Towards the automatic detection of skin lesion shape asymmetry, color variegation and diameter in dermoscopic images

Asymmetry, color variegation and diameter are considered strong indicators of malignant melanoma. The subjectivity inherent in the first two features and the fact that 10% of melanomas tend to be missed in the early diagnosis due to having a diameter less than 6mm, deem it necessary to develop an ob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-06, Vol.15 (6), p.e0234352-e0234352
Hauptverfasser: Ali, Abder-Rahman, Li, Jingpeng, O'Shea, Sally Jane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0234352
container_issue 6
container_start_page e0234352
container_title PloS one
container_volume 15
creator Ali, Abder-Rahman
Li, Jingpeng
O'Shea, Sally Jane
description Asymmetry, color variegation and diameter are considered strong indicators of malignant melanoma. The subjectivity inherent in the first two features and the fact that 10% of melanomas tend to be missed in the early diagnosis due to having a diameter less than 6mm, deem it necessary to develop an objective computer vision system to evaluate these criteria and aid in the early detection of melanoma which could eventually lead to a higher 5-year survival rate. This paper proposes an approach for evaluating the three criteria objectively, whereby we develop a measure to find asymmetry with the aid of a decision tree which we train on the extracted asymmetry measures and then use to predict the asymmetry of new skin lesion images. A range of colors that demonstrate the suspicious colors for the color variegation feature have been derived, and Feret's diameter has been utilized to find the diameter of the skin lesion. The decision tree is 80% accurate in determining the asymmetry of skin lesions, and the number of suspicious colors and diameter values are objectively identified.
doi_str_mv 10.1371/journal.pone.0234352
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2413949391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A626791043</galeid><doaj_id>oai_doaj_org_article_b92c88b31a8c48c7bfa2e3b8ddba5856</doaj_id><sourcerecordid>A626791043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-87c61bb504c219277210da4a3d42b075facdf10966de53e0eb764866dc02c6f03</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLgig4Y776dSMsix8DCwu6ehtOk9NOx7YZk3R1_r3pTHeZyl5IL9okz_sm72lOFD2nZEl5Rt9vzGB7aJdb0-OSMC54wh5Ep7TgbJEywh8efZ9ET5zbEJLwPE0fRyecJULQIjuN_LX5DVa72K8xhsGbDnyjYo0elW9MH5sqdj-bPm7RjUO3hm0A3a7r0Nvdu1iZ1tj4BmyDNewV0OtYNxDW0cZBqdF2ximzDb5NBzW6p9GjClqHz6b3WfT908friy-Ly6vPq4vzy4VKC-YXeaZSWpYJEYrRgmUZo0SDAK4FK0mWVKB0RUmRphoTjgTLLBUhoFaEqbQi_Cx6efDdtsbJqWBOMkF5IQpe0ECsDoQ2sJFbG85nd9JAI_cTxtYSbChIi7IsmMrzklPIlchVVlbAkJe51iUkeZIGrw_TbkPZoVbYewvtzHS-0jdrWZsbmbEi4zQLBm8mA2t-Dei87BqnsG2hRzPszy1EyM3HZK_-Qe9PN1E1hABNX5mwrxpN5XnK0qygRPBALe-hwqOxa1S4XVUT5meCtzNBYDz-8TUMzsnVt6__z179mLOvj9g1QuvXzrTDeKvcHBQHUFnjnMXqrsiUyLE5bqshx-aQU3ME2YvjH3Qnuu0G_hfSEAtI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2413949391</pqid></control><display><type>article</type><title>Towards the automatic detection of skin lesion shape asymmetry, color variegation and diameter in dermoscopic images</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ali, Abder-Rahman ; Li, Jingpeng ; O'Shea, Sally Jane</creator><contributor>Haass, Nikolas K.</contributor><creatorcontrib>Ali, Abder-Rahman ; Li, Jingpeng ; O'Shea, Sally Jane ; Haass, Nikolas K.</creatorcontrib><description>Asymmetry, color variegation and diameter are considered strong indicators of malignant melanoma. The subjectivity inherent in the first two features and the fact that 10% of melanomas tend to be missed in the early diagnosis due to having a diameter less than 6mm, deem it necessary to develop an objective computer vision system to evaluate these criteria and aid in the early detection of melanoma which could eventually lead to a higher 5-year survival rate. This paper proposes an approach for evaluating the three criteria objectively, whereby we develop a measure to find asymmetry with the aid of a decision tree which we train on the extracted asymmetry measures and then use to predict the asymmetry of new skin lesion images. A range of colors that demonstrate the suspicious colors for the color variegation feature have been derived, and Feret's diameter has been utilized to find the diameter of the skin lesion. The decision tree is 80% accurate in determining the asymmetry of skin lesions, and the number of suspicious colors and diameter values are objectively identified.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0234352</identifier><identifier>PMID: 32544197</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Asymmetry ; Causes of ; Color ; Complications and side effects ; Computer science ; Computer vision ; Decision Making, Computer-Assisted ; Decision trees ; Dermatology ; Dermoscopy - methods ; Diagnosis ; Diameters ; Engineering and Technology ; Evaluation ; Health aspects ; Humans ; Identification and classification ; Image processing ; Image Processing, Computer-Assisted - methods ; Lesions ; Medical diagnosis ; Medicine and Health Sciences ; Melanoma ; Melanoma - diagnosis ; Melanoma - diagnostic imaging ; Melanoma - pathology ; Melanoma, Cutaneous Malignant ; Physical Sciences ; Research and Analysis Methods ; Skewness ; Skin cancer ; Skin Diseases ; Skin lesions ; Skin Neoplasms - diagnosis ; Skin Neoplasms - diagnostic imaging ; Skin Neoplasms - pathology ; Survival ; Variegation ; Vision systems</subject><ispartof>PloS one, 2020-06, Vol.15 (6), p.e0234352-e0234352</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Ali et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Ali et al 2020 Ali et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-87c61bb504c219277210da4a3d42b075facdf10966de53e0eb764866dc02c6f03</citedby><cites>FETCH-LOGICAL-c692t-87c61bb504c219277210da4a3d42b075facdf10966de53e0eb764866dc02c6f03</cites><orcidid>0000-0002-6758-0084 ; 0000-0002-5450-5472</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7297317/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7297317/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32544197$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Haass, Nikolas K.</contributor><creatorcontrib>Ali, Abder-Rahman</creatorcontrib><creatorcontrib>Li, Jingpeng</creatorcontrib><creatorcontrib>O'Shea, Sally Jane</creatorcontrib><title>Towards the automatic detection of skin lesion shape asymmetry, color variegation and diameter in dermoscopic images</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Asymmetry, color variegation and diameter are considered strong indicators of malignant melanoma. The subjectivity inherent in the first two features and the fact that 10% of melanomas tend to be missed in the early diagnosis due to having a diameter less than 6mm, deem it necessary to develop an objective computer vision system to evaluate these criteria and aid in the early detection of melanoma which could eventually lead to a higher 5-year survival rate. This paper proposes an approach for evaluating the three criteria objectively, whereby we develop a measure to find asymmetry with the aid of a decision tree which we train on the extracted asymmetry measures and then use to predict the asymmetry of new skin lesion images. A range of colors that demonstrate the suspicious colors for the color variegation feature have been derived, and Feret's diameter has been utilized to find the diameter of the skin lesion. The decision tree is 80% accurate in determining the asymmetry of skin lesions, and the number of suspicious colors and diameter values are objectively identified.</description><subject>Algorithms</subject><subject>Asymmetry</subject><subject>Causes of</subject><subject>Color</subject><subject>Complications and side effects</subject><subject>Computer science</subject><subject>Computer vision</subject><subject>Decision Making, Computer-Assisted</subject><subject>Decision trees</subject><subject>Dermatology</subject><subject>Dermoscopy - methods</subject><subject>Diagnosis</subject><subject>Diameters</subject><subject>Engineering and Technology</subject><subject>Evaluation</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Identification and classification</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Lesions</subject><subject>Medical diagnosis</subject><subject>Medicine and Health Sciences</subject><subject>Melanoma</subject><subject>Melanoma - diagnosis</subject><subject>Melanoma - diagnostic imaging</subject><subject>Melanoma - pathology</subject><subject>Melanoma, Cutaneous Malignant</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><subject>Skewness</subject><subject>Skin cancer</subject><subject>Skin Diseases</subject><subject>Skin lesions</subject><subject>Skin Neoplasms - diagnosis</subject><subject>Skin Neoplasms - diagnostic imaging</subject><subject>Skin Neoplasms - pathology</subject><subject>Survival</subject><subject>Variegation</subject><subject>Vision systems</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLgig4Y776dSMsix8DCwu6ehtOk9NOx7YZk3R1_r3pTHeZyl5IL9okz_sm72lOFD2nZEl5Rt9vzGB7aJdb0-OSMC54wh5Ep7TgbJEywh8efZ9ET5zbEJLwPE0fRyecJULQIjuN_LX5DVa72K8xhsGbDnyjYo0elW9MH5sqdj-bPm7RjUO3hm0A3a7r0Nvdu1iZ1tj4BmyDNewV0OtYNxDW0cZBqdF2ximzDb5NBzW6p9GjClqHz6b3WfT908friy-Ly6vPq4vzy4VKC-YXeaZSWpYJEYrRgmUZo0SDAK4FK0mWVKB0RUmRphoTjgTLLBUhoFaEqbQi_Cx6efDdtsbJqWBOMkF5IQpe0ECsDoQ2sJFbG85nd9JAI_cTxtYSbChIi7IsmMrzklPIlchVVlbAkJe51iUkeZIGrw_TbkPZoVbYewvtzHS-0jdrWZsbmbEi4zQLBm8mA2t-Dei87BqnsG2hRzPszy1EyM3HZK_-Qe9PN1E1hABNX5mwrxpN5XnK0qygRPBALe-hwqOxa1S4XVUT5meCtzNBYDz-8TUMzsnVt6__z179mLOvj9g1QuvXzrTDeKvcHBQHUFnjnMXqrsiUyLE5bqshx-aQU3ME2YvjH3Qnuu0G_hfSEAtI</recordid><startdate>20200616</startdate><enddate>20200616</enddate><creator>Ali, Abder-Rahman</creator><creator>Li, Jingpeng</creator><creator>O'Shea, Sally Jane</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6758-0084</orcidid><orcidid>https://orcid.org/0000-0002-5450-5472</orcidid></search><sort><creationdate>20200616</creationdate><title>Towards the automatic detection of skin lesion shape asymmetry, color variegation and diameter in dermoscopic images</title><author>Ali, Abder-Rahman ; Li, Jingpeng ; O'Shea, Sally Jane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-87c61bb504c219277210da4a3d42b075facdf10966de53e0eb764866dc02c6f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Asymmetry</topic><topic>Causes of</topic><topic>Color</topic><topic>Complications and side effects</topic><topic>Computer science</topic><topic>Computer vision</topic><topic>Decision Making, Computer-Assisted</topic><topic>Decision trees</topic><topic>Dermatology</topic><topic>Dermoscopy - methods</topic><topic>Diagnosis</topic><topic>Diameters</topic><topic>Engineering and Technology</topic><topic>Evaluation</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Identification and classification</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Lesions</topic><topic>Medical diagnosis</topic><topic>Medicine and Health Sciences</topic><topic>Melanoma</topic><topic>Melanoma - diagnosis</topic><topic>Melanoma - diagnostic imaging</topic><topic>Melanoma - pathology</topic><topic>Melanoma, Cutaneous Malignant</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><topic>Skewness</topic><topic>Skin cancer</topic><topic>Skin Diseases</topic><topic>Skin lesions</topic><topic>Skin Neoplasms - diagnosis</topic><topic>Skin Neoplasms - diagnostic imaging</topic><topic>Skin Neoplasms - pathology</topic><topic>Survival</topic><topic>Variegation</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Abder-Rahman</creatorcontrib><creatorcontrib>Li, Jingpeng</creatorcontrib><creatorcontrib>O'Shea, Sally Jane</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Abder-Rahman</au><au>Li, Jingpeng</au><au>O'Shea, Sally Jane</au><au>Haass, Nikolas K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards the automatic detection of skin lesion shape asymmetry, color variegation and diameter in dermoscopic images</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-06-16</date><risdate>2020</risdate><volume>15</volume><issue>6</issue><spage>e0234352</spage><epage>e0234352</epage><pages>e0234352-e0234352</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Asymmetry, color variegation and diameter are considered strong indicators of malignant melanoma. The subjectivity inherent in the first two features and the fact that 10% of melanomas tend to be missed in the early diagnosis due to having a diameter less than 6mm, deem it necessary to develop an objective computer vision system to evaluate these criteria and aid in the early detection of melanoma which could eventually lead to a higher 5-year survival rate. This paper proposes an approach for evaluating the three criteria objectively, whereby we develop a measure to find asymmetry with the aid of a decision tree which we train on the extracted asymmetry measures and then use to predict the asymmetry of new skin lesion images. A range of colors that demonstrate the suspicious colors for the color variegation feature have been derived, and Feret's diameter has been utilized to find the diameter of the skin lesion. The decision tree is 80% accurate in determining the asymmetry of skin lesions, and the number of suspicious colors and diameter values are objectively identified.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32544197</pmid><doi>10.1371/journal.pone.0234352</doi><tpages>e0234352</tpages><orcidid>https://orcid.org/0000-0002-6758-0084</orcidid><orcidid>https://orcid.org/0000-0002-5450-5472</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-06, Vol.15 (6), p.e0234352-e0234352
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2413949391
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Asymmetry
Causes of
Color
Complications and side effects
Computer science
Computer vision
Decision Making, Computer-Assisted
Decision trees
Dermatology
Dermoscopy - methods
Diagnosis
Diameters
Engineering and Technology
Evaluation
Health aspects
Humans
Identification and classification
Image processing
Image Processing, Computer-Assisted - methods
Lesions
Medical diagnosis
Medicine and Health Sciences
Melanoma
Melanoma - diagnosis
Melanoma - diagnostic imaging
Melanoma - pathology
Melanoma, Cutaneous Malignant
Physical Sciences
Research and Analysis Methods
Skewness
Skin cancer
Skin Diseases
Skin lesions
Skin Neoplasms - diagnosis
Skin Neoplasms - diagnostic imaging
Skin Neoplasms - pathology
Survival
Variegation
Vision systems
title Towards the automatic detection of skin lesion shape asymmetry, color variegation and diameter in dermoscopic images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A11%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20the%20automatic%20detection%20of%20skin%20lesion%20shape%20asymmetry,%20color%20variegation%20and%20diameter%20in%20dermoscopic%20images&rft.jtitle=PloS%20one&rft.au=Ali,%20Abder-Rahman&rft.date=2020-06-16&rft.volume=15&rft.issue=6&rft.spage=e0234352&rft.epage=e0234352&rft.pages=e0234352-e0234352&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0234352&rft_dat=%3Cgale_plos_%3EA626791043%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2413949391&rft_id=info:pmid/32544197&rft_galeid=A626791043&rft_doaj_id=oai_doaj_org_article_b92c88b31a8c48c7bfa2e3b8ddba5856&rfr_iscdi=true