Stacking triple genes increased proanthocyanidins level in Arabidopsis thaliana
Anthocyanins and proanthocyanidins are two important plant secondary metabolites, and they contribute to plant survival and human health. In particular, proanthocyanidins could also prevent ruminants from the damage of pasture bloat. However, the improvement of proanthocyanidins content remain unsat...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-06, Vol.15 (6), p.e0234799-e0234799 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0234799 |
---|---|
container_issue | 6 |
container_start_page | e0234799 |
container_title | PloS one |
container_volume | 15 |
creator | Wei, Jiebing Yang, Junfeng Jiang, Wenbo Pang, Yongzhen |
description | Anthocyanins and proanthocyanidins are two important plant secondary metabolites, and they contribute to plant survival and human health. In particular, proanthocyanidins could also prevent ruminants from the damage of pasture bloat. However, the improvement of proanthocyanidins content remain unsatisfied. In this study, we attempted to improve proanthocyanidins level by gene stacking in Arabidopsis thaliana as prove-of-concept. Two proanthocyanidin pathway genes from tea plant, CsF3'5'H and CsANR2, were co-expressed in the wild type and PAP1 over-expression Arabidopsis. Over-expression of CsF3'5'H slightly affected anthocyanins level in leaves and proanthocyanidins in mature seed when expressed alone in the pap1-D line. Over-expression of CsANR2 led to an obvious decrease in anthocyanins in leaves of both wild type and pap1-D lines, but increase in proanthocyanidin level in mature seeds. Over-expression of CsANR2 in pap1-D lines lead to production of DMACA-reactive soluble proanthocyanidins in leaves, but not in wild type or pap1-D lines. Anthocyanins level was decreased in the leaves of CsF3'5'H, CsANR2 and pap1-D co-expression lines, but proanthocyanidins were increased remarkably in both leaves and mature seeds in the co-expression line. It is concluded that co-expression of CsANR2 and PAP1 in Arabidopsis produce soluble proanthocyanidins in leaves, and co-expression of CsF3'5'H, CsANR2 and PAP1 lead to a significant increase in proanthocyanidins in mature seeds. The transcript levels of endogenous CHS, DFR, ANS and ANR genes in Arabidopsis were up-regulated in the triple genes co-expression line. Based on these studies, it is possible to develop new plant germplasm with improved proanthocyanidins by co-expressing of multiple genes. |
doi_str_mv | 10.1371/journal.pone.0234799 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2417366689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A627639894</galeid><doaj_id>oai_doaj_org_article_444bedc8fa9546bebf8e91d06b1df186</doaj_id><sourcerecordid>A627639894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5849-a80d0bb4b291449921009c093bc1f5dd0ce8765d44dafcb0df9a62fc69d155f03</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7jr6DwQLgujFjEmTpsmNMCx-DCwMuOptSPPRyZhJukm7uP_ezE6VreyFyUXCyXPec3J4i-IlBCuIGvh-H8bohVv1wesVqBBuGHtUnEOGqiWpAHp8735WPEtpD0CNKCFPizNU1RTTGpwX26tByJ_Wd-UQbe902WmvU2m9jFokrco-BuGHXZC3wltlfSqdvtEuE-U6itaq0CebymEnnBVePC-eGOGSfjGdi-L7p4_fLr4sL7efNxfry6XMldlSUKBA2-K2YhBjxioIAJOAoVZCUysFpKYNqRXGShjZAmWYIJWRhClY1wagRfHqpNu7kPg0i8QrDBtECKEsE5sToYLY8z7ag4i3PAjL7wIhdlzEwUqnOca41UpSI1iNSatbQzWDCpAWKgMpyVofpmpje8ik9kMUbiY6f_F2x7twwxsECcprUbydBGK4HnUa-MEmqZ0TXofxrm8KK9DgY9-v_0Ef_t1EdSJ_wHoTcl15FOVrUjUEMcpwplYPUHkrfbAyG8fYHJ8lvJslZGbQv4ZOjCnxzdXX_2e3P-bsm3vsTgs37FJw42CDT3MQn0AZQ0pRm79DhoAfff9nGvzoez75Hv0Gqyb0iw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2417366689</pqid></control><display><type>article</type><title>Stacking triple genes increased proanthocyanidins level in Arabidopsis thaliana</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Wei, Jiebing ; Yang, Junfeng ; Jiang, Wenbo ; Pang, Yongzhen</creator><creatorcontrib>Wei, Jiebing ; Yang, Junfeng ; Jiang, Wenbo ; Pang, Yongzhen</creatorcontrib><description>Anthocyanins and proanthocyanidins are two important plant secondary metabolites, and they contribute to plant survival and human health. In particular, proanthocyanidins could also prevent ruminants from the damage of pasture bloat. However, the improvement of proanthocyanidins content remain unsatisfied. In this study, we attempted to improve proanthocyanidins level by gene stacking in Arabidopsis thaliana as prove-of-concept. Two proanthocyanidin pathway genes from tea plant, CsF3'5'H and CsANR2, were co-expressed in the wild type and PAP1 over-expression Arabidopsis. Over-expression of CsF3'5'H slightly affected anthocyanins level in leaves and proanthocyanidins in mature seed when expressed alone in the pap1-D line. Over-expression of CsANR2 led to an obvious decrease in anthocyanins in leaves of both wild type and pap1-D lines, but increase in proanthocyanidin level in mature seeds. Over-expression of CsANR2 in pap1-D lines lead to production of DMACA-reactive soluble proanthocyanidins in leaves, but not in wild type or pap1-D lines. Anthocyanins level was decreased in the leaves of CsF3'5'H, CsANR2 and pap1-D co-expression lines, but proanthocyanidins were increased remarkably in both leaves and mature seeds in the co-expression line. It is concluded that co-expression of CsANR2 and PAP1 in Arabidopsis produce soluble proanthocyanidins in leaves, and co-expression of CsF3'5'H, CsANR2 and PAP1 lead to a significant increase in proanthocyanidins in mature seeds. The transcript levels of endogenous CHS, DFR, ANS and ANR genes in Arabidopsis were up-regulated in the triple genes co-expression line. Based on these studies, it is possible to develop new plant germplasm with improved proanthocyanidins by co-expressing of multiple genes.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0234799</identifier><identifier>PMID: 32584850</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Animal sciences ; Anthocyanins ; Arabidopsis ; Arabidopsis thaliana ; Biology and Life Sciences ; Biosynthesis ; Bloat ; D lines ; Damage prevention ; Engineering and Technology ; Flavonoids ; Gene expression ; Genes ; Genetic aspects ; Germplasm ; Laboratories ; Leaves ; Measurement ; Medicine and Health Sciences ; Metabolites ; Overexpression ; Pasture ; Physiological aspects ; Plant sciences ; Proanthocyanidins ; Research and Analysis Methods ; Secondary metabolites ; Seeds ; Stacking ; Tea ; Transcription ; Zoology</subject><ispartof>PloS one, 2020-06, Vol.15 (6), p.e0234799-e0234799</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Wei et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Wei et al 2020 Wei et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5849-a80d0bb4b291449921009c093bc1f5dd0ce8765d44dafcb0df9a62fc69d155f03</citedby><cites>FETCH-LOGICAL-c5849-a80d0bb4b291449921009c093bc1f5dd0ce8765d44dafcb0df9a62fc69d155f03</cites><orcidid>0000-0002-2336-7476</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7316333/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7316333/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids></links><search><creatorcontrib>Wei, Jiebing</creatorcontrib><creatorcontrib>Yang, Junfeng</creatorcontrib><creatorcontrib>Jiang, Wenbo</creatorcontrib><creatorcontrib>Pang, Yongzhen</creatorcontrib><title>Stacking triple genes increased proanthocyanidins level in Arabidopsis thaliana</title><title>PloS one</title><description>Anthocyanins and proanthocyanidins are two important plant secondary metabolites, and they contribute to plant survival and human health. In particular, proanthocyanidins could also prevent ruminants from the damage of pasture bloat. However, the improvement of proanthocyanidins content remain unsatisfied. In this study, we attempted to improve proanthocyanidins level by gene stacking in Arabidopsis thaliana as prove-of-concept. Two proanthocyanidin pathway genes from tea plant, CsF3'5'H and CsANR2, were co-expressed in the wild type and PAP1 over-expression Arabidopsis. Over-expression of CsF3'5'H slightly affected anthocyanins level in leaves and proanthocyanidins in mature seed when expressed alone in the pap1-D line. Over-expression of CsANR2 led to an obvious decrease in anthocyanins in leaves of both wild type and pap1-D lines, but increase in proanthocyanidin level in mature seeds. Over-expression of CsANR2 in pap1-D lines lead to production of DMACA-reactive soluble proanthocyanidins in leaves, but not in wild type or pap1-D lines. Anthocyanins level was decreased in the leaves of CsF3'5'H, CsANR2 and pap1-D co-expression lines, but proanthocyanidins were increased remarkably in both leaves and mature seeds in the co-expression line. It is concluded that co-expression of CsANR2 and PAP1 in Arabidopsis produce soluble proanthocyanidins in leaves, and co-expression of CsF3'5'H, CsANR2 and PAP1 lead to a significant increase in proanthocyanidins in mature seeds. The transcript levels of endogenous CHS, DFR, ANS and ANR genes in Arabidopsis were up-regulated in the triple genes co-expression line. Based on these studies, it is possible to develop new plant germplasm with improved proanthocyanidins by co-expressing of multiple genes.</description><subject>Animal sciences</subject><subject>Anthocyanins</subject><subject>Arabidopsis</subject><subject>Arabidopsis thaliana</subject><subject>Biology and Life Sciences</subject><subject>Biosynthesis</subject><subject>Bloat</subject><subject>D lines</subject><subject>Damage prevention</subject><subject>Engineering and Technology</subject><subject>Flavonoids</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Germplasm</subject><subject>Laboratories</subject><subject>Leaves</subject><subject>Measurement</subject><subject>Medicine and Health Sciences</subject><subject>Metabolites</subject><subject>Overexpression</subject><subject>Pasture</subject><subject>Physiological aspects</subject><subject>Plant sciences</subject><subject>Proanthocyanidins</subject><subject>Research and Analysis Methods</subject><subject>Secondary metabolites</subject><subject>Seeds</subject><subject>Stacking</subject><subject>Tea</subject><subject>Transcription</subject><subject>Zoology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7jr6DwQLgujFjEmTpsmNMCx-DCwMuOptSPPRyZhJukm7uP_ezE6VreyFyUXCyXPec3J4i-IlBCuIGvh-H8bohVv1wesVqBBuGHtUnEOGqiWpAHp8735WPEtpD0CNKCFPizNU1RTTGpwX26tByJ_Wd-UQbe902WmvU2m9jFokrco-BuGHXZC3wltlfSqdvtEuE-U6itaq0CebymEnnBVePC-eGOGSfjGdi-L7p4_fLr4sL7efNxfry6XMldlSUKBA2-K2YhBjxioIAJOAoVZCUysFpKYNqRXGShjZAmWYIJWRhClY1wagRfHqpNu7kPg0i8QrDBtECKEsE5sToYLY8z7ag4i3PAjL7wIhdlzEwUqnOca41UpSI1iNSatbQzWDCpAWKgMpyVofpmpje8ik9kMUbiY6f_F2x7twwxsECcprUbydBGK4HnUa-MEmqZ0TXofxrm8KK9DgY9-v_0Ef_t1EdSJ_wHoTcl15FOVrUjUEMcpwplYPUHkrfbAyG8fYHJ8lvJslZGbQv4ZOjCnxzdXX_2e3P-bsm3vsTgs37FJw42CDT3MQn0AZQ0pRm79DhoAfff9nGvzoez75Hv0Gqyb0iw</recordid><startdate>20200625</startdate><enddate>20200625</enddate><creator>Wei, Jiebing</creator><creator>Yang, Junfeng</creator><creator>Jiang, Wenbo</creator><creator>Pang, Yongzhen</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2336-7476</orcidid></search><sort><creationdate>20200625</creationdate><title>Stacking triple genes increased proanthocyanidins level in Arabidopsis thaliana</title><author>Wei, Jiebing ; Yang, Junfeng ; Jiang, Wenbo ; Pang, Yongzhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5849-a80d0bb4b291449921009c093bc1f5dd0ce8765d44dafcb0df9a62fc69d155f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animal sciences</topic><topic>Anthocyanins</topic><topic>Arabidopsis</topic><topic>Arabidopsis thaliana</topic><topic>Biology and Life Sciences</topic><topic>Biosynthesis</topic><topic>Bloat</topic><topic>D lines</topic><topic>Damage prevention</topic><topic>Engineering and Technology</topic><topic>Flavonoids</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Germplasm</topic><topic>Laboratories</topic><topic>Leaves</topic><topic>Measurement</topic><topic>Medicine and Health Sciences</topic><topic>Metabolites</topic><topic>Overexpression</topic><topic>Pasture</topic><topic>Physiological aspects</topic><topic>Plant sciences</topic><topic>Proanthocyanidins</topic><topic>Research and Analysis Methods</topic><topic>Secondary metabolites</topic><topic>Seeds</topic><topic>Stacking</topic><topic>Tea</topic><topic>Transcription</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Jiebing</creatorcontrib><creatorcontrib>Yang, Junfeng</creatorcontrib><creatorcontrib>Jiang, Wenbo</creatorcontrib><creatorcontrib>Pang, Yongzhen</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Jiebing</au><au>Yang, Junfeng</au><au>Jiang, Wenbo</au><au>Pang, Yongzhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stacking triple genes increased proanthocyanidins level in Arabidopsis thaliana</atitle><jtitle>PloS one</jtitle><date>2020-06-25</date><risdate>2020</risdate><volume>15</volume><issue>6</issue><spage>e0234799</spage><epage>e0234799</epage><pages>e0234799-e0234799</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Anthocyanins and proanthocyanidins are two important plant secondary metabolites, and they contribute to plant survival and human health. In particular, proanthocyanidins could also prevent ruminants from the damage of pasture bloat. However, the improvement of proanthocyanidins content remain unsatisfied. In this study, we attempted to improve proanthocyanidins level by gene stacking in Arabidopsis thaliana as prove-of-concept. Two proanthocyanidin pathway genes from tea plant, CsF3'5'H and CsANR2, were co-expressed in the wild type and PAP1 over-expression Arabidopsis. Over-expression of CsF3'5'H slightly affected anthocyanins level in leaves and proanthocyanidins in mature seed when expressed alone in the pap1-D line. Over-expression of CsANR2 led to an obvious decrease in anthocyanins in leaves of both wild type and pap1-D lines, but increase in proanthocyanidin level in mature seeds. Over-expression of CsANR2 in pap1-D lines lead to production of DMACA-reactive soluble proanthocyanidins in leaves, but not in wild type or pap1-D lines. Anthocyanins level was decreased in the leaves of CsF3'5'H, CsANR2 and pap1-D co-expression lines, but proanthocyanidins were increased remarkably in both leaves and mature seeds in the co-expression line. It is concluded that co-expression of CsANR2 and PAP1 in Arabidopsis produce soluble proanthocyanidins in leaves, and co-expression of CsF3'5'H, CsANR2 and PAP1 lead to a significant increase in proanthocyanidins in mature seeds. The transcript levels of endogenous CHS, DFR, ANS and ANR genes in Arabidopsis were up-regulated in the triple genes co-expression line. Based on these studies, it is possible to develop new plant germplasm with improved proanthocyanidins by co-expressing of multiple genes.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>32584850</pmid><doi>10.1371/journal.pone.0234799</doi><tpages>e0234799</tpages><orcidid>https://orcid.org/0000-0002-2336-7476</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-06, Vol.15 (6), p.e0234799-e0234799 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2417366689 |
source | Public Library of Science (PLoS) Journals Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Animal sciences Anthocyanins Arabidopsis Arabidopsis thaliana Biology and Life Sciences Biosynthesis Bloat D lines Damage prevention Engineering and Technology Flavonoids Gene expression Genes Genetic aspects Germplasm Laboratories Leaves Measurement Medicine and Health Sciences Metabolites Overexpression Pasture Physiological aspects Plant sciences Proanthocyanidins Research and Analysis Methods Secondary metabolites Seeds Stacking Tea Transcription Zoology |
title | Stacking triple genes increased proanthocyanidins level in Arabidopsis thaliana |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T04%3A49%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stacking%20triple%20genes%20increased%20proanthocyanidins%20level%20in%20Arabidopsis%20thaliana&rft.jtitle=PloS%20one&rft.au=Wei,%20Jiebing&rft.date=2020-06-25&rft.volume=15&rft.issue=6&rft.spage=e0234799&rft.epage=e0234799&rft.pages=e0234799-e0234799&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0234799&rft_dat=%3Cgale_plos_%3EA627639894%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2417366689&rft_id=info:pmid/32584850&rft_galeid=A627639894&rft_doaj_id=oai_doaj_org_article_444bedc8fa9546bebf8e91d06b1df186&rfr_iscdi=true |