KRAS, NRAS, and BRAF mutation prevalence, clinicopathological association, and their application in a predictive model in Mexican patients with metastatic colorectal cancer: A retrospective cohort study

Mutations in KRAS, NRAS, and BRAF (RAS/BRAF) genes are the main predictive biomarkers for the response to anti-EGFR monoclonal antibodies (MAbs) targeted therapy in metastatic colorectal cancer (mCRC). This retrospective study aimed to report the mutational status prevalence of these genes, explore...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-07, Vol.15 (7), p.e0235490-e0235490
Hauptverfasser: Sanchez-Ibarra, Hector Eduardo, Jiang, Xianli, Gallegos-Gonzalez, Elena Yareli, Cavazos-González, Adriana Carolina, Chen, Yenho, Morcos, Faruck, Barrera-Saldaña, Hugo Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0235490
container_issue 7
container_start_page e0235490
container_title PloS one
container_volume 15
creator Sanchez-Ibarra, Hector Eduardo
Jiang, Xianli
Gallegos-Gonzalez, Elena Yareli
Cavazos-González, Adriana Carolina
Chen, Yenho
Morcos, Faruck
Barrera-Saldaña, Hugo Alberto
description Mutations in KRAS, NRAS, and BRAF (RAS/BRAF) genes are the main predictive biomarkers for the response to anti-EGFR monoclonal antibodies (MAbs) targeted therapy in metastatic colorectal cancer (mCRC). This retrospective study aimed to report the mutational status prevalence of these genes, explore their possible associations with clinicopathological features, and build and validate a predictive model. To achieve these objectives, 500 mCRC Mexican patients were screened for clinically relevant mutations in RAS/BRAF genes. Fifty-two percent of these specimens harbored clinically relevant mutations in at least one screened gene. Among these, 86% had a mutation in KRAS, 7% in NRAS, 6% in BRAF, and 2% in both NRAS and BRAF. Only tumor location in the proximal colon exhibited a significant correlation with KRAS and BRAF mutational status (p-value = 0.0414 and 0.0065, respectively). Further t-SNE analyses were made to 191 specimens to reveal patterns among patients with clinical parameters and KRAS mutational status. Then, directed by the results from classical statistical tests and t-SNE analysis, neural network models utilized entity embeddings to learn patterns and build predictive models using a minimal number of trainable parameters. This study could be the first step in the prediction for RAS/BRAF mutational status from tumoral features and could lead the way to a more detailed and more diverse dataset that could benefit from machine learning methods.
doi_str_mv 10.1371/journal.pone.0235490
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2420594156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A628712478</galeid><doaj_id>oai_doaj_org_article_e4705801a02c4fbfb0e94c5dae39b915</doaj_id><sourcerecordid>A628712478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c669t-750af62842ca838caa5e074217813b40b00c205373f3862ff6b87abb7d53ca4b3</originalsourceid><addsrcrecordid>eNqNk29r1EAQxoMotla_geCCIAq9c7Obv74QzmL1sFq4qm-XyWZy2bLJxt1Nbb-in8rN3Sk96QsJJGH2N8-TmcxE0dOYzmOex68vzWh70PPB9DinjKdJSe9Fh3HJ2SxjlN-_9X4QPXLuktKUF1n2MDrgLGNFTovD6Nen1eLimHzZ3KGvybvV4pR0owevTE8Gi1egsZd4TKRWvZJmAN8abdZKgibgnJFqw27TfYvKEhgGHc43EqonMOnUSnp1haQzNeop-hmvAxM8Aoe9d-Sn8i3p0IOb3CWRwcai9MEncBLtG7IgFr01bsCtmDStsZ44P9Y3j6MHDWiHT3bPo-jb6fuvJx9nZ-cflieLs5nMstLP8pRCE8pPmISCFxIgRZonLM6LmFcJrSiVLHQq503oFmuarCpyqKq8TrmEpOJH0bOt7qCNE7vf4ARLQlaZxGkWiOWWqA1cisGqDuyNMKDEJmDsWoANFWoUmOQ0LWgMlMmkqZqKYpnItAbkZVXGadB6u3Mbqw5rGTplQe-J7p_0qhVrcyVyznNWTgIvdwLW_BjRedEpJ1Fr6NGMm--OY8aypAzo83_Qu6vbUeswGUL1jQm-chIVi2msYpbkRaDmd1DhqrELU9Rjo0J8L-HVXkJgPF77NYzOieXF6v_Z8-_77ItbbIugfeuMHqfhdPtgsgVlGDBnsfnb5JiKaeX-dENMKyd2K8d_AxNbH6c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420594156</pqid></control><display><type>article</type><title>KRAS, NRAS, and BRAF mutation prevalence, clinicopathological association, and their application in a predictive model in Mexican patients with metastatic colorectal cancer: A retrospective cohort study</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Sanchez-Ibarra, Hector Eduardo ; Jiang, Xianli ; Gallegos-Gonzalez, Elena Yareli ; Cavazos-González, Adriana Carolina ; Chen, Yenho ; Morcos, Faruck ; Barrera-Saldaña, Hugo Alberto</creator><contributor>Toland, Amanda Ewart</contributor><creatorcontrib>Sanchez-Ibarra, Hector Eduardo ; Jiang, Xianli ; Gallegos-Gonzalez, Elena Yareli ; Cavazos-González, Adriana Carolina ; Chen, Yenho ; Morcos, Faruck ; Barrera-Saldaña, Hugo Alberto ; Toland, Amanda Ewart</creatorcontrib><description>Mutations in KRAS, NRAS, and BRAF (RAS/BRAF) genes are the main predictive biomarkers for the response to anti-EGFR monoclonal antibodies (MAbs) targeted therapy in metastatic colorectal cancer (mCRC). This retrospective study aimed to report the mutational status prevalence of these genes, explore their possible associations with clinicopathological features, and build and validate a predictive model. To achieve these objectives, 500 mCRC Mexican patients were screened for clinically relevant mutations in RAS/BRAF genes. Fifty-two percent of these specimens harbored clinically relevant mutations in at least one screened gene. Among these, 86% had a mutation in KRAS, 7% in NRAS, 6% in BRAF, and 2% in both NRAS and BRAF. Only tumor location in the proximal colon exhibited a significant correlation with KRAS and BRAF mutational status (p-value = 0.0414 and 0.0065, respectively). Further t-SNE analyses were made to 191 specimens to reveal patterns among patients with clinical parameters and KRAS mutational status. Then, directed by the results from classical statistical tests and t-SNE analysis, neural network models utilized entity embeddings to learn patterns and build predictive models using a minimal number of trainable parameters. This study could be the first step in the prediction for RAS/BRAF mutational status from tumoral features and could lead the way to a more detailed and more diverse dataset that could benefit from machine learning methods.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0235490</identifier><identifier>PMID: 32628708</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Biology and Life Sciences ; Biomarkers ; Breast cancer ; Cancer ; Cancer metastasis ; Cohort analysis ; Colon ; Colorectal cancer ; Colorectal carcinoma ; Computer and Information Sciences ; Development and progression ; Diet ; Epidermal growth factor receptors ; Gene mutation ; Genes ; Genetic aspects ; Genetics ; Health aspects ; K-Ras protein ; Laboratories ; Learning algorithms ; Machine learning ; Mathematical models ; Medical prognosis ; Medical research ; Medicine and Health Sciences ; Metastases ; Metastasis ; Monoclonal antibodies ; Mutation ; Neural networks ; Parameters ; Physical Sciences ; Prediction models ; Prognosis ; Ras genes ; Research and Analysis Methods ; Small intestine ; Statistical analysis ; Statistical tests ; Studies ; Tumors</subject><ispartof>PloS one, 2020-07, Vol.15 (7), p.e0235490-e0235490</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Sanchez-Ibarra et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Sanchez-Ibarra et al 2020 Sanchez-Ibarra et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c669t-750af62842ca838caa5e074217813b40b00c205373f3862ff6b87abb7d53ca4b3</citedby><cites>FETCH-LOGICAL-c669t-750af62842ca838caa5e074217813b40b00c205373f3862ff6b87abb7d53ca4b3</cites><orcidid>0000-0002-9991-267X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7337295/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7337295/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23864,27922,27923,53789,53791,79370,79371</link.rule.ids></links><search><contributor>Toland, Amanda Ewart</contributor><creatorcontrib>Sanchez-Ibarra, Hector Eduardo</creatorcontrib><creatorcontrib>Jiang, Xianli</creatorcontrib><creatorcontrib>Gallegos-Gonzalez, Elena Yareli</creatorcontrib><creatorcontrib>Cavazos-González, Adriana Carolina</creatorcontrib><creatorcontrib>Chen, Yenho</creatorcontrib><creatorcontrib>Morcos, Faruck</creatorcontrib><creatorcontrib>Barrera-Saldaña, Hugo Alberto</creatorcontrib><title>KRAS, NRAS, and BRAF mutation prevalence, clinicopathological association, and their application in a predictive model in Mexican patients with metastatic colorectal cancer: A retrospective cohort study</title><title>PloS one</title><description>Mutations in KRAS, NRAS, and BRAF (RAS/BRAF) genes are the main predictive biomarkers for the response to anti-EGFR monoclonal antibodies (MAbs) targeted therapy in metastatic colorectal cancer (mCRC). This retrospective study aimed to report the mutational status prevalence of these genes, explore their possible associations with clinicopathological features, and build and validate a predictive model. To achieve these objectives, 500 mCRC Mexican patients were screened for clinically relevant mutations in RAS/BRAF genes. Fifty-two percent of these specimens harbored clinically relevant mutations in at least one screened gene. Among these, 86% had a mutation in KRAS, 7% in NRAS, 6% in BRAF, and 2% in both NRAS and BRAF. Only tumor location in the proximal colon exhibited a significant correlation with KRAS and BRAF mutational status (p-value = 0.0414 and 0.0065, respectively). Further t-SNE analyses were made to 191 specimens to reveal patterns among patients with clinical parameters and KRAS mutational status. Then, directed by the results from classical statistical tests and t-SNE analysis, neural network models utilized entity embeddings to learn patterns and build predictive models using a minimal number of trainable parameters. This study could be the first step in the prediction for RAS/BRAF mutational status from tumoral features and could lead the way to a more detailed and more diverse dataset that could benefit from machine learning methods.</description><subject>Biology and Life Sciences</subject><subject>Biomarkers</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Cancer metastasis</subject><subject>Cohort analysis</subject><subject>Colon</subject><subject>Colorectal cancer</subject><subject>Colorectal carcinoma</subject><subject>Computer and Information Sciences</subject><subject>Development and progression</subject><subject>Diet</subject><subject>Epidermal growth factor receptors</subject><subject>Gene mutation</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetics</subject><subject>Health aspects</subject><subject>K-Ras protein</subject><subject>Laboratories</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Medical prognosis</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Monoclonal antibodies</subject><subject>Mutation</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Physical Sciences</subject><subject>Prediction models</subject><subject>Prognosis</subject><subject>Ras genes</subject><subject>Research and Analysis Methods</subject><subject>Small intestine</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Studies</subject><subject>Tumors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk29r1EAQxoMotla_geCCIAq9c7Obv74QzmL1sFq4qm-XyWZy2bLJxt1Nbb-in8rN3Sk96QsJJGH2N8-TmcxE0dOYzmOex68vzWh70PPB9DinjKdJSe9Fh3HJ2SxjlN-_9X4QPXLuktKUF1n2MDrgLGNFTovD6Nen1eLimHzZ3KGvybvV4pR0owevTE8Gi1egsZd4TKRWvZJmAN8abdZKgibgnJFqw27TfYvKEhgGHc43EqonMOnUSnp1haQzNeop-hmvAxM8Aoe9d-Sn8i3p0IOb3CWRwcai9MEncBLtG7IgFr01bsCtmDStsZ44P9Y3j6MHDWiHT3bPo-jb6fuvJx9nZ-cflieLs5nMstLP8pRCE8pPmISCFxIgRZonLM6LmFcJrSiVLHQq503oFmuarCpyqKq8TrmEpOJH0bOt7qCNE7vf4ARLQlaZxGkWiOWWqA1cisGqDuyNMKDEJmDsWoANFWoUmOQ0LWgMlMmkqZqKYpnItAbkZVXGadB6u3Mbqw5rGTplQe-J7p_0qhVrcyVyznNWTgIvdwLW_BjRedEpJ1Fr6NGMm--OY8aypAzo83_Qu6vbUeswGUL1jQm-chIVi2msYpbkRaDmd1DhqrELU9Rjo0J8L-HVXkJgPF77NYzOieXF6v_Z8-_77ItbbIugfeuMHqfhdPtgsgVlGDBnsfnb5JiKaeX-dENMKyd2K8d_AxNbH6c</recordid><startdate>20200706</startdate><enddate>20200706</enddate><creator>Sanchez-Ibarra, Hector Eduardo</creator><creator>Jiang, Xianli</creator><creator>Gallegos-Gonzalez, Elena Yareli</creator><creator>Cavazos-González, Adriana Carolina</creator><creator>Chen, Yenho</creator><creator>Morcos, Faruck</creator><creator>Barrera-Saldaña, Hugo Alberto</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9991-267X</orcidid></search><sort><creationdate>20200706</creationdate><title>KRAS, NRAS, and BRAF mutation prevalence, clinicopathological association, and their application in a predictive model in Mexican patients with metastatic colorectal cancer: A retrospective cohort study</title><author>Sanchez-Ibarra, Hector Eduardo ; Jiang, Xianli ; Gallegos-Gonzalez, Elena Yareli ; Cavazos-González, Adriana Carolina ; Chen, Yenho ; Morcos, Faruck ; Barrera-Saldaña, Hugo Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c669t-750af62842ca838caa5e074217813b40b00c205373f3862ff6b87abb7d53ca4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biology and Life Sciences</topic><topic>Biomarkers</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Cancer metastasis</topic><topic>Cohort analysis</topic><topic>Colon</topic><topic>Colorectal cancer</topic><topic>Colorectal carcinoma</topic><topic>Computer and Information Sciences</topic><topic>Development and progression</topic><topic>Diet</topic><topic>Epidermal growth factor receptors</topic><topic>Gene mutation</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetics</topic><topic>Health aspects</topic><topic>K-Ras protein</topic><topic>Laboratories</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Medical prognosis</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Monoclonal antibodies</topic><topic>Mutation</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Physical Sciences</topic><topic>Prediction models</topic><topic>Prognosis</topic><topic>Ras genes</topic><topic>Research and Analysis Methods</topic><topic>Small intestine</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Studies</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanchez-Ibarra, Hector Eduardo</creatorcontrib><creatorcontrib>Jiang, Xianli</creatorcontrib><creatorcontrib>Gallegos-Gonzalez, Elena Yareli</creatorcontrib><creatorcontrib>Cavazos-González, Adriana Carolina</creatorcontrib><creatorcontrib>Chen, Yenho</creatorcontrib><creatorcontrib>Morcos, Faruck</creatorcontrib><creatorcontrib>Barrera-Saldaña, Hugo Alberto</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanchez-Ibarra, Hector Eduardo</au><au>Jiang, Xianli</au><au>Gallegos-Gonzalez, Elena Yareli</au><au>Cavazos-González, Adriana Carolina</au><au>Chen, Yenho</au><au>Morcos, Faruck</au><au>Barrera-Saldaña, Hugo Alberto</au><au>Toland, Amanda Ewart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>KRAS, NRAS, and BRAF mutation prevalence, clinicopathological association, and their application in a predictive model in Mexican patients with metastatic colorectal cancer: A retrospective cohort study</atitle><jtitle>PloS one</jtitle><date>2020-07-06</date><risdate>2020</risdate><volume>15</volume><issue>7</issue><spage>e0235490</spage><epage>e0235490</epage><pages>e0235490-e0235490</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Mutations in KRAS, NRAS, and BRAF (RAS/BRAF) genes are the main predictive biomarkers for the response to anti-EGFR monoclonal antibodies (MAbs) targeted therapy in metastatic colorectal cancer (mCRC). This retrospective study aimed to report the mutational status prevalence of these genes, explore their possible associations with clinicopathological features, and build and validate a predictive model. To achieve these objectives, 500 mCRC Mexican patients were screened for clinically relevant mutations in RAS/BRAF genes. Fifty-two percent of these specimens harbored clinically relevant mutations in at least one screened gene. Among these, 86% had a mutation in KRAS, 7% in NRAS, 6% in BRAF, and 2% in both NRAS and BRAF. Only tumor location in the proximal colon exhibited a significant correlation with KRAS and BRAF mutational status (p-value = 0.0414 and 0.0065, respectively). Further t-SNE analyses were made to 191 specimens to reveal patterns among patients with clinical parameters and KRAS mutational status. Then, directed by the results from classical statistical tests and t-SNE analysis, neural network models utilized entity embeddings to learn patterns and build predictive models using a minimal number of trainable parameters. This study could be the first step in the prediction for RAS/BRAF mutational status from tumoral features and could lead the way to a more detailed and more diverse dataset that could benefit from machine learning methods.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>32628708</pmid><doi>10.1371/journal.pone.0235490</doi><tpages>e0235490</tpages><orcidid>https://orcid.org/0000-0002-9991-267X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-07, Vol.15 (7), p.e0235490-e0235490
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2420594156
source DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Biology and Life Sciences
Biomarkers
Breast cancer
Cancer
Cancer metastasis
Cohort analysis
Colon
Colorectal cancer
Colorectal carcinoma
Computer and Information Sciences
Development and progression
Diet
Epidermal growth factor receptors
Gene mutation
Genes
Genetic aspects
Genetics
Health aspects
K-Ras protein
Laboratories
Learning algorithms
Machine learning
Mathematical models
Medical prognosis
Medical research
Medicine and Health Sciences
Metastases
Metastasis
Monoclonal antibodies
Mutation
Neural networks
Parameters
Physical Sciences
Prediction models
Prognosis
Ras genes
Research and Analysis Methods
Small intestine
Statistical analysis
Statistical tests
Studies
Tumors
title KRAS, NRAS, and BRAF mutation prevalence, clinicopathological association, and their application in a predictive model in Mexican patients with metastatic colorectal cancer: A retrospective cohort study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A12%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=KRAS,%20NRAS,%20and%20BRAF%20mutation%20prevalence,%20clinicopathological%20association,%20and%20their%20application%20in%20a%20predictive%20model%20in%20Mexican%20patients%20with%20metastatic%20colorectal%20cancer:%20A%20retrospective%20cohort%20study&rft.jtitle=PloS%20one&rft.au=Sanchez-Ibarra,%20Hector%20Eduardo&rft.date=2020-07-06&rft.volume=15&rft.issue=7&rft.spage=e0235490&rft.epage=e0235490&rft.pages=e0235490-e0235490&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0235490&rft_dat=%3Cgale_plos_%3EA628712478%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2420594156&rft_id=info:pmid/32628708&rft_galeid=A628712478&rft_doaj_id=oai_doaj_org_article_e4705801a02c4fbfb0e94c5dae39b915&rfr_iscdi=true