IRE1α regulates macrophage polarization, PD-L1 expression, and tumor survival

In the tumor microenvironment, local immune dysregulation is driven in part by macrophages and dendritic cells that are polarized to a mixed proinflammatory/immune-suppressive phenotype. The unfolded protein response (UPR) is emerging as the possible origin of these events. Here we report that the i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS biology 2020-06, Vol.18 (6), p.e3000687-e3000687
Hauptverfasser: Batista, Alyssa, Rodvold, Jeffrey J, Xian, Su, Searles, Stephen C, Lew, Alyssa, Iwawaki, Takao, Almanza, Gonzalo, Waller, T Cameron, Lin, Jonathan, Jepsen, Kristen, Carter, Hannah, Zanetti, Maurizio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e3000687
container_issue 6
container_start_page e3000687
container_title PLoS biology
container_volume 18
creator Batista, Alyssa
Rodvold, Jeffrey J
Xian, Su
Searles, Stephen C
Lew, Alyssa
Iwawaki, Takao
Almanza, Gonzalo
Waller, T Cameron
Lin, Jonathan
Jepsen, Kristen
Carter, Hannah
Zanetti, Maurizio
description In the tumor microenvironment, local immune dysregulation is driven in part by macrophages and dendritic cells that are polarized to a mixed proinflammatory/immune-suppressive phenotype. The unfolded protein response (UPR) is emerging as the possible origin of these events. Here we report that the inositol-requiring enzyme 1 (IRE1α) branch of the UPR is directly involved in the polarization of macrophages in vitro and in vivo, including the up-regulation of interleukin 6 (IL-6), IL-23, Arginase1, as well as surface expression of CD86 and programmed death ligand 1 (PD-L1). Macrophages in which the IRE1α/X-box binding protein 1 (Xbp1) axis is blocked pharmacologically or deleted genetically have significantly reduced polarization and CD86 and PD-L1 expression, which was induced independent of IFNγ signaling, suggesting a novel mechanism in PD-L1 regulation in macrophages. Mice with IRE1α- but not Xbp1-deficient macrophages showed greater survival than controls when implanted with B16.F10 melanoma cells. Remarkably, we found a significant association between the IRE1α gene signature and CD274 gene expression in tumor-infiltrating macrophages in humans. RNA sequencing (RNASeq) analysis showed that bone marrow-derived macrophages with IRE1α deletion lose the integrity of the gene connectivity characteristic of regulated IRE1α-dependent decay (RIDD) and the ability to activate CD274 gene expression. Thus, the IRE1α/Xbp1 axis drives the polarization of macrophages in the tumor microenvironment initiating a complex immune dysregulation leading to failure of local immune surveillance.
doi_str_mv 10.1371/journal.pbio.3000687
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2424466118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_09d9905f93834110aacb9e0409ef3141</doaj_id><sourcerecordid>2424466118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-504ec2d2a1082e9b0c925b4f1c56edd845b045ef7b53df584deef5cb1846035a3</originalsourceid><addsrcrecordid>eNptkt1u1DAQhSNERUvhDRBE4oaLZvFvYt8gof7ASquCEFxbE2eyzcqJUztZUd6KF-GZyHbTqkVc2Rqf83nGPknyipIF5QV9v_Fj6MAt-rLxC04IyVXxJDmiUsisUEo-fbA_TJ7HuCGEMc3Us-SQM8mIlsVRcrn8dk7__E4DrkcHA8a0BRt8fwVrTHvvIDS_YGh8d5J-PctWNMWffcAYbyvQVekwtj6kcQzbZgvuRXJQg4v4cl6Pkx8X599PP2erL5-Wpx9XmZUsHzJJBFpWMaBEMdQlsZrJUtTUyhyrSglZEiGxLkrJq1oqUSHW0pZUiZxwCfw4ebPn9s5HMz9FNEwwIfKcUjUplntF5WFj-tC0EG6Mh8bcFnxYGwhDYx0aoiutiaw1V1xQSgBsqZEIorHmVNCJ9WG-bSxbrCx2QwD3CPr4pGuuzNpvTcFJUWgxAd7NgOCvR4yDaZto0Tno0I-7viljVGuWT9K3_0j_P53Yq6a_ijFgfd8MJWYXjzuX2cXDzPGYbK8fDnJvussD_wseWriQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424466118</pqid></control><display><type>article</type><title>IRE1α regulates macrophage polarization, PD-L1 expression, and tumor survival</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Batista, Alyssa ; Rodvold, Jeffrey J ; Xian, Su ; Searles, Stephen C ; Lew, Alyssa ; Iwawaki, Takao ; Almanza, Gonzalo ; Waller, T Cameron ; Lin, Jonathan ; Jepsen, Kristen ; Carter, Hannah ; Zanetti, Maurizio</creator><creatorcontrib>Batista, Alyssa ; Rodvold, Jeffrey J ; Xian, Su ; Searles, Stephen C ; Lew, Alyssa ; Iwawaki, Takao ; Almanza, Gonzalo ; Waller, T Cameron ; Lin, Jonathan ; Jepsen, Kristen ; Carter, Hannah ; Zanetti, Maurizio</creatorcontrib><description>In the tumor microenvironment, local immune dysregulation is driven in part by macrophages and dendritic cells that are polarized to a mixed proinflammatory/immune-suppressive phenotype. The unfolded protein response (UPR) is emerging as the possible origin of these events. Here we report that the inositol-requiring enzyme 1 (IRE1α) branch of the UPR is directly involved in the polarization of macrophages in vitro and in vivo, including the up-regulation of interleukin 6 (IL-6), IL-23, Arginase1, as well as surface expression of CD86 and programmed death ligand 1 (PD-L1). Macrophages in which the IRE1α/X-box binding protein 1 (Xbp1) axis is blocked pharmacologically or deleted genetically have significantly reduced polarization and CD86 and PD-L1 expression, which was induced independent of IFNγ signaling, suggesting a novel mechanism in PD-L1 regulation in macrophages. Mice with IRE1α- but not Xbp1-deficient macrophages showed greater survival than controls when implanted with B16.F10 melanoma cells. Remarkably, we found a significant association between the IRE1α gene signature and CD274 gene expression in tumor-infiltrating macrophages in humans. RNA sequencing (RNASeq) analysis showed that bone marrow-derived macrophages with IRE1α deletion lose the integrity of the gene connectivity characteristic of regulated IRE1α-dependent decay (RIDD) and the ability to activate CD274 gene expression. Thus, the IRE1α/Xbp1 axis drives the polarization of macrophages in the tumor microenvironment initiating a complex immune dysregulation leading to failure of local immune surveillance.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.3000687</identifier><identifier>PMID: 32520957</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Activating transcription factor 1 ; Animals ; Antigen presentation ; Apoptosis ; B7-H1 Antigen - metabolism ; Batista, Jeffrey ; Bioinformatics ; Biology ; Biology and Life Sciences ; Bone marrow ; Cancer ; CD11b Antigen - metabolism ; CD86 antigen ; Cell Line, Tumor ; Cell Polarity ; Cell Proliferation ; Cell Survival ; Cytomegalovirus ; Dendritic cells ; Endoribonucleases - metabolism ; Enzymes ; Gene deletion ; Gene expression ; Gene Expression Regulation, Neoplastic ; Gene sequencing ; Genotype &amp; phenotype ; Homeostasis ; Humans ; Immunology ; Immunosurveillance ; Inflammation ; Inflammation - pathology ; Inositol ; Interleukin 23 ; Interleukin 6 ; Kinases ; Laboratories ; Linear Models ; Macrophages ; Macrophages - metabolism ; Medicine ; Medicine and Health Sciences ; Melanoma ; Mice, Inbred C57BL ; Mice, Knockout ; Myeloid Cells - metabolism ; Neoplasms - metabolism ; Neoplasms - pathology ; PD-L1 protein ; Phenotype ; Phenotypes ; Polarization ; Protein folding ; Protein Serine-Threonine Kinases - metabolism ; Proteins ; Research and analysis methods ; Ribonucleic acid ; RNA ; Sensors ; Surgical implants ; Survival ; Transcription factors ; Tumors ; Unfolded Protein Response ; X-Box Binding Protein 1 - metabolism ; γ-Interferon</subject><ispartof>PLoS biology, 2020-06, Vol.18 (6), p.e3000687-e3000687</ispartof><rights>2020 Batista et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Batista et al 2020 Batista et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-504ec2d2a1082e9b0c925b4f1c56edd845b045ef7b53df584deef5cb1846035a3</citedby><cites>FETCH-LOGICAL-c526t-504ec2d2a1082e9b0c925b4f1c56edd845b045ef7b53df584deef5cb1846035a3</cites><orcidid>0000-0001-8753-1979 ; 0000-0002-8295-876X ; 0000-0002-0313-6646 ; 0000-0001-6346-8776</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7307794/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7307794/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32520957$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Batista, Alyssa</creatorcontrib><creatorcontrib>Rodvold, Jeffrey J</creatorcontrib><creatorcontrib>Xian, Su</creatorcontrib><creatorcontrib>Searles, Stephen C</creatorcontrib><creatorcontrib>Lew, Alyssa</creatorcontrib><creatorcontrib>Iwawaki, Takao</creatorcontrib><creatorcontrib>Almanza, Gonzalo</creatorcontrib><creatorcontrib>Waller, T Cameron</creatorcontrib><creatorcontrib>Lin, Jonathan</creatorcontrib><creatorcontrib>Jepsen, Kristen</creatorcontrib><creatorcontrib>Carter, Hannah</creatorcontrib><creatorcontrib>Zanetti, Maurizio</creatorcontrib><title>IRE1α regulates macrophage polarization, PD-L1 expression, and tumor survival</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>In the tumor microenvironment, local immune dysregulation is driven in part by macrophages and dendritic cells that are polarized to a mixed proinflammatory/immune-suppressive phenotype. The unfolded protein response (UPR) is emerging as the possible origin of these events. Here we report that the inositol-requiring enzyme 1 (IRE1α) branch of the UPR is directly involved in the polarization of macrophages in vitro and in vivo, including the up-regulation of interleukin 6 (IL-6), IL-23, Arginase1, as well as surface expression of CD86 and programmed death ligand 1 (PD-L1). Macrophages in which the IRE1α/X-box binding protein 1 (Xbp1) axis is blocked pharmacologically or deleted genetically have significantly reduced polarization and CD86 and PD-L1 expression, which was induced independent of IFNγ signaling, suggesting a novel mechanism in PD-L1 regulation in macrophages. Mice with IRE1α- but not Xbp1-deficient macrophages showed greater survival than controls when implanted with B16.F10 melanoma cells. Remarkably, we found a significant association between the IRE1α gene signature and CD274 gene expression in tumor-infiltrating macrophages in humans. RNA sequencing (RNASeq) analysis showed that bone marrow-derived macrophages with IRE1α deletion lose the integrity of the gene connectivity characteristic of regulated IRE1α-dependent decay (RIDD) and the ability to activate CD274 gene expression. Thus, the IRE1α/Xbp1 axis drives the polarization of macrophages in the tumor microenvironment initiating a complex immune dysregulation leading to failure of local immune surveillance.</description><subject>Activating transcription factor 1</subject><subject>Animals</subject><subject>Antigen presentation</subject><subject>Apoptosis</subject><subject>B7-H1 Antigen - metabolism</subject><subject>Batista, Jeffrey</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Bone marrow</subject><subject>Cancer</subject><subject>CD11b Antigen - metabolism</subject><subject>CD86 antigen</subject><subject>Cell Line, Tumor</subject><subject>Cell Polarity</subject><subject>Cell Proliferation</subject><subject>Cell Survival</subject><subject>Cytomegalovirus</subject><subject>Dendritic cells</subject><subject>Endoribonucleases - metabolism</subject><subject>Enzymes</subject><subject>Gene deletion</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Gene sequencing</subject><subject>Genotype &amp; phenotype</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Immunology</subject><subject>Immunosurveillance</subject><subject>Inflammation</subject><subject>Inflammation - pathology</subject><subject>Inositol</subject><subject>Interleukin 23</subject><subject>Interleukin 6</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Linear Models</subject><subject>Macrophages</subject><subject>Macrophages - metabolism</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Melanoma</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Myeloid Cells - metabolism</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - pathology</subject><subject>PD-L1 protein</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Polarization</subject><subject>Protein folding</subject><subject>Protein Serine-Threonine Kinases - metabolism</subject><subject>Proteins</subject><subject>Research and analysis methods</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Sensors</subject><subject>Surgical implants</subject><subject>Survival</subject><subject>Transcription factors</subject><subject>Tumors</subject><subject>Unfolded Protein Response</subject><subject>X-Box Binding Protein 1 - metabolism</subject><subject>γ-Interferon</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptkt1u1DAQhSNERUvhDRBE4oaLZvFvYt8gof7ASquCEFxbE2eyzcqJUztZUd6KF-GZyHbTqkVc2Rqf83nGPknyipIF5QV9v_Fj6MAt-rLxC04IyVXxJDmiUsisUEo-fbA_TJ7HuCGEMc3Us-SQM8mIlsVRcrn8dk7__E4DrkcHA8a0BRt8fwVrTHvvIDS_YGh8d5J-PctWNMWffcAYbyvQVekwtj6kcQzbZgvuRXJQg4v4cl6Pkx8X599PP2erL5-Wpx9XmZUsHzJJBFpWMaBEMdQlsZrJUtTUyhyrSglZEiGxLkrJq1oqUSHW0pZUiZxwCfw4ebPn9s5HMz9FNEwwIfKcUjUplntF5WFj-tC0EG6Mh8bcFnxYGwhDYx0aoiutiaw1V1xQSgBsqZEIorHmVNCJ9WG-bSxbrCx2QwD3CPr4pGuuzNpvTcFJUWgxAd7NgOCvR4yDaZto0Tno0I-7viljVGuWT9K3_0j_P53Yq6a_ijFgfd8MJWYXjzuX2cXDzPGYbK8fDnJvussD_wseWriQ</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Batista, Alyssa</creator><creator>Rodvold, Jeffrey J</creator><creator>Xian, Su</creator><creator>Searles, Stephen C</creator><creator>Lew, Alyssa</creator><creator>Iwawaki, Takao</creator><creator>Almanza, Gonzalo</creator><creator>Waller, T Cameron</creator><creator>Lin, Jonathan</creator><creator>Jepsen, Kristen</creator><creator>Carter, Hannah</creator><creator>Zanetti, Maurizio</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0001-8753-1979</orcidid><orcidid>https://orcid.org/0000-0002-8295-876X</orcidid><orcidid>https://orcid.org/0000-0002-0313-6646</orcidid><orcidid>https://orcid.org/0000-0001-6346-8776</orcidid></search><sort><creationdate>20200601</creationdate><title>IRE1α regulates macrophage polarization, PD-L1 expression, and tumor survival</title><author>Batista, Alyssa ; Rodvold, Jeffrey J ; Xian, Su ; Searles, Stephen C ; Lew, Alyssa ; Iwawaki, Takao ; Almanza, Gonzalo ; Waller, T Cameron ; Lin, Jonathan ; Jepsen, Kristen ; Carter, Hannah ; Zanetti, Maurizio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-504ec2d2a1082e9b0c925b4f1c56edd845b045ef7b53df584deef5cb1846035a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Activating transcription factor 1</topic><topic>Animals</topic><topic>Antigen presentation</topic><topic>Apoptosis</topic><topic>B7-H1 Antigen - metabolism</topic><topic>Batista, Jeffrey</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Bone marrow</topic><topic>Cancer</topic><topic>CD11b Antigen - metabolism</topic><topic>CD86 antigen</topic><topic>Cell Line, Tumor</topic><topic>Cell Polarity</topic><topic>Cell Proliferation</topic><topic>Cell Survival</topic><topic>Cytomegalovirus</topic><topic>Dendritic cells</topic><topic>Endoribonucleases - metabolism</topic><topic>Enzymes</topic><topic>Gene deletion</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Gene sequencing</topic><topic>Genotype &amp; phenotype</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Immunology</topic><topic>Immunosurveillance</topic><topic>Inflammation</topic><topic>Inflammation - pathology</topic><topic>Inositol</topic><topic>Interleukin 23</topic><topic>Interleukin 6</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Linear Models</topic><topic>Macrophages</topic><topic>Macrophages - metabolism</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Melanoma</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Myeloid Cells - metabolism</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - pathology</topic><topic>PD-L1 protein</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Polarization</topic><topic>Protein folding</topic><topic>Protein Serine-Threonine Kinases - metabolism</topic><topic>Proteins</topic><topic>Research and analysis methods</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Sensors</topic><topic>Surgical implants</topic><topic>Survival</topic><topic>Transcription factors</topic><topic>Tumors</topic><topic>Unfolded Protein Response</topic><topic>X-Box Binding Protein 1 - metabolism</topic><topic>γ-Interferon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Batista, Alyssa</creatorcontrib><creatorcontrib>Rodvold, Jeffrey J</creatorcontrib><creatorcontrib>Xian, Su</creatorcontrib><creatorcontrib>Searles, Stephen C</creatorcontrib><creatorcontrib>Lew, Alyssa</creatorcontrib><creatorcontrib>Iwawaki, Takao</creatorcontrib><creatorcontrib>Almanza, Gonzalo</creatorcontrib><creatorcontrib>Waller, T Cameron</creatorcontrib><creatorcontrib>Lin, Jonathan</creatorcontrib><creatorcontrib>Jepsen, Kristen</creatorcontrib><creatorcontrib>Carter, Hannah</creatorcontrib><creatorcontrib>Zanetti, Maurizio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Batista, Alyssa</au><au>Rodvold, Jeffrey J</au><au>Xian, Su</au><au>Searles, Stephen C</au><au>Lew, Alyssa</au><au>Iwawaki, Takao</au><au>Almanza, Gonzalo</au><au>Waller, T Cameron</au><au>Lin, Jonathan</au><au>Jepsen, Kristen</au><au>Carter, Hannah</au><au>Zanetti, Maurizio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IRE1α regulates macrophage polarization, PD-L1 expression, and tumor survival</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>18</volume><issue>6</issue><spage>e3000687</spage><epage>e3000687</epage><pages>e3000687-e3000687</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>In the tumor microenvironment, local immune dysregulation is driven in part by macrophages and dendritic cells that are polarized to a mixed proinflammatory/immune-suppressive phenotype. The unfolded protein response (UPR) is emerging as the possible origin of these events. Here we report that the inositol-requiring enzyme 1 (IRE1α) branch of the UPR is directly involved in the polarization of macrophages in vitro and in vivo, including the up-regulation of interleukin 6 (IL-6), IL-23, Arginase1, as well as surface expression of CD86 and programmed death ligand 1 (PD-L1). Macrophages in which the IRE1α/X-box binding protein 1 (Xbp1) axis is blocked pharmacologically or deleted genetically have significantly reduced polarization and CD86 and PD-L1 expression, which was induced independent of IFNγ signaling, suggesting a novel mechanism in PD-L1 regulation in macrophages. Mice with IRE1α- but not Xbp1-deficient macrophages showed greater survival than controls when implanted with B16.F10 melanoma cells. Remarkably, we found a significant association between the IRE1α gene signature and CD274 gene expression in tumor-infiltrating macrophages in humans. RNA sequencing (RNASeq) analysis showed that bone marrow-derived macrophages with IRE1α deletion lose the integrity of the gene connectivity characteristic of regulated IRE1α-dependent decay (RIDD) and the ability to activate CD274 gene expression. Thus, the IRE1α/Xbp1 axis drives the polarization of macrophages in the tumor microenvironment initiating a complex immune dysregulation leading to failure of local immune surveillance.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32520957</pmid><doi>10.1371/journal.pbio.3000687</doi><orcidid>https://orcid.org/0000-0001-8753-1979</orcidid><orcidid>https://orcid.org/0000-0002-8295-876X</orcidid><orcidid>https://orcid.org/0000-0002-0313-6646</orcidid><orcidid>https://orcid.org/0000-0001-6346-8776</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-7885
ispartof PLoS biology, 2020-06, Vol.18 (6), p.e3000687-e3000687
issn 1545-7885
1544-9173
1545-7885
language eng
recordid cdi_plos_journals_2424466118
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS)
subjects Activating transcription factor 1
Animals
Antigen presentation
Apoptosis
B7-H1 Antigen - metabolism
Batista, Jeffrey
Bioinformatics
Biology
Biology and Life Sciences
Bone marrow
Cancer
CD11b Antigen - metabolism
CD86 antigen
Cell Line, Tumor
Cell Polarity
Cell Proliferation
Cell Survival
Cytomegalovirus
Dendritic cells
Endoribonucleases - metabolism
Enzymes
Gene deletion
Gene expression
Gene Expression Regulation, Neoplastic
Gene sequencing
Genotype & phenotype
Homeostasis
Humans
Immunology
Immunosurveillance
Inflammation
Inflammation - pathology
Inositol
Interleukin 23
Interleukin 6
Kinases
Laboratories
Linear Models
Macrophages
Macrophages - metabolism
Medicine
Medicine and Health Sciences
Melanoma
Mice, Inbred C57BL
Mice, Knockout
Myeloid Cells - metabolism
Neoplasms - metabolism
Neoplasms - pathology
PD-L1 protein
Phenotype
Phenotypes
Polarization
Protein folding
Protein Serine-Threonine Kinases - metabolism
Proteins
Research and analysis methods
Ribonucleic acid
RNA
Sensors
Surgical implants
Survival
Transcription factors
Tumors
Unfolded Protein Response
X-Box Binding Protein 1 - metabolism
γ-Interferon
title IRE1α regulates macrophage polarization, PD-L1 expression, and tumor survival
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A27%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IRE1%CE%B1%20regulates%20macrophage%20polarization,%20PD-L1%20expression,%20and%20tumor%20survival&rft.jtitle=PLoS%20biology&rft.au=Batista,%20Alyssa&rft.date=2020-06-01&rft.volume=18&rft.issue=6&rft.spage=e3000687&rft.epage=e3000687&rft.pages=e3000687-e3000687&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.3000687&rft_dat=%3Cproquest_plos_%3E2424466118%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424466118&rft_id=info:pmid/32520957&rft_doaj_id=oai_doaj_org_article_09d9905f93834110aacb9e0409ef3141&rfr_iscdi=true