Comparing the estimates of effect obtained from statistical causal inference methods: An example using bovine respiratory disease in feedlot cattle
The causal effect of an exposure on an outcome of interest in an observational study cannot be estimated directly if the confounding variables are not controlled. Many approaches are available for estimating the causal effect of an exposure. In this manuscript, we demonstrate the advantages associat...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-06, Vol.15 (6), p.e0233960-e0233960 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0233960 |
---|---|
container_issue | 6 |
container_start_page | e0233960 |
container_title | PloS one |
container_volume | 15 |
creator | Ji, Ju Wang, Chong He, Zhulin Hay, Karen E Barnes, Tamsin S O'Connor, Annette M |
description | The causal effect of an exposure on an outcome of interest in an observational study cannot be estimated directly if the confounding variables are not controlled. Many approaches are available for estimating the causal effect of an exposure. In this manuscript, we demonstrate the advantages associated with using inverse probability weighting (IPW) and doubly robust estimation of the odds ratio in terms of reduced bias. IPW approach can be used to adjust for confounding variables and provide unbiased estimates of the exposure's causal effect. For cluster-structured data, as is common in animal populations, inverse conditional probability weighting (ICPW) approach can provide a robust estimation of the causal effect. Doubly robust estimation can provide a robust method even when the specification of the model form is uncertain. In this paper, the usage of IPW, ICPW, and doubly robust approaches are illustrated with a subset of data with complete covariates from the Australian-based National Bovine Respiratory Disease Initiative as well as simulated data. We evaluate the causal effect of prior bovine viral diarrhea exposure on bovine respiratory disease in feedlot cattle. The results show that the IPW, ICPW and doubly robust approaches would provide a more accurate estimation of the exposure effect than the traditional outcome regression model, and doubly robust approaches are the most preferable overall. |
doi_str_mv | 10.1371/journal.pone.0233960 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2417366761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A627639890</galeid><doaj_id>oai_doaj_org_article_9114fbb876ff4d86bb8e3a07c27304b7</doaj_id><sourcerecordid>A627639890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c669t-2b5f649977658fb5709c5f4b20dd3422412166344657456c0b7a36b137818b663</originalsourceid><addsrcrecordid>eNqNk11rFDEUhgdRbK3-A8GAIHqxaz5mkhkvhFL8KBQKft2GTOZkNyUzWZNMaX-Hf9iz7Spd6YXkIiF5znuS9-RU1XNGl0wo9vYizmkyYbmJEywpF6KT9EF1yDrBF5JT8fDO-qB6kvMFpY1opXxcHQjetHXL-GH16ySOG5P8tCJlDQRy8aMpkEl0BJwDW0jsi_ETDMSlOJJcTPFIWROINXPGyU8OEkwWyAhlHYf8jhxPBK7MuAlA5rwV7-MlapAEeeOTKTFdk8FnMBkwnDiAIcSCgqUEeFo9ciZkeLabj6rvHz98O_m8ODv_dHpyfLawUnZlwfvGybrrlJJN6_pG0c42ru45HQZRc14zzqQUdS0bVTfS0l4ZIXs0r2VtjydH1Ytb3U2IWe_8zBoDlZBSSYbE6S0xRHOhNwm9Sdc6Gq9vNmJaaZPQiwC6Y6x2fd8q6Vw9tBKXIAxVlitB616h1vtdtrkfYbAwlWTCnuj-yeTXehUvtRJMctGhwOudQIo_Z6yUHn22EIKZIM4398aScsq39375D3r_63bUyuADsIoR89qtqD6WXEnRtR1FankPhWOA0Vv8fM7j_l7Am70AZApclRV-lqxPv375f_b8xz776g67BhPKOscwFx-nvA_Wt6BNMecE7q_JjOpt7_xxQ297R-96R_wGj_cLLQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2417366761</pqid></control><display><type>article</type><title>Comparing the estimates of effect obtained from statistical causal inference methods: An example using bovine respiratory disease in feedlot cattle</title><source>PubMed Central Free</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Ji, Ju ; Wang, Chong ; He, Zhulin ; Hay, Karen E ; Barnes, Tamsin S ; O'Connor, Annette M</creator><contributor>Raboisson, Didier</contributor><creatorcontrib>Ji, Ju ; Wang, Chong ; He, Zhulin ; Hay, Karen E ; Barnes, Tamsin S ; O'Connor, Annette M ; Raboisson, Didier</creatorcontrib><description>The causal effect of an exposure on an outcome of interest in an observational study cannot be estimated directly if the confounding variables are not controlled. Many approaches are available for estimating the causal effect of an exposure. In this manuscript, we demonstrate the advantages associated with using inverse probability weighting (IPW) and doubly robust estimation of the odds ratio in terms of reduced bias. IPW approach can be used to adjust for confounding variables and provide unbiased estimates of the exposure's causal effect. For cluster-structured data, as is common in animal populations, inverse conditional probability weighting (ICPW) approach can provide a robust estimation of the causal effect. Doubly robust estimation can provide a robust method even when the specification of the model form is uncertain. In this paper, the usage of IPW, ICPW, and doubly robust approaches are illustrated with a subset of data with complete covariates from the Australian-based National Bovine Respiratory Disease Initiative as well as simulated data. We evaluate the causal effect of prior bovine viral diarrhea exposure on bovine respiratory disease in feedlot cattle. The results show that the IPW, ICPW and doubly robust approaches would provide a more accurate estimation of the exposure effect than the traditional outcome regression model, and doubly robust approaches are the most preferable overall.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0233960</identifier><identifier>PMID: 32584812</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Algebra ; Animal populations ; Bias ; Biology and Life Sciences ; Cattle ; Causal inference ; Computer simulation ; Conditional probability ; Diarrhea ; Epidemiology ; Estimates ; Exposure ; Feedlots ; Health risks ; Immunization ; Medicine and Health Sciences ; Methods ; Model forms ; Regression models ; Research and Analysis Methods ; Researchers ; Respiratory diseases ; Risk factors ; Robustness (mathematics) ; Statistical analysis ; Statistical inference ; Statistical methods ; Supervision ; Veterinary medicine ; Veterinary research ; Weighting</subject><ispartof>PloS one, 2020-06, Vol.15 (6), p.e0233960-e0233960</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Ji et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Ji et al 2020 Ji et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c669t-2b5f649977658fb5709c5f4b20dd3422412166344657456c0b7a36b137818b663</citedby><cites>FETCH-LOGICAL-c669t-2b5f649977658fb5709c5f4b20dd3422412166344657456c0b7a36b137818b663</cites><orcidid>0000-0001-7281-1636</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7316239/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7316239/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids></links><search><contributor>Raboisson, Didier</contributor><creatorcontrib>Ji, Ju</creatorcontrib><creatorcontrib>Wang, Chong</creatorcontrib><creatorcontrib>He, Zhulin</creatorcontrib><creatorcontrib>Hay, Karen E</creatorcontrib><creatorcontrib>Barnes, Tamsin S</creatorcontrib><creatorcontrib>O'Connor, Annette M</creatorcontrib><title>Comparing the estimates of effect obtained from statistical causal inference methods: An example using bovine respiratory disease in feedlot cattle</title><title>PloS one</title><description>The causal effect of an exposure on an outcome of interest in an observational study cannot be estimated directly if the confounding variables are not controlled. Many approaches are available for estimating the causal effect of an exposure. In this manuscript, we demonstrate the advantages associated with using inverse probability weighting (IPW) and doubly robust estimation of the odds ratio in terms of reduced bias. IPW approach can be used to adjust for confounding variables and provide unbiased estimates of the exposure's causal effect. For cluster-structured data, as is common in animal populations, inverse conditional probability weighting (ICPW) approach can provide a robust estimation of the causal effect. Doubly robust estimation can provide a robust method even when the specification of the model form is uncertain. In this paper, the usage of IPW, ICPW, and doubly robust approaches are illustrated with a subset of data with complete covariates from the Australian-based National Bovine Respiratory Disease Initiative as well as simulated data. We evaluate the causal effect of prior bovine viral diarrhea exposure on bovine respiratory disease in feedlot cattle. The results show that the IPW, ICPW and doubly robust approaches would provide a more accurate estimation of the exposure effect than the traditional outcome regression model, and doubly robust approaches are the most preferable overall.</description><subject>Algebra</subject><subject>Animal populations</subject><subject>Bias</subject><subject>Biology and Life Sciences</subject><subject>Cattle</subject><subject>Causal inference</subject><subject>Computer simulation</subject><subject>Conditional probability</subject><subject>Diarrhea</subject><subject>Epidemiology</subject><subject>Estimates</subject><subject>Exposure</subject><subject>Feedlots</subject><subject>Health risks</subject><subject>Immunization</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Model forms</subject><subject>Regression models</subject><subject>Research and Analysis Methods</subject><subject>Researchers</subject><subject>Respiratory diseases</subject><subject>Risk factors</subject><subject>Robustness (mathematics)</subject><subject>Statistical analysis</subject><subject>Statistical inference</subject><subject>Statistical methods</subject><subject>Supervision</subject><subject>Veterinary medicine</subject><subject>Veterinary research</subject><subject>Weighting</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11rFDEUhgdRbK3-A8GAIHqxaz5mkhkvhFL8KBQKft2GTOZkNyUzWZNMaX-Hf9iz7Spd6YXkIiF5znuS9-RU1XNGl0wo9vYizmkyYbmJEywpF6KT9EF1yDrBF5JT8fDO-qB6kvMFpY1opXxcHQjetHXL-GH16ySOG5P8tCJlDQRy8aMpkEl0BJwDW0jsi_ETDMSlOJJcTPFIWROINXPGyU8OEkwWyAhlHYf8jhxPBK7MuAlA5rwV7-MlapAEeeOTKTFdk8FnMBkwnDiAIcSCgqUEeFo9ciZkeLabj6rvHz98O_m8ODv_dHpyfLawUnZlwfvGybrrlJJN6_pG0c42ru45HQZRc14zzqQUdS0bVTfS0l4ZIXs0r2VtjydH1Ytb3U2IWe_8zBoDlZBSSYbE6S0xRHOhNwm9Sdc6Gq9vNmJaaZPQiwC6Y6x2fd8q6Vw9tBKXIAxVlitB616h1vtdtrkfYbAwlWTCnuj-yeTXehUvtRJMctGhwOudQIo_Z6yUHn22EIKZIM4398aScsq39375D3r_63bUyuADsIoR89qtqD6WXEnRtR1FankPhWOA0Vv8fM7j_l7Am70AZApclRV-lqxPv375f_b8xz776g67BhPKOscwFx-nvA_Wt6BNMecE7q_JjOpt7_xxQ297R-96R_wGj_cLLQ</recordid><startdate>20200625</startdate><enddate>20200625</enddate><creator>Ji, Ju</creator><creator>Wang, Chong</creator><creator>He, Zhulin</creator><creator>Hay, Karen E</creator><creator>Barnes, Tamsin S</creator><creator>O'Connor, Annette M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7281-1636</orcidid></search><sort><creationdate>20200625</creationdate><title>Comparing the estimates of effect obtained from statistical causal inference methods: An example using bovine respiratory disease in feedlot cattle</title><author>Ji, Ju ; Wang, Chong ; He, Zhulin ; Hay, Karen E ; Barnes, Tamsin S ; O'Connor, Annette M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c669t-2b5f649977658fb5709c5f4b20dd3422412166344657456c0b7a36b137818b663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Animal populations</topic><topic>Bias</topic><topic>Biology and Life Sciences</topic><topic>Cattle</topic><topic>Causal inference</topic><topic>Computer simulation</topic><topic>Conditional probability</topic><topic>Diarrhea</topic><topic>Epidemiology</topic><topic>Estimates</topic><topic>Exposure</topic><topic>Feedlots</topic><topic>Health risks</topic><topic>Immunization</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Model forms</topic><topic>Regression models</topic><topic>Research and Analysis Methods</topic><topic>Researchers</topic><topic>Respiratory diseases</topic><topic>Risk factors</topic><topic>Robustness (mathematics)</topic><topic>Statistical analysis</topic><topic>Statistical inference</topic><topic>Statistical methods</topic><topic>Supervision</topic><topic>Veterinary medicine</topic><topic>Veterinary research</topic><topic>Weighting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Ju</creatorcontrib><creatorcontrib>Wang, Chong</creatorcontrib><creatorcontrib>He, Zhulin</creatorcontrib><creatorcontrib>Hay, Karen E</creatorcontrib><creatorcontrib>Barnes, Tamsin S</creatorcontrib><creatorcontrib>O'Connor, Annette M</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Ju</au><au>Wang, Chong</au><au>He, Zhulin</au><au>Hay, Karen E</au><au>Barnes, Tamsin S</au><au>O'Connor, Annette M</au><au>Raboisson, Didier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparing the estimates of effect obtained from statistical causal inference methods: An example using bovine respiratory disease in feedlot cattle</atitle><jtitle>PloS one</jtitle><date>2020-06-25</date><risdate>2020</risdate><volume>15</volume><issue>6</issue><spage>e0233960</spage><epage>e0233960</epage><pages>e0233960-e0233960</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The causal effect of an exposure on an outcome of interest in an observational study cannot be estimated directly if the confounding variables are not controlled. Many approaches are available for estimating the causal effect of an exposure. In this manuscript, we demonstrate the advantages associated with using inverse probability weighting (IPW) and doubly robust estimation of the odds ratio in terms of reduced bias. IPW approach can be used to adjust for confounding variables and provide unbiased estimates of the exposure's causal effect. For cluster-structured data, as is common in animal populations, inverse conditional probability weighting (ICPW) approach can provide a robust estimation of the causal effect. Doubly robust estimation can provide a robust method even when the specification of the model form is uncertain. In this paper, the usage of IPW, ICPW, and doubly robust approaches are illustrated with a subset of data with complete covariates from the Australian-based National Bovine Respiratory Disease Initiative as well as simulated data. We evaluate the causal effect of prior bovine viral diarrhea exposure on bovine respiratory disease in feedlot cattle. The results show that the IPW, ICPW and doubly robust approaches would provide a more accurate estimation of the exposure effect than the traditional outcome regression model, and doubly robust approaches are the most preferable overall.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>32584812</pmid><doi>10.1371/journal.pone.0233960</doi><tpages>e0233960</tpages><orcidid>https://orcid.org/0000-0001-7281-1636</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-06, Vol.15 (6), p.e0233960-e0233960 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2417366761 |
source | PubMed Central Free; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | Algebra Animal populations Bias Biology and Life Sciences Cattle Causal inference Computer simulation Conditional probability Diarrhea Epidemiology Estimates Exposure Feedlots Health risks Immunization Medicine and Health Sciences Methods Model forms Regression models Research and Analysis Methods Researchers Respiratory diseases Risk factors Robustness (mathematics) Statistical analysis Statistical inference Statistical methods Supervision Veterinary medicine Veterinary research Weighting |
title | Comparing the estimates of effect obtained from statistical causal inference methods: An example using bovine respiratory disease in feedlot cattle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A07%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparing%20the%20estimates%20of%20effect%20obtained%20from%20statistical%20causal%20inference%20methods:%20An%20example%20using%20bovine%20respiratory%20disease%20in%20feedlot%20cattle&rft.jtitle=PloS%20one&rft.au=Ji,%20Ju&rft.date=2020-06-25&rft.volume=15&rft.issue=6&rft.spage=e0233960&rft.epage=e0233960&rft.pages=e0233960-e0233960&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0233960&rft_dat=%3Cgale_plos_%3EA627639890%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2417366761&rft_id=info:pmid/32584812&rft_galeid=A627639890&rft_doaj_id=oai_doaj_org_article_9114fbb876ff4d86bb8e3a07c27304b7&rfr_iscdi=true |