Experimental and mathematical characterization of coronary polyamide-12 balloon catheter membranes
The experimental quantification and modeling of the multiaxial mechanical response of polymer membranes of coronary balloon catheters have not yet been carried out. Due to the lack of insights, it is not shown whether isotropic material models can describe the material response of balloon catheter m...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-06, Vol.15 (6), p.e0234340-e0234340 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0234340 |
---|---|
container_issue | 6 |
container_start_page | e0234340 |
container_title | PloS one |
container_volume | 15 |
creator | Geith, Markus A Eckmann, Jakob D Haspinger, Daniel Ch Agrafiotis, Emmanouil Maier, Dominik Szabo, Patrick Sommer, Gerhard Schratzenstaller, Thomas G Holzapfel, Gerhard A |
description | The experimental quantification and modeling of the multiaxial mechanical response of polymer membranes of coronary balloon catheters have not yet been carried out. Due to the lack of insights, it is not shown whether isotropic material models can describe the material response of balloon catheter membranes expanded with nominal or higher, supra-nominal pressures. Therefore, for the first time, specimens of commercial polyamide-12 balloon catheters membranes were investigated during uniaxial and biaxial loading scenarios. Furthermore, the influence of kinematic effects on the material response was observed by comparing results from quasi-static and dynamic biaxial extension tests. Novel clamping techniques are described, which allow to test even tiny specimens taken from the balloon membranes. The results of this study reveal the semi-compliant, nonlinear, and viscoelastic character of polyamide-12 balloon catheter membranes. Above nominal pressure, the membranes show a pronounced anisotropic mechanical behavior with a stiffer response in the circumferential direction. The anisotropic feature intensifies with an increasing strain-rate. A modified polynomial model was applied to represent the realistic mechanical response of the balloon catheter membranes during dynamic biaxial extension tests. This study also includes a compact set of constitutive model parameters for the use of the proposed model in future finite element analyses to perform more accurate simulations of expanding balloon catheters. |
doi_str_mv | 10.1371/journal.pone.0234340 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2416998110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A627563356</galeid><doaj_id>oai_doaj_org_article_550296e7bbf74759861c83b811f1332f</doaj_id><sourcerecordid>A627563356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c669t-c455d07949f808812a028674ddba4ca86185d63da45df0cc30d08f25347ceca93</originalsourceid><addsrcrecordid>eNqNk1uL1DAUx4so7jr6DQQLgujDjLk0l74sLMuqAwsL3l5DmqTTDmkzJq3s-uk93amylX2Qkiac_s7_XJqTZS8x2mAq8Pt9GGOv_eYQerdBhBa0QI-yU1xSsuYE0cf3zifZs5T2CDEqOX-anVDCRMmkOM2qy5uDi23n-kH7XPc27_TQOHi1Bgym0VGbAYhfYAl9HurchBh6HW_zQ_C3umutW2OSV9r7AICZ3MEh71xXRd279Dx7Umuf3It5X2XfPlx-vfi0vrr-uL04v1obzsthbQrGLBJlUdYSSYmJRkRyUVhb6cJoybFkllOrC2ZrZAxFFsmaMFoI44wu6Sp7ddQ9-JDU3J6kSIF5WUqMERDbI2GD3qsDlA1lqKBbdWcIcad0hMK9U4whUnInqqoWhWAlhDeSViBTY0pJDVpnc7Sx6pw10MCo_UJ0-aVvG7ULP5Wg8PvolO7bWSCGH6NLg-raZJz30LMw3uUtqGScT3m__gd9uLqZ2mkooO3rAHHNJKrOORGMUwprlW0eoOCxrmsN3KW6BfvC4d3CAZjB3Qw7Paaktl8-_z97_X3JvrnHNk77oUnBj9M1S0uwOIImhpSiq_82GSM1jcKfbqhpFNQ8CvQ38PD5vg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2416998110</pqid></control><display><type>article</type><title>Experimental and mathematical characterization of coronary polyamide-12 balloon catheter membranes</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Geith, Markus A ; Eckmann, Jakob D ; Haspinger, Daniel Ch ; Agrafiotis, Emmanouil ; Maier, Dominik ; Szabo, Patrick ; Sommer, Gerhard ; Schratzenstaller, Thomas G ; Holzapfel, Gerhard A</creator><contributor>Pandolfi, Anna</contributor><creatorcontrib>Geith, Markus A ; Eckmann, Jakob D ; Haspinger, Daniel Ch ; Agrafiotis, Emmanouil ; Maier, Dominik ; Szabo, Patrick ; Sommer, Gerhard ; Schratzenstaller, Thomas G ; Holzapfel, Gerhard A ; Pandolfi, Anna</creatorcontrib><description>The experimental quantification and modeling of the multiaxial mechanical response of polymer membranes of coronary balloon catheters have not yet been carried out. Due to the lack of insights, it is not shown whether isotropic material models can describe the material response of balloon catheter membranes expanded with nominal or higher, supra-nominal pressures. Therefore, for the first time, specimens of commercial polyamide-12 balloon catheters membranes were investigated during uniaxial and biaxial loading scenarios. Furthermore, the influence of kinematic effects on the material response was observed by comparing results from quasi-static and dynamic biaxial extension tests. Novel clamping techniques are described, which allow to test even tiny specimens taken from the balloon membranes. The results of this study reveal the semi-compliant, nonlinear, and viscoelastic character of polyamide-12 balloon catheter membranes. Above nominal pressure, the membranes show a pronounced anisotropic mechanical behavior with a stiffer response in the circumferential direction. The anisotropic feature intensifies with an increasing strain-rate. A modified polynomial model was applied to represent the realistic mechanical response of the balloon catheter membranes during dynamic biaxial extension tests. This study also includes a compact set of constitutive model parameters for the use of the proposed model in future finite element analyses to perform more accurate simulations of expanding balloon catheters.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0234340</identifier><identifier>PMID: 32579587</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Anisotropy ; Balloon catheters ; Biaxial loads ; Biology and Life Sciences ; Biomechanics ; Biomedical engineering ; Catheters ; Computer science ; Computer simulation ; Constitutive models ; Engineering ; Engineering and Technology ; Finite element method ; Fourier transforms ; Isotropic material ; Materials ; Mathematical models ; Mechanical analysis ; Mechanical properties ; Medical instruments ; Medicine and Health Sciences ; Membranes ; Membranes (Technology) ; Morphology ; Physical Sciences ; Polyamide resins ; Polyamides ; Polymers ; Polynomials ; Properties ; Raw materials ; Stents ; Strain rate ; Testing ; Viscoelasticity</subject><ispartof>PloS one, 2020-06, Vol.15 (6), p.e0234340-e0234340</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Geith et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Geith et al 2020 Geith et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c669t-c455d07949f808812a028674ddba4ca86185d63da45df0cc30d08f25347ceca93</citedby><cites>FETCH-LOGICAL-c669t-c455d07949f808812a028674ddba4ca86185d63da45df0cc30d08f25347ceca93</cites><orcidid>0000-0001-8119-5775</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7313739/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7313739/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids></links><search><contributor>Pandolfi, Anna</contributor><creatorcontrib>Geith, Markus A</creatorcontrib><creatorcontrib>Eckmann, Jakob D</creatorcontrib><creatorcontrib>Haspinger, Daniel Ch</creatorcontrib><creatorcontrib>Agrafiotis, Emmanouil</creatorcontrib><creatorcontrib>Maier, Dominik</creatorcontrib><creatorcontrib>Szabo, Patrick</creatorcontrib><creatorcontrib>Sommer, Gerhard</creatorcontrib><creatorcontrib>Schratzenstaller, Thomas G</creatorcontrib><creatorcontrib>Holzapfel, Gerhard A</creatorcontrib><title>Experimental and mathematical characterization of coronary polyamide-12 balloon catheter membranes</title><title>PloS one</title><description>The experimental quantification and modeling of the multiaxial mechanical response of polymer membranes of coronary balloon catheters have not yet been carried out. Due to the lack of insights, it is not shown whether isotropic material models can describe the material response of balloon catheter membranes expanded with nominal or higher, supra-nominal pressures. Therefore, for the first time, specimens of commercial polyamide-12 balloon catheters membranes were investigated during uniaxial and biaxial loading scenarios. Furthermore, the influence of kinematic effects on the material response was observed by comparing results from quasi-static and dynamic biaxial extension tests. Novel clamping techniques are described, which allow to test even tiny specimens taken from the balloon membranes. The results of this study reveal the semi-compliant, nonlinear, and viscoelastic character of polyamide-12 balloon catheter membranes. Above nominal pressure, the membranes show a pronounced anisotropic mechanical behavior with a stiffer response in the circumferential direction. The anisotropic feature intensifies with an increasing strain-rate. A modified polynomial model was applied to represent the realistic mechanical response of the balloon catheter membranes during dynamic biaxial extension tests. This study also includes a compact set of constitutive model parameters for the use of the proposed model in future finite element analyses to perform more accurate simulations of expanding balloon catheters.</description><subject>Anisotropy</subject><subject>Balloon catheters</subject><subject>Biaxial loads</subject><subject>Biology and Life Sciences</subject><subject>Biomechanics</subject><subject>Biomedical engineering</subject><subject>Catheters</subject><subject>Computer science</subject><subject>Computer simulation</subject><subject>Constitutive models</subject><subject>Engineering</subject><subject>Engineering and Technology</subject><subject>Finite element method</subject><subject>Fourier transforms</subject><subject>Isotropic material</subject><subject>Materials</subject><subject>Mathematical models</subject><subject>Mechanical analysis</subject><subject>Mechanical properties</subject><subject>Medical instruments</subject><subject>Medicine and Health Sciences</subject><subject>Membranes</subject><subject>Membranes (Technology)</subject><subject>Morphology</subject><subject>Physical Sciences</subject><subject>Polyamide resins</subject><subject>Polyamides</subject><subject>Polymers</subject><subject>Polynomials</subject><subject>Properties</subject><subject>Raw materials</subject><subject>Stents</subject><subject>Strain rate</subject><subject>Testing</subject><subject>Viscoelasticity</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAUx4so7jr6DQQLgujDjLk0l74sLMuqAwsL3l5DmqTTDmkzJq3s-uk93amylX2Qkiac_s7_XJqTZS8x2mAq8Pt9GGOv_eYQerdBhBa0QI-yU1xSsuYE0cf3zifZs5T2CDEqOX-anVDCRMmkOM2qy5uDi23n-kH7XPc27_TQOHi1Bgym0VGbAYhfYAl9HurchBh6HW_zQ_C3umutW2OSV9r7AICZ3MEh71xXRd279Dx7Umuf3It5X2XfPlx-vfi0vrr-uL04v1obzsthbQrGLBJlUdYSSYmJRkRyUVhb6cJoybFkllOrC2ZrZAxFFsmaMFoI44wu6Sp7ddQ9-JDU3J6kSIF5WUqMERDbI2GD3qsDlA1lqKBbdWcIcad0hMK9U4whUnInqqoWhWAlhDeSViBTY0pJDVpnc7Sx6pw10MCo_UJ0-aVvG7ULP5Wg8PvolO7bWSCGH6NLg-raZJz30LMw3uUtqGScT3m__gd9uLqZ2mkooO3rAHHNJKrOORGMUwprlW0eoOCxrmsN3KW6BfvC4d3CAZjB3Qw7Paaktl8-_z97_X3JvrnHNk77oUnBj9M1S0uwOIImhpSiq_82GSM1jcKfbqhpFNQ8CvQ38PD5vg</recordid><startdate>20200624</startdate><enddate>20200624</enddate><creator>Geith, Markus A</creator><creator>Eckmann, Jakob D</creator><creator>Haspinger, Daniel Ch</creator><creator>Agrafiotis, Emmanouil</creator><creator>Maier, Dominik</creator><creator>Szabo, Patrick</creator><creator>Sommer, Gerhard</creator><creator>Schratzenstaller, Thomas G</creator><creator>Holzapfel, Gerhard A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8119-5775</orcidid></search><sort><creationdate>20200624</creationdate><title>Experimental and mathematical characterization of coronary polyamide-12 balloon catheter membranes</title><author>Geith, Markus A ; Eckmann, Jakob D ; Haspinger, Daniel Ch ; Agrafiotis, Emmanouil ; Maier, Dominik ; Szabo, Patrick ; Sommer, Gerhard ; Schratzenstaller, Thomas G ; Holzapfel, Gerhard A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c669t-c455d07949f808812a028674ddba4ca86185d63da45df0cc30d08f25347ceca93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropy</topic><topic>Balloon catheters</topic><topic>Biaxial loads</topic><topic>Biology and Life Sciences</topic><topic>Biomechanics</topic><topic>Biomedical engineering</topic><topic>Catheters</topic><topic>Computer science</topic><topic>Computer simulation</topic><topic>Constitutive models</topic><topic>Engineering</topic><topic>Engineering and Technology</topic><topic>Finite element method</topic><topic>Fourier transforms</topic><topic>Isotropic material</topic><topic>Materials</topic><topic>Mathematical models</topic><topic>Mechanical analysis</topic><topic>Mechanical properties</topic><topic>Medical instruments</topic><topic>Medicine and Health Sciences</topic><topic>Membranes</topic><topic>Membranes (Technology)</topic><topic>Morphology</topic><topic>Physical Sciences</topic><topic>Polyamide resins</topic><topic>Polyamides</topic><topic>Polymers</topic><topic>Polynomials</topic><topic>Properties</topic><topic>Raw materials</topic><topic>Stents</topic><topic>Strain rate</topic><topic>Testing</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geith, Markus A</creatorcontrib><creatorcontrib>Eckmann, Jakob D</creatorcontrib><creatorcontrib>Haspinger, Daniel Ch</creatorcontrib><creatorcontrib>Agrafiotis, Emmanouil</creatorcontrib><creatorcontrib>Maier, Dominik</creatorcontrib><creatorcontrib>Szabo, Patrick</creatorcontrib><creatorcontrib>Sommer, Gerhard</creatorcontrib><creatorcontrib>Schratzenstaller, Thomas G</creatorcontrib><creatorcontrib>Holzapfel, Gerhard A</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geith, Markus A</au><au>Eckmann, Jakob D</au><au>Haspinger, Daniel Ch</au><au>Agrafiotis, Emmanouil</au><au>Maier, Dominik</au><au>Szabo, Patrick</au><au>Sommer, Gerhard</au><au>Schratzenstaller, Thomas G</au><au>Holzapfel, Gerhard A</au><au>Pandolfi, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and mathematical characterization of coronary polyamide-12 balloon catheter membranes</atitle><jtitle>PloS one</jtitle><date>2020-06-24</date><risdate>2020</risdate><volume>15</volume><issue>6</issue><spage>e0234340</spage><epage>e0234340</epage><pages>e0234340-e0234340</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The experimental quantification and modeling of the multiaxial mechanical response of polymer membranes of coronary balloon catheters have not yet been carried out. Due to the lack of insights, it is not shown whether isotropic material models can describe the material response of balloon catheter membranes expanded with nominal or higher, supra-nominal pressures. Therefore, for the first time, specimens of commercial polyamide-12 balloon catheters membranes were investigated during uniaxial and biaxial loading scenarios. Furthermore, the influence of kinematic effects on the material response was observed by comparing results from quasi-static and dynamic biaxial extension tests. Novel clamping techniques are described, which allow to test even tiny specimens taken from the balloon membranes. The results of this study reveal the semi-compliant, nonlinear, and viscoelastic character of polyamide-12 balloon catheter membranes. Above nominal pressure, the membranes show a pronounced anisotropic mechanical behavior with a stiffer response in the circumferential direction. The anisotropic feature intensifies with an increasing strain-rate. A modified polynomial model was applied to represent the realistic mechanical response of the balloon catheter membranes during dynamic biaxial extension tests. This study also includes a compact set of constitutive model parameters for the use of the proposed model in future finite element analyses to perform more accurate simulations of expanding balloon catheters.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>32579587</pmid><doi>10.1371/journal.pone.0234340</doi><tpages>e0234340</tpages><orcidid>https://orcid.org/0000-0001-8119-5775</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-06, Vol.15 (6), p.e0234340-e0234340 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2416998110 |
source | DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Anisotropy Balloon catheters Biaxial loads Biology and Life Sciences Biomechanics Biomedical engineering Catheters Computer science Computer simulation Constitutive models Engineering Engineering and Technology Finite element method Fourier transforms Isotropic material Materials Mathematical models Mechanical analysis Mechanical properties Medical instruments Medicine and Health Sciences Membranes Membranes (Technology) Morphology Physical Sciences Polyamide resins Polyamides Polymers Polynomials Properties Raw materials Stents Strain rate Testing Viscoelasticity |
title | Experimental and mathematical characterization of coronary polyamide-12 balloon catheter membranes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A39%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20mathematical%20characterization%20of%20coronary%20polyamide-12%20balloon%20catheter%20membranes&rft.jtitle=PloS%20one&rft.au=Geith,%20Markus%20A&rft.date=2020-06-24&rft.volume=15&rft.issue=6&rft.spage=e0234340&rft.epage=e0234340&rft.pages=e0234340-e0234340&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0234340&rft_dat=%3Cgale_plos_%3EA627563356%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2416998110&rft_id=info:pmid/32579587&rft_galeid=A627563356&rft_doaj_id=oai_doaj_org_article_550296e7bbf74759861c83b811f1332f&rfr_iscdi=true |