Control of endothelial tubulogenesis by Rab and Ral GTPases, and apical targeting of caveolin-1-labeled vacuoles

Here, we examine known GTPase regulators of vesicle trafficking events to assess whether they affect endothelial cell (EC) lumen and tube formation. We identify novel roles for the small GTPases Rab3A, Rab3B, Rab8A, Rab11A, Rab27A, RalA, RalB and caveolin-1 in co-regulating membrane trafficking even...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-06, Vol.15 (6), p.e0235116-e0235116
Hauptverfasser: Norden, Pieter R, Sun, Zheying, Davis, George E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0235116
container_issue 6
container_start_page e0235116
container_title PloS one
container_volume 15
creator Norden, Pieter R
Sun, Zheying
Davis, George E
description Here, we examine known GTPase regulators of vesicle trafficking events to assess whether they affect endothelial cell (EC) lumen and tube formation. We identify novel roles for the small GTPases Rab3A, Rab3B, Rab8A, Rab11A, Rab27A, RalA, RalB and caveolin-1 in co-regulating membrane trafficking events that control EC lumen and tube formation. siRNA suppression of individual GTPases such as Rab3A, Rab8A, and RalB markedly inhibit tubulogenesis, while greater blockade is observed with combinations of siRNAs such as Rab3A and Rab3B, Rab8A and Rab11A, and RalA and RalB. These combinations of siRNAs also disrupt very early events in lumen formation including the formation of intracellular vacuoles. In contrast, knockdown of the endocytosis regulator, Rab5A, fails to inhibit EC tube formation. Confocal microscopy and real-time videos reveal that caveolin-1 strongly labels intracellular vacuoles and localizes to the EC apical surface as they fuse to form the luminal membrane. In contrast, Cdc42 and Rab11A localize to a perinuclear, subapical region where intracellular vacuoles accumulate and fuse during lumen formation. Our new data demonstrates that EC tubulogenesis is coordinated by a series of small GTPases to control polarized membrane trafficking events to generate, deliver, and fuse caveolin-1-labeled vacuoles to create the apical membrane surface.
doi_str_mv 10.1371/journal.pone.0235116
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2415814516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A627340785</galeid><doaj_id>oai_doaj_org_article_052610860756455f90d2eb79691c312b</doaj_id><sourcerecordid>A627340785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-33c6bcf756bdd723dbbc802ee7d83642d3b743094f1460318c0e98ccf710fe2d3</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7jr6D0QLgijYMR9t2t4Iy6LrwMLKunob8nHayZBJZpt2cP-9mZnuMpW9kF6knPO8b3JOcpLkNUZzTEv8eeWHzgk733gHc0RogTF7kpzimpKMEUSfHv2fJC9CWCFU0Iqx58kJJQWLOXyabM696ztvU9-k4LTvl2CNsGk_yMH6FhwEE1J5l14LmQqn42rTi5sfIkD4tA-IjVE7geha6I1rd05KbMFb4zKcWSHBgk63Qg3eQniZPGuEDfBqXGfJr29fb86_Z5dXF4vzs8tMsZr0GaWKSdWUBZNal4RqKVWFCECpK8pyoqksc4rqvME5QxRXCkFdqajAqIGYniVvD74b6wMfmxU4yXFR4bzALBKLA6G9WPFNZ9aiu-NeGL4P-K7louuNssBRQRhGFUPxPHlRNDXSBGRZsxoriomMXl_G3Qa5Bq0gNlXYiek048ySt37LS4rKMtY3Sz6MBp2_HSD0fG2CAmuFAz_sz81ImTOKIvruH_Tx6kaqFbEA4xof91U7U34WnWiOyqqI1PwRKn4a1kbFl9WYGJ8IPk4EkenhT9-KIQS--Hn9_-zV7yn7_ohdgrD9Mng79Ma7MAXzA6g6H0IHzUOTMeK7wbjvBt8NBh8HI8reHF_Qg-h-EuhfXTAG5Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415814516</pqid></control><display><type>article</type><title>Control of endothelial tubulogenesis by Rab and Ral GTPases, and apical targeting of caveolin-1-labeled vacuoles</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Norden, Pieter R ; Sun, Zheying ; Davis, George E</creator><contributor>Wary, Kishore K.</contributor><creatorcontrib>Norden, Pieter R ; Sun, Zheying ; Davis, George E ; Wary, Kishore K.</creatorcontrib><description>Here, we examine known GTPase regulators of vesicle trafficking events to assess whether they affect endothelial cell (EC) lumen and tube formation. We identify novel roles for the small GTPases Rab3A, Rab3B, Rab8A, Rab11A, Rab27A, RalA, RalB and caveolin-1 in co-regulating membrane trafficking events that control EC lumen and tube formation. siRNA suppression of individual GTPases such as Rab3A, Rab8A, and RalB markedly inhibit tubulogenesis, while greater blockade is observed with combinations of siRNAs such as Rab3A and Rab3B, Rab8A and Rab11A, and RalA and RalB. These combinations of siRNAs also disrupt very early events in lumen formation including the formation of intracellular vacuoles. In contrast, knockdown of the endocytosis regulator, Rab5A, fails to inhibit EC tube formation. Confocal microscopy and real-time videos reveal that caveolin-1 strongly labels intracellular vacuoles and localizes to the EC apical surface as they fuse to form the luminal membrane. In contrast, Cdc42 and Rab11A localize to a perinuclear, subapical region where intracellular vacuoles accumulate and fuse during lumen formation. Our new data demonstrates that EC tubulogenesis is coordinated by a series of small GTPases to control polarized membrane trafficking events to generate, deliver, and fuse caveolin-1-labeled vacuoles to create the apical membrane surface.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0235116</identifier><identifier>PMID: 32569321</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenoviruses ; Biology and Life Sciences ; Caveolin ; Caveolin 1 - metabolism ; Caveolin-1 ; Caveolins ; Cdc42 protein ; Cell Membrane - metabolism ; Circulatory system ; Collagen ; Collagen - metabolism ; Confocal microscopy ; Embryonic development ; Endocytosis ; Endothelial cells ; Endothelium ; Enzymes ; Exocytosis ; Green Fluorescent Proteins - metabolism ; GTPases ; Guanosine triphosphatases ; Guanosinetriphosphatase ; Health aspects ; Human Umbilical Vein Endothelial Cells - metabolism ; Humans ; Intracellular ; Membrane trafficking ; Membranes ; Microscopy ; Models, Biological ; Morphogenesis ; Pharmacology ; Physiological aspects ; Physiology ; Protein Transport ; rab GTP-Binding Proteins - metabolism ; Rab3A protein ; rac GTP-Binding Proteins - metabolism ; ral GTP-Binding Proteins - metabolism ; Regulators ; RNA, Small Interfering - metabolism ; siRNA ; src-Family Kinases - metabolism ; Vacuoles ; Vacuoles - metabolism</subject><ispartof>PloS one, 2020-06, Vol.15 (6), p.e0235116-e0235116</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Norden et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Norden et al 2020 Norden et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-33c6bcf756bdd723dbbc802ee7d83642d3b743094f1460318c0e98ccf710fe2d3</citedby><cites>FETCH-LOGICAL-c692t-33c6bcf756bdd723dbbc802ee7d83642d3b743094f1460318c0e98ccf710fe2d3</cites><orcidid>0000-0002-1549-1610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7307772/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7307772/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32569321$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wary, Kishore K.</contributor><creatorcontrib>Norden, Pieter R</creatorcontrib><creatorcontrib>Sun, Zheying</creatorcontrib><creatorcontrib>Davis, George E</creatorcontrib><title>Control of endothelial tubulogenesis by Rab and Ral GTPases, and apical targeting of caveolin-1-labeled vacuoles</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Here, we examine known GTPase regulators of vesicle trafficking events to assess whether they affect endothelial cell (EC) lumen and tube formation. We identify novel roles for the small GTPases Rab3A, Rab3B, Rab8A, Rab11A, Rab27A, RalA, RalB and caveolin-1 in co-regulating membrane trafficking events that control EC lumen and tube formation. siRNA suppression of individual GTPases such as Rab3A, Rab8A, and RalB markedly inhibit tubulogenesis, while greater blockade is observed with combinations of siRNAs such as Rab3A and Rab3B, Rab8A and Rab11A, and RalA and RalB. These combinations of siRNAs also disrupt very early events in lumen formation including the formation of intracellular vacuoles. In contrast, knockdown of the endocytosis regulator, Rab5A, fails to inhibit EC tube formation. Confocal microscopy and real-time videos reveal that caveolin-1 strongly labels intracellular vacuoles and localizes to the EC apical surface as they fuse to form the luminal membrane. In contrast, Cdc42 and Rab11A localize to a perinuclear, subapical region where intracellular vacuoles accumulate and fuse during lumen formation. Our new data demonstrates that EC tubulogenesis is coordinated by a series of small GTPases to control polarized membrane trafficking events to generate, deliver, and fuse caveolin-1-labeled vacuoles to create the apical membrane surface.</description><subject>Adenoviruses</subject><subject>Biology and Life Sciences</subject><subject>Caveolin</subject><subject>Caveolin 1 - metabolism</subject><subject>Caveolin-1</subject><subject>Caveolins</subject><subject>Cdc42 protein</subject><subject>Cell Membrane - metabolism</subject><subject>Circulatory system</subject><subject>Collagen</subject><subject>Collagen - metabolism</subject><subject>Confocal microscopy</subject><subject>Embryonic development</subject><subject>Endocytosis</subject><subject>Endothelial cells</subject><subject>Endothelium</subject><subject>Enzymes</subject><subject>Exocytosis</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>GTPases</subject><subject>Guanosine triphosphatases</subject><subject>Guanosinetriphosphatase</subject><subject>Health aspects</subject><subject>Human Umbilical Vein Endothelial Cells - metabolism</subject><subject>Humans</subject><subject>Intracellular</subject><subject>Membrane trafficking</subject><subject>Membranes</subject><subject>Microscopy</subject><subject>Models, Biological</subject><subject>Morphogenesis</subject><subject>Pharmacology</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Protein Transport</subject><subject>rab GTP-Binding Proteins - metabolism</subject><subject>Rab3A protein</subject><subject>rac GTP-Binding Proteins - metabolism</subject><subject>ral GTP-Binding Proteins - metabolism</subject><subject>Regulators</subject><subject>RNA, Small Interfering - metabolism</subject><subject>siRNA</subject><subject>src-Family Kinases - metabolism</subject><subject>Vacuoles</subject><subject>Vacuoles - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7jr6D0QLgijYMR9t2t4Iy6LrwMLKunob8nHayZBJZpt2cP-9mZnuMpW9kF6knPO8b3JOcpLkNUZzTEv8eeWHzgk733gHc0RogTF7kpzimpKMEUSfHv2fJC9CWCFU0Iqx58kJJQWLOXyabM696ztvU9-k4LTvl2CNsGk_yMH6FhwEE1J5l14LmQqn42rTi5sfIkD4tA-IjVE7geha6I1rd05KbMFb4zKcWSHBgk63Qg3eQniZPGuEDfBqXGfJr29fb86_Z5dXF4vzs8tMsZr0GaWKSdWUBZNal4RqKVWFCECpK8pyoqksc4rqvME5QxRXCkFdqajAqIGYniVvD74b6wMfmxU4yXFR4bzALBKLA6G9WPFNZ9aiu-NeGL4P-K7louuNssBRQRhGFUPxPHlRNDXSBGRZsxoriomMXl_G3Qa5Bq0gNlXYiek048ySt37LS4rKMtY3Sz6MBp2_HSD0fG2CAmuFAz_sz81ImTOKIvruH_Tx6kaqFbEA4xof91U7U34WnWiOyqqI1PwRKn4a1kbFl9WYGJ8IPk4EkenhT9-KIQS--Hn9_-zV7yn7_ohdgrD9Mng79Ma7MAXzA6g6H0IHzUOTMeK7wbjvBt8NBh8HI8reHF_Qg-h-EuhfXTAG5Q</recordid><startdate>20200622</startdate><enddate>20200622</enddate><creator>Norden, Pieter R</creator><creator>Sun, Zheying</creator><creator>Davis, George E</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1549-1610</orcidid></search><sort><creationdate>20200622</creationdate><title>Control of endothelial tubulogenesis by Rab and Ral GTPases, and apical targeting of caveolin-1-labeled vacuoles</title><author>Norden, Pieter R ; Sun, Zheying ; Davis, George E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-33c6bcf756bdd723dbbc802ee7d83642d3b743094f1460318c0e98ccf710fe2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adenoviruses</topic><topic>Biology and Life Sciences</topic><topic>Caveolin</topic><topic>Caveolin 1 - metabolism</topic><topic>Caveolin-1</topic><topic>Caveolins</topic><topic>Cdc42 protein</topic><topic>Cell Membrane - metabolism</topic><topic>Circulatory system</topic><topic>Collagen</topic><topic>Collagen - metabolism</topic><topic>Confocal microscopy</topic><topic>Embryonic development</topic><topic>Endocytosis</topic><topic>Endothelial cells</topic><topic>Endothelium</topic><topic>Enzymes</topic><topic>Exocytosis</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>GTPases</topic><topic>Guanosine triphosphatases</topic><topic>Guanosinetriphosphatase</topic><topic>Health aspects</topic><topic>Human Umbilical Vein Endothelial Cells - metabolism</topic><topic>Humans</topic><topic>Intracellular</topic><topic>Membrane trafficking</topic><topic>Membranes</topic><topic>Microscopy</topic><topic>Models, Biological</topic><topic>Morphogenesis</topic><topic>Pharmacology</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Protein Transport</topic><topic>rab GTP-Binding Proteins - metabolism</topic><topic>Rab3A protein</topic><topic>rac GTP-Binding Proteins - metabolism</topic><topic>ral GTP-Binding Proteins - metabolism</topic><topic>Regulators</topic><topic>RNA, Small Interfering - metabolism</topic><topic>siRNA</topic><topic>src-Family Kinases - metabolism</topic><topic>Vacuoles</topic><topic>Vacuoles - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Norden, Pieter R</creatorcontrib><creatorcontrib>Sun, Zheying</creatorcontrib><creatorcontrib>Davis, George E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Norden, Pieter R</au><au>Sun, Zheying</au><au>Davis, George E</au><au>Wary, Kishore K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of endothelial tubulogenesis by Rab and Ral GTPases, and apical targeting of caveolin-1-labeled vacuoles</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-06-22</date><risdate>2020</risdate><volume>15</volume><issue>6</issue><spage>e0235116</spage><epage>e0235116</epage><pages>e0235116-e0235116</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Here, we examine known GTPase regulators of vesicle trafficking events to assess whether they affect endothelial cell (EC) lumen and tube formation. We identify novel roles for the small GTPases Rab3A, Rab3B, Rab8A, Rab11A, Rab27A, RalA, RalB and caveolin-1 in co-regulating membrane trafficking events that control EC lumen and tube formation. siRNA suppression of individual GTPases such as Rab3A, Rab8A, and RalB markedly inhibit tubulogenesis, while greater blockade is observed with combinations of siRNAs such as Rab3A and Rab3B, Rab8A and Rab11A, and RalA and RalB. These combinations of siRNAs also disrupt very early events in lumen formation including the formation of intracellular vacuoles. In contrast, knockdown of the endocytosis regulator, Rab5A, fails to inhibit EC tube formation. Confocal microscopy and real-time videos reveal that caveolin-1 strongly labels intracellular vacuoles and localizes to the EC apical surface as they fuse to form the luminal membrane. In contrast, Cdc42 and Rab11A localize to a perinuclear, subapical region where intracellular vacuoles accumulate and fuse during lumen formation. Our new data demonstrates that EC tubulogenesis is coordinated by a series of small GTPases to control polarized membrane trafficking events to generate, deliver, and fuse caveolin-1-labeled vacuoles to create the apical membrane surface.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32569321</pmid><doi>10.1371/journal.pone.0235116</doi><tpages>e0235116</tpages><orcidid>https://orcid.org/0000-0002-1549-1610</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-06, Vol.15 (6), p.e0235116-e0235116
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2415814516
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Adenoviruses
Biology and Life Sciences
Caveolin
Caveolin 1 - metabolism
Caveolin-1
Caveolins
Cdc42 protein
Cell Membrane - metabolism
Circulatory system
Collagen
Collagen - metabolism
Confocal microscopy
Embryonic development
Endocytosis
Endothelial cells
Endothelium
Enzymes
Exocytosis
Green Fluorescent Proteins - metabolism
GTPases
Guanosine triphosphatases
Guanosinetriphosphatase
Health aspects
Human Umbilical Vein Endothelial Cells - metabolism
Humans
Intracellular
Membrane trafficking
Membranes
Microscopy
Models, Biological
Morphogenesis
Pharmacology
Physiological aspects
Physiology
Protein Transport
rab GTP-Binding Proteins - metabolism
Rab3A protein
rac GTP-Binding Proteins - metabolism
ral GTP-Binding Proteins - metabolism
Regulators
RNA, Small Interfering - metabolism
siRNA
src-Family Kinases - metabolism
Vacuoles
Vacuoles - metabolism
title Control of endothelial tubulogenesis by Rab and Ral GTPases, and apical targeting of caveolin-1-labeled vacuoles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A31%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20endothelial%20tubulogenesis%20by%20Rab%20and%20Ral%20GTPases,%20and%20apical%20targeting%20of%20caveolin-1-labeled%20vacuoles&rft.jtitle=PloS%20one&rft.au=Norden,%20Pieter%20R&rft.date=2020-06-22&rft.volume=15&rft.issue=6&rft.spage=e0235116&rft.epage=e0235116&rft.pages=e0235116-e0235116&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0235116&rft_dat=%3Cgale_plos_%3EA627340785%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2415814516&rft_id=info:pmid/32569321&rft_galeid=A627340785&rft_doaj_id=oai_doaj_org_article_052610860756455f90d2eb79691c312b&rfr_iscdi=true