GOcats: A tool for categorizing Gene Ontology into subgraphs of user-defined concepts

Gene Ontology is used extensively in scientific knowledgebases and repositories to organize a wealth of biological information. However, interpreting annotations derived from differential gene lists is often difficult without manually sorting into higher-order categories. To address these issues, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-06, Vol.15 (6), p.e0233311-e0233311
Hauptverfasser: Hinderer, Eugene W, Moseley, Hunter N. B, Robinson-Rechavi, Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0233311
container_issue 6
container_start_page e0233311
container_title PloS one
container_volume 15
creator Hinderer, Eugene W
Moseley, Hunter N. B
Robinson-Rechavi, Marc
description Gene Ontology is used extensively in scientific knowledgebases and repositories to organize a wealth of biological information. However, interpreting annotations derived from differential gene lists is often difficult without manually sorting into higher-order categories. To address these issues, we present GOcats, a novel tool that organizes the Gene Ontology (GO) into subgraphs representing user-defined concepts, while ensuring that all appropriate relations are congruent with respect to scoping semantics. We tested GOcats performance using subcellular location categories to mine annotations from GO-utilizing knowledgebases and evaluated their accuracy against immunohistochemistry datasets in the Human Protein Atlas (HPA). In comparison to term categorizations generated from UniProt's controlled vocabulary and from GO slims via OWLTools' Map2Slim, GOcats outperformed these methods in its ability to mimic human-categorized GO term sets. Unlike the other methods, GOcats relies only on an input of basic keywords from the user (e.g. biologist), not a manually compiled or static set of top-level GO terms. Additionally, by identifying and properly defining relations with respect to semantic scope, GOcats can utilize the traditionally problematic relation, has_part, without encountering erroneous term mapping. We applied GOcats in the comparison of HPA-sourced knowledgebase annotations to experimentally-derived annotations provided by HPA directly. During the comparison, GOcats improved correspondence between the annotation sources by adjusting semantic granularity. GOcats enables the creation of custom, GO slim-like filters to map fine-grained gene annotations from gene annotation files to general subcellular compartments without needing to hand-select a set of GO terms for categorization. Moreover, GOcats can customize the level of semantic specificity for annotation categories. Furthermore, GOcats enables a safe and more comprehensive semantic scoping utilization of go-core, allowing for a more complete utilization of information available in GO. Together, these improvements can impact a variety of GO knowledgebase data mining use-cases as well as knowledgebase curation and quality control.
doi_str_mv 10.1371/journal.pone.0233311
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2412204958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A626370996</galeid><doaj_id>oai_doaj_org_article_9fa61c4124c440d5ab2c85f77a339918</doaj_id><sourcerecordid>A626370996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c669t-956078edc2c058bb19d7c70028bc39ce8fbe1d291018162bc829ea5d3124a7423</originalsourceid><addsrcrecordid>eNqNkluL1DAUx4so7rr6DQQLgujDjLm0ufggDIuOAwsD6voa0jTtZMgks0kqrp_e1KmylX2QPCSc_M7_XIviOQRLiCl8u_dDcNIuj97pJUAYYwgfFOeQY7QgCOCHd95nxZMY9wDUmBHyuDjDqEY1o-i8uF5vlUzxXbkqk_e27Hwos0H3PpifxvXlWjtdbl3y1ve3pcmPMg5NH-RxF0vflUPUYdHqzjjdlso7pY8pPi0eddJG_Wy6L4rrjx--Xn5aXG3Xm8vV1UIRwtOC1wRQpluFFKhZ00DeUkUBQKxRmCvNukbDFnEIIIMENYohrmXdYogqSSuEL4oXJ92j9VFMHYkCVRAhUPGaZWJzIlov9-IYzEGGW-GlEb8NPvRChmSU1YJ3kkCVXStVVaCtZYMUqztKJcacw1Hr_RRtaA45a-1SkHYmOv9xZid6_11QxDiuaRZ4PQkEfzPomMTBRKWtlU774ZQ3ZwyhMdbLf9D7q5uoXuYCjOt8jqtGUbEiiGAKOCeZWt5D5dPqg8kjy8PL9pnDm5lDZpL-kXo5xCg2Xz7_P7v9Nmdf3WF3Wtq0i94OyXgX52B1AlXwMQbd_W0yBGLc_j_dEOP2i2n78S9pAfPz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412204958</pqid></control><display><type>article</type><title>GOcats: A tool for categorizing Gene Ontology into subgraphs of user-defined concepts</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Hinderer, Eugene W ; Moseley, Hunter N. B ; Robinson-Rechavi, Marc</creator><contributor>Robinson-Rechavi, Marc</contributor><creatorcontrib>Hinderer, Eugene W ; Moseley, Hunter N. B ; Robinson-Rechavi, Marc ; Robinson-Rechavi, Marc</creatorcontrib><description>Gene Ontology is used extensively in scientific knowledgebases and repositories to organize a wealth of biological information. However, interpreting annotations derived from differential gene lists is often difficult without manually sorting into higher-order categories. To address these issues, we present GOcats, a novel tool that organizes the Gene Ontology (GO) into subgraphs representing user-defined concepts, while ensuring that all appropriate relations are congruent with respect to scoping semantics. We tested GOcats performance using subcellular location categories to mine annotations from GO-utilizing knowledgebases and evaluated their accuracy against immunohistochemistry datasets in the Human Protein Atlas (HPA). In comparison to term categorizations generated from UniProt's controlled vocabulary and from GO slims via OWLTools' Map2Slim, GOcats outperformed these methods in its ability to mimic human-categorized GO term sets. Unlike the other methods, GOcats relies only on an input of basic keywords from the user (e.g. biologist), not a manually compiled or static set of top-level GO terms. Additionally, by identifying and properly defining relations with respect to semantic scope, GOcats can utilize the traditionally problematic relation, has_part, without encountering erroneous term mapping. We applied GOcats in the comparison of HPA-sourced knowledgebase annotations to experimentally-derived annotations provided by HPA directly. During the comparison, GOcats improved correspondence between the annotation sources by adjusting semantic granularity. GOcats enables the creation of custom, GO slim-like filters to map fine-grained gene annotations from gene annotation files to general subcellular compartments without needing to hand-select a set of GO terms for categorization. Moreover, GOcats can customize the level of semantic specificity for annotation categories. Furthermore, GOcats enables a safe and more comprehensive semantic scoping utilization of go-core, allowing for a more complete utilization of information available in GO. Together, these improvements can impact a variety of GO knowledgebase data mining use-cases as well as knowledgebase curation and quality control.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0233311</identifier><identifier>PMID: 32525872</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Annotations ; Automation ; Biochemistry ; Biology and Life Sciences ; Categories ; Controlled vocabularies ; Data mining ; Evaluation ; Evolution ; Genes ; Genetic research ; Graph theory ; Human performance ; Immunohistochemistry ; Information processing ; Knowledge bases (artificial intelligence) ; Knowledge representation ; Localization ; Mapping ; Methods ; Ontology ; Proteins ; Quality control ; Research and Analysis Methods ; Semantics ; Testing</subject><ispartof>PloS one, 2020-06, Vol.15 (6), p.e0233311-e0233311</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Hinderer III, Moseley. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Hinderer III, Moseley 2020 Hinderer III, Moseley</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c669t-956078edc2c058bb19d7c70028bc39ce8fbe1d291018162bc829ea5d3124a7423</citedby><cites>FETCH-LOGICAL-c669t-956078edc2c058bb19d7c70028bc39ce8fbe1d291018162bc829ea5d3124a7423</cites><orcidid>0000-0003-3995-5368</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289357/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289357/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids></links><search><contributor>Robinson-Rechavi, Marc</contributor><creatorcontrib>Hinderer, Eugene W</creatorcontrib><creatorcontrib>Moseley, Hunter N. B</creatorcontrib><creatorcontrib>Robinson-Rechavi, Marc</creatorcontrib><title>GOcats: A tool for categorizing Gene Ontology into subgraphs of user-defined concepts</title><title>PloS one</title><description>Gene Ontology is used extensively in scientific knowledgebases and repositories to organize a wealth of biological information. However, interpreting annotations derived from differential gene lists is often difficult without manually sorting into higher-order categories. To address these issues, we present GOcats, a novel tool that organizes the Gene Ontology (GO) into subgraphs representing user-defined concepts, while ensuring that all appropriate relations are congruent with respect to scoping semantics. We tested GOcats performance using subcellular location categories to mine annotations from GO-utilizing knowledgebases and evaluated their accuracy against immunohistochemistry datasets in the Human Protein Atlas (HPA). In comparison to term categorizations generated from UniProt's controlled vocabulary and from GO slims via OWLTools' Map2Slim, GOcats outperformed these methods in its ability to mimic human-categorized GO term sets. Unlike the other methods, GOcats relies only on an input of basic keywords from the user (e.g. biologist), not a manually compiled or static set of top-level GO terms. Additionally, by identifying and properly defining relations with respect to semantic scope, GOcats can utilize the traditionally problematic relation, has_part, without encountering erroneous term mapping. We applied GOcats in the comparison of HPA-sourced knowledgebase annotations to experimentally-derived annotations provided by HPA directly. During the comparison, GOcats improved correspondence between the annotation sources by adjusting semantic granularity. GOcats enables the creation of custom, GO slim-like filters to map fine-grained gene annotations from gene annotation files to general subcellular compartments without needing to hand-select a set of GO terms for categorization. Moreover, GOcats can customize the level of semantic specificity for annotation categories. Furthermore, GOcats enables a safe and more comprehensive semantic scoping utilization of go-core, allowing for a more complete utilization of information available in GO. Together, these improvements can impact a variety of GO knowledgebase data mining use-cases as well as knowledgebase curation and quality control.</description><subject>Annotations</subject><subject>Automation</subject><subject>Biochemistry</subject><subject>Biology and Life Sciences</subject><subject>Categories</subject><subject>Controlled vocabularies</subject><subject>Data mining</subject><subject>Evaluation</subject><subject>Evolution</subject><subject>Genes</subject><subject>Genetic research</subject><subject>Graph theory</subject><subject>Human performance</subject><subject>Immunohistochemistry</subject><subject>Information processing</subject><subject>Knowledge bases (artificial intelligence)</subject><subject>Knowledge representation</subject><subject>Localization</subject><subject>Mapping</subject><subject>Methods</subject><subject>Ontology</subject><subject>Proteins</subject><subject>Quality control</subject><subject>Research and Analysis Methods</subject><subject>Semantics</subject><subject>Testing</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkluL1DAUx4so7rr6DQQLgujDjLm0ufggDIuOAwsD6voa0jTtZMgks0kqrp_e1KmylX2QPCSc_M7_XIviOQRLiCl8u_dDcNIuj97pJUAYYwgfFOeQY7QgCOCHd95nxZMY9wDUmBHyuDjDqEY1o-i8uF5vlUzxXbkqk_e27Hwos0H3PpifxvXlWjtdbl3y1ve3pcmPMg5NH-RxF0vflUPUYdHqzjjdlso7pY8pPi0eddJG_Wy6L4rrjx--Xn5aXG3Xm8vV1UIRwtOC1wRQpluFFKhZ00DeUkUBQKxRmCvNukbDFnEIIIMENYohrmXdYogqSSuEL4oXJ92j9VFMHYkCVRAhUPGaZWJzIlov9-IYzEGGW-GlEb8NPvRChmSU1YJ3kkCVXStVVaCtZYMUqztKJcacw1Hr_RRtaA45a-1SkHYmOv9xZid6_11QxDiuaRZ4PQkEfzPomMTBRKWtlU774ZQ3ZwyhMdbLf9D7q5uoXuYCjOt8jqtGUbEiiGAKOCeZWt5D5dPqg8kjy8PL9pnDm5lDZpL-kXo5xCg2Xz7_P7v9Nmdf3WF3Wtq0i94OyXgX52B1AlXwMQbd_W0yBGLc_j_dEOP2i2n78S9pAfPz</recordid><startdate>20200611</startdate><enddate>20200611</enddate><creator>Hinderer, Eugene W</creator><creator>Moseley, Hunter N. B</creator><creator>Robinson-Rechavi, Marc</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3995-5368</orcidid></search><sort><creationdate>20200611</creationdate><title>GOcats: A tool for categorizing Gene Ontology into subgraphs of user-defined concepts</title><author>Hinderer, Eugene W ; Moseley, Hunter N. B ; Robinson-Rechavi, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c669t-956078edc2c058bb19d7c70028bc39ce8fbe1d291018162bc829ea5d3124a7423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Annotations</topic><topic>Automation</topic><topic>Biochemistry</topic><topic>Biology and Life Sciences</topic><topic>Categories</topic><topic>Controlled vocabularies</topic><topic>Data mining</topic><topic>Evaluation</topic><topic>Evolution</topic><topic>Genes</topic><topic>Genetic research</topic><topic>Graph theory</topic><topic>Human performance</topic><topic>Immunohistochemistry</topic><topic>Information processing</topic><topic>Knowledge bases (artificial intelligence)</topic><topic>Knowledge representation</topic><topic>Localization</topic><topic>Mapping</topic><topic>Methods</topic><topic>Ontology</topic><topic>Proteins</topic><topic>Quality control</topic><topic>Research and Analysis Methods</topic><topic>Semantics</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hinderer, Eugene W</creatorcontrib><creatorcontrib>Moseley, Hunter N. B</creatorcontrib><creatorcontrib>Robinson-Rechavi, Marc</creatorcontrib><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hinderer, Eugene W</au><au>Moseley, Hunter N. B</au><au>Robinson-Rechavi, Marc</au><au>Robinson-Rechavi, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GOcats: A tool for categorizing Gene Ontology into subgraphs of user-defined concepts</atitle><jtitle>PloS one</jtitle><date>2020-06-11</date><risdate>2020</risdate><volume>15</volume><issue>6</issue><spage>e0233311</spage><epage>e0233311</epage><pages>e0233311-e0233311</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Gene Ontology is used extensively in scientific knowledgebases and repositories to organize a wealth of biological information. However, interpreting annotations derived from differential gene lists is often difficult without manually sorting into higher-order categories. To address these issues, we present GOcats, a novel tool that organizes the Gene Ontology (GO) into subgraphs representing user-defined concepts, while ensuring that all appropriate relations are congruent with respect to scoping semantics. We tested GOcats performance using subcellular location categories to mine annotations from GO-utilizing knowledgebases and evaluated their accuracy against immunohistochemistry datasets in the Human Protein Atlas (HPA). In comparison to term categorizations generated from UniProt's controlled vocabulary and from GO slims via OWLTools' Map2Slim, GOcats outperformed these methods in its ability to mimic human-categorized GO term sets. Unlike the other methods, GOcats relies only on an input of basic keywords from the user (e.g. biologist), not a manually compiled or static set of top-level GO terms. Additionally, by identifying and properly defining relations with respect to semantic scope, GOcats can utilize the traditionally problematic relation, has_part, without encountering erroneous term mapping. We applied GOcats in the comparison of HPA-sourced knowledgebase annotations to experimentally-derived annotations provided by HPA directly. During the comparison, GOcats improved correspondence between the annotation sources by adjusting semantic granularity. GOcats enables the creation of custom, GO slim-like filters to map fine-grained gene annotations from gene annotation files to general subcellular compartments without needing to hand-select a set of GO terms for categorization. Moreover, GOcats can customize the level of semantic specificity for annotation categories. Furthermore, GOcats enables a safe and more comprehensive semantic scoping utilization of go-core, allowing for a more complete utilization of information available in GO. Together, these improvements can impact a variety of GO knowledgebase data mining use-cases as well as knowledgebase curation and quality control.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>32525872</pmid><doi>10.1371/journal.pone.0233311</doi><tpages>e0233311</tpages><orcidid>https://orcid.org/0000-0003-3995-5368</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-06, Vol.15 (6), p.e0233311-e0233311
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2412204958
source Public Library of Science (PLoS) Journals Open Access; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Annotations
Automation
Biochemistry
Biology and Life Sciences
Categories
Controlled vocabularies
Data mining
Evaluation
Evolution
Genes
Genetic research
Graph theory
Human performance
Immunohistochemistry
Information processing
Knowledge bases (artificial intelligence)
Knowledge representation
Localization
Mapping
Methods
Ontology
Proteins
Quality control
Research and Analysis Methods
Semantics
Testing
title GOcats: A tool for categorizing Gene Ontology into subgraphs of user-defined concepts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T14%3A39%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GOcats:%20A%20tool%20for%20categorizing%20Gene%20Ontology%20into%20subgraphs%20of%20user-defined%20concepts&rft.jtitle=PloS%20one&rft.au=Hinderer,%20Eugene%20W&rft.date=2020-06-11&rft.volume=15&rft.issue=6&rft.spage=e0233311&rft.epage=e0233311&rft.pages=e0233311-e0233311&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0233311&rft_dat=%3Cgale_plos_%3EA626370996%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412204958&rft_id=info:pmid/32525872&rft_galeid=A626370996&rft_doaj_id=oai_doaj_org_article_9fa61c4124c440d5ab2c85f77a339918&rfr_iscdi=true