb3JaYdyrtcYINWHpJJdrV73DxwZszw5LhfNJ9eX3-8eju7ef9mcXV5M7Oyw2XGOiqdwL1kWMrWtZ1TUmEGNR4orIQzSlBwlHeMyCUHYJIp4AIYoaKThl00zw7caYxZH9uSNeWUc9lxKapjcXD00az1lPzGpJ2OxutfQkyDNql4O4LmtsWGOOFY7zgXtJO29qzlCktHnGKV9er42na5gd5CKMmMJ9DTk-BXeohfdcuoIhxXwPMjIMUvW8jlH5HnB9dgaiofXKwwW1cPG29jAOerfikrlNOO7rEvTi5UT4HvZTDbnPXi9sN_eN-devnBa1PMOYH781WC9X4Qf8fX-0HUx0FkPwHpo9AZ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424468465</pqid></control><display><type>article</type><title>Spiking network optimized for word recognition in noise predicts auditory system hierarchy</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><creator>Khatami, Fatemeh ; Escabí, Monty A</creator><contributor>Cohen, Yale E.</contributor><creatorcontrib>Khatami, Fatemeh ; Escabí, Monty A ; Cohen, Yale E.</creatorcontrib><description>The auditory neural code is resilient to acoustic variability and capable of recognizing sounds amongst competing sound sources, yet, the transformations enabling noise robust abilities are largely unknown. We report that a hierarchical spiking neural network (HSNN) optimized to maximize word recognition accuracy in noise and multiple talkers predicts organizational hierarchy of the ascending auditory pathway. Comparisons with data from auditory nerve, midbrain, thalamus and cortex reveals that the optimal HSNN predicts several transformations of the ascending auditory pathway including a sequential loss of temporal resolution and synchronization ability, increasing sparseness, and selectivity. The optimal organizational scheme enhances performance by selectively filtering out noise and fast temporal cues such as voicing periodicity, that are not directly relevant to the word recognition task. An identical network arranged to enable high information transfer fails to predict auditory pathway organization and has substantially poorer performance. Furthermore, conventional single-layer linear and nonlinear receptive field networks that capture the overall feature extraction of the HSNN fail to achieve similar performance. The findings suggest that the auditory pathway hierarchy and its sequential nonlinear feature extraction computations enhance relevant cues while removing non-informative sources of noise, thus enhancing the representation of sounds in noise impoverished conditions.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1007558</identifier><identifier>PMID: 32559204</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Acoustic noise ; Acoustics ; Artificial neural networks ; Auditory nerve ; Auditory perception ; Auditory system ; Biology and Life Sciences ; Biomedical engineering ; Computer and Information Sciences ; Computer engineering ; Cortex (auditory) ; Cortex (temporal) ; Engineering and Technology ; Feature extraction ; Firing pattern ; Hearing ; Information transfer ; Language ; Medicine and Health Sciences ; Mesencephalon ; Neural circuitry ; Neural networks ; Neurons ; Noise ; Noise (Sound) ; Noise prediction ; Pattern recognition ; Periodicity ; Physical Sciences ; Physiological aspects ; Receptive field ; Recognition ; Selectivity ; Social Sciences ; Software ; Sound ; Sound sources ; Speech ; Spiking ; Synchronism ; Synchronization ; Temporal lobe ; Temporal resolution ; Thalamus ; Word recognition</subject><ispartof>PLoS computational biology, 2020-06, Vol.16 (6), p.e1007558</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Khatami, Escabí. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Khatami, Escabí 2020 Khatami, Escabí</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c680t-3826f50d630667f78f96903e204e9095fa952ef248316b4ee3639e45e312586a3</citedby><cites>FETCH-LOGICAL-c680t-3826f50d630667f78f96903e204e9095fa952ef248316b4ee3639e45e312586a3</cites><orcidid>0000-0002-0278-9012 ; 0000-0001-7271-1061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7329140/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7329140/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids></links><search><contributor>Cohen, Yale E.</contributor><creatorcontrib>Khatami, Fatemeh</creatorcontrib><creatorcontrib>Escabí, Monty A</creatorcontrib><title>Spiking network optimized for word recognition in noise predicts auditory system hierarchy</title><title>PLoS computational biology</title><description>The auditory neural code is resilient to acoustic variability and capable of recognizing sounds amongst competing sound sources, yet, the transformations enabling noise robust abilities are largely unknown. We report that a hierarchical spiking neural network (HSNN) optimized to maximize word recognition accuracy in noise and multiple talkers predicts organizational hierarchy of the ascending auditory pathway. Comparisons with data from auditory nerve, midbrain, thalamus and cortex reveals that the optimal HSNN predicts several transformations of the ascending auditory pathway including a sequential loss of temporal resolution and synchronization ability, increasing sparseness, and selectivity. The optimal organizational scheme enhances performance by selectively filtering out noise and fast temporal cues such as voicing periodicity, that are not directly relevant to the word recognition task. An identical network arranged to enable high information transfer fails to predict auditory pathway organization and has substantially poorer performance. Furthermore, conventional single-layer linear and nonlinear receptive field networks that capture the overall feature extraction of the HSNN fail to achieve similar performance. The findings suggest that the auditory pathway hierarchy and its sequential nonlinear feature extraction computations enhance relevant cues while removing non-informative sources of noise, thus enhancing the representation of sounds in noise impoverished conditions.</description><subject>Acoustic noise</subject><subject>Acoustics</subject><subject>Artificial neural networks</subject><subject>Auditory nerve</subject><subject>Auditory perception</subject><subject>Auditory system</subject><subject>Biology and Life Sciences</subject><subject>Biomedical engineering</subject><subject>Computer and Information Sciences</subject><subject>Computer engineering</subject><subject>Cortex (auditory)</subject><subject>Cortex (temporal)</subject><subject>Engineering and Technology</subject><subject>Feature extraction</subject><subject>Firing pattern</subject><subject>Hearing</subject><subject>Information transfer</subject><subject>Language</subject><subject>Medicine and Health Sciences</subject><subject>Mesencephalon</subject><subject>Neural circuitry</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Noise</subject><subject>Noise (Sound)</subject><subject>Noise prediction</subject><subject>Pattern recognition</subject><subject>Periodicity</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Receptive field</subject><subject>Recognition</subject><subject>Selectivity</subject><subject>Social Sciences</subject><subject>Software</subject><subject>Sound</subject><subject>Sound sources</subject><subject>Speech</subject><subject>Spiking</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Temporal lobe</subject><subject>Temporal resolution</subject><subject>Thalamus</subject><subject>Word recognition</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk-LUzEUxR-iOOPoNxAMuHLRmv_vZSMMw6iFQcHRjZuQ5t28pvOaPJNUrZ_e1FaxCxeSRS4nJ7-cXG7TPCV4TlhLXq7jNgUzzie79HOCcStEd685J0KwWctEd_-v-qx5lPMa41oq-bA5Y1QIRTE_bz7fTv7OhwEFKN9iukNxKn7jf0CPXEyoSj1KYOMQfPExIB9QiD4DmhL03paMzLb3JaYdyrtcYINWHpJJdrV73DxwZszw5LhfNJ9eX3-8eju7ef9mcXV5M7Oyw2XGOiqdwL1kWMrWtZ1TUmEGNR4orIQzSlBwlHeMyCUHYJIp4AIYoaKThl00zw7caYxZH9uSNeWUc9lxKapjcXD00az1lPzGpJ2OxutfQkyDNql4O4LmtsWGOOFY7zgXtJO29qzlCktHnGKV9er42na5gd5CKMmMJ9DTk-BXeohfdcuoIhxXwPMjIMUvW8jlH5HnB9dgaiofXKwwW1cPG29jAOerfikrlNOO7rEvTi5UT4HvZTDbnPXi9sN_eN-devnBa1PMOYH781WC9X4Qf8fX-0HUx0FkPwHpo9AZ</recordid><startdate>20200619</startdate><enddate>20200619</enddate><creator>Khatami, Fatemeh</creator><creator>Escabí, Monty A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0278-9012</orcidid><orcidid>https://orcid.org/0000-0001-7271-1061</orcidid></search><sort><creationdate>20200619</creationdate><title>Spiking network optimized for word recognition in noise predicts auditory system hierarchy</title><author>Khatami, Fatemeh ; Escabí, Monty A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c680t-3826f50d630667f78f96903e204e9095fa952ef248316b4ee3639e45e312586a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustic noise</topic><topic>Acoustics</topic><topic>Artificial neural networks</topic><topic>Auditory nerve</topic><topic>Auditory perception</topic><topic>Auditory system</topic><topic>Biology and Life Sciences</topic><topic>Biomedical engineering</topic><topic>Computer and Information Sciences</topic><topic>Computer engineering</topic><topic>Cortex (auditory)</topic><topic>Cortex (temporal)</topic><topic>Engineering and Technology</topic><topic>Feature extraction</topic><topic>Firing pattern</topic><topic>Hearing</topic><topic>Information transfer</topic><topic>Language</topic><topic>Medicine and Health Sciences</topic><topic>Mesencephalon</topic><topic>Neural circuitry</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Noise</topic><topic>Noise (Sound)</topic><topic>Noise prediction</topic><topic>Pattern recognition</topic><topic>Periodicity</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Receptive field</topic><topic>Recognition</topic><topic>Selectivity</topic><topic>Social Sciences</topic><topic>Software</topic><topic>Sound</topic><topic>Sound sources</topic><topic>Speech</topic><topic>Spiking</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Temporal lobe</topic><topic>Temporal resolution</topic><topic>Thalamus</topic><topic>Word recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khatami, Fatemeh</creatorcontrib><creatorcontrib>Escabí, Monty A</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khatami, Fatemeh</au><au>Escabí, Monty A</au><au>Cohen, Yale E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spiking network optimized for word recognition in noise predicts auditory system hierarchy</atitle><jtitle>PLoS computational biology</jtitle><date>2020-06-19</date><risdate>2020</risdate><volume>16</volume><issue>6</issue><spage>e1007558</spage><pages>e1007558-</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>The auditory neural code is resilient to acoustic variability and capable of recognizing sounds amongst competing sound sources, yet, the transformations enabling noise robust abilities are largely unknown. We report that a hierarchical spiking neural network (HSNN) optimized to maximize word recognition accuracy in noise and multiple talkers predicts organizational hierarchy of the ascending auditory pathway. Comparisons with data from auditory nerve, midbrain, thalamus and cortex reveals that the optimal HSNN predicts several transformations of the ascending auditory pathway including a sequential loss of temporal resolution and synchronization ability, increasing sparseness, and selectivity. The optimal organizational scheme enhances performance by selectively filtering out noise and fast temporal cues such as voicing periodicity, that are not directly relevant to the word recognition task. An identical network arranged to enable high information transfer fails to predict auditory pathway organization and has substantially poorer performance. Furthermore, conventional single-layer linear and nonlinear receptive field networks that capture the overall feature extraction of the HSNN fail to achieve similar performance. The findings suggest that the auditory pathway hierarchy and its sequential nonlinear feature extraction computations enhance relevant cues while removing non-informative sources of noise, thus enhancing the representation of sounds in noise impoverished conditions.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>32559204</pmid><doi>10.1371/journal.pcbi.1007558</doi><orcidid>https://orcid.org/0000-0002-0278-9012</orcidid><orcidid>https://orcid.org/0000-0001-7271-1061</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2020-06, Vol.16 (6), p.e1007558 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2424468465 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central |
subjects | Acoustic noise Acoustics Artificial neural networks Auditory nerve Auditory perception Auditory system Biology and Life Sciences Biomedical engineering Computer and Information Sciences Computer engineering Cortex (auditory) Cortex (temporal) Engineering and Technology Feature extraction Firing pattern Hearing Information transfer Language Medicine and Health Sciences Mesencephalon Neural circuitry Neural networks Neurons Noise Noise (Sound) Noise prediction Pattern recognition Periodicity Physical Sciences Physiological aspects Receptive field Recognition Selectivity Social Sciences Software Sound Sound sources Speech Spiking Synchronism Synchronization Temporal lobe Temporal resolution Thalamus Word recognition |
title | Spiking network optimized for word recognition in noise predicts auditory system hierarchy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A28%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spiking%20network%20optimized%20for%20word%20recognition%20in%20noise%20predicts%20auditory%20system%20hierarchy&rft.jtitle=PLoS%20computational%20biology&rft.au=Khatami,%20Fatemeh&rft.date=2020-06-19&rft.volume=16&rft.issue=6&rft.spage=e1007558&rft.pages=e1007558-&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1007558&rft_dat=%3Cgale_plos_%3EA632942820%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424468465&rft_id=info:pmid/32559204&rft_galeid=A632942820&rft_doaj_id=oai_doaj_org_article_4c70a1f5f3df445286c58974906f1f93&rfr_iscdi=true |