Modeling Dragons: Using linked mechanistic physiological and microclimate models to explore environmental, physiological, and morphological constraints on the early evolution of dinosaurs
We employed the widely-tested biophysiological modeling software, Niche Mapper™ to investigate the metabolic function of the Late Triassic dinosaurs Plateosaurus and Coelophysis during global greenhouse conditions. We tested a variety of assumptions about resting metabolic rate, each evaluated withi...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-05, Vol.15 (5), p.e0223872-e0223872 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0223872 |
---|---|
container_issue | 5 |
container_start_page | e0223872 |
container_title | PloS one |
container_volume | 15 |
creator | Lovelace, David M Hartman, Scott A Mathewson, Paul D Linzmeier, Benjamin J Porter, Warren P |
description | We employed the widely-tested biophysiological modeling software, Niche Mapper™ to investigate the metabolic function of the Late Triassic dinosaurs Plateosaurus and Coelophysis during global greenhouse conditions. We tested a variety of assumptions about resting metabolic rate, each evaluated within six microclimate models that bound paleoenvironmental conditions at 12° N paleolatitude, as determined by sedimentological and isotopic proxies for climate within the Chinle Formation of the southwestern United States. Sensitivity testing of metabolic variables and simulated "metabolic chamber" analyses support elevated "ratite-like" metabolic rates and intermediate "monotreme-like" core temperature ranges in these species of early saurischian dinosaur. Our results suggest small theropods may have needed partial to full epidermal insulation in temperate environments, while fully grown prosauropods would have likely been heat stressed in open, hot environments and should have been restricted to cooler microclimates such as dense forests or higher latitudes and elevations. This is in agreement with the Late Triassic fossil record and may have contributed to the latitudinal gap in the Triassic prosauropod record. |
doi_str_mv | 10.1371/journal.pone.0223872 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2407761538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A627434697</galeid><doaj_id>oai_doaj_org_article_2ab5d455f615489fb8221ac91e86bbd3</doaj_id><sourcerecordid>A627434697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-d89fc5babf9a33b2ce97eddb2b1aecd7642881c355a765a3b5d2856e57a436163</originalsourceid><addsrcrecordid>eNqNk91u1DAQhSMEoqXwBggsVUIgdZfETpyEC6Sq_FUqqgSUW2viOImL115sp2qfjZdjtptWDeoFykXi8Tdn7JOZJHmepcuMldnbczd6C2a5dlYtU0pZVdIHyW5WM7rgNGUP73zvJE9COE_TglWcP052GM15XTO-m_z56lpltO3JBw-9s-EdOQubJcZ-qZaslBzA6hC1JOvhKmhnXK8lGAIWd7X0Thq9gqjIaqMUSHREXa6N84ooe6G9sytlI5iDef7BVsD59XArKbF-9KBtDMRZEgeUAG-uiLpwZowaY64jrbYuwOjD0-RRByaoZ9N7Lzn79PHH0ZfFyenn46PDk4XkNY2Ltqo7WTTQdDUw1lCp6lK1bUObDJRsS57TqsokKwooeQGsKVpaFVwVJeSMZ5ztJS-3unirICbfg6B5WpY8Q0-RON4SrYNzsfZoiL8SDrS4DjjfC_BooVGCAurnRdFhZo4naypKM5B1pireNC1DrfdTtbFZqVaieR7MTHS-Y_UgenchSlrUVb0ReD0JePd7VCGKlQ5SGQNWufH63BVNecpSRPf_Qe-_3UT1gBfQtnNYV25ExSGnZc6wmUqklvdQ-LQK2wSbtNMYnyW8mSUgE9Vl7GEMQRx___b_7OnPOfvqDjsoMHEIU_-EOZhvQWziELzqbk3OUrGZsRs3xGbGxDRjmPbi7g-6TboZKvYXF1Ynmg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407761538</pqid></control><display><type>article</type><title>Modeling Dragons: Using linked mechanistic physiological and microclimate models to explore environmental, physiological, and morphological constraints on the early evolution of dinosaurs</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Lovelace, David M ; Hartman, Scott A ; Mathewson, Paul D ; Linzmeier, Benjamin J ; Porter, Warren P</creator><contributor>Joger, Ulrich</contributor><creatorcontrib>Lovelace, David M ; Hartman, Scott A ; Mathewson, Paul D ; Linzmeier, Benjamin J ; Porter, Warren P ; Joger, Ulrich</creatorcontrib><description>We employed the widely-tested biophysiological modeling software, Niche Mapper™ to investigate the metabolic function of the Late Triassic dinosaurs Plateosaurus and Coelophysis during global greenhouse conditions. We tested a variety of assumptions about resting metabolic rate, each evaluated within six microclimate models that bound paleoenvironmental conditions at 12° N paleolatitude, as determined by sedimentological and isotopic proxies for climate within the Chinle Formation of the southwestern United States. Sensitivity testing of metabolic variables and simulated "metabolic chamber" analyses support elevated "ratite-like" metabolic rates and intermediate "monotreme-like" core temperature ranges in these species of early saurischian dinosaur. Our results suggest small theropods may have needed partial to full epidermal insulation in temperate environments, while fully grown prosauropods would have likely been heat stressed in open, hot environments and should have been restricted to cooler microclimates such as dense forests or higher latitudes and elevations. This is in agreement with the Late Triassic fossil record and may have contributed to the latitudinal gap in the Triassic prosauropod record.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0223872</identifier><identifier>PMID: 32469936</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biological research ; Biology ; Biology and Life Sciences ; Body temperature ; Boundary conditions ; Computer simulation ; Dinosaurs ; Earth science ; Earth Sciences ; Ecology and Environmental Sciences ; Environment models ; Extinction ; Heat ; Heat tolerance ; Humidity ; Hypotheses ; Insulation ; Medicine and Health Sciences ; Metabolic rate ; Metabolism ; Microclimate ; Microclimate models ; Morphology ; Natural history ; Niches ; Organisms ; Paleobiogeography ; Paleolatitude ; Phylogenetics ; Physical Sciences ; Physics ; Physiological aspects ; Physiology ; Precipitation ; Sensitivity analysis ; Temperate environments ; Temperature range ; Triassic ; Triassic period</subject><ispartof>PloS one, 2020-05, Vol.15 (5), p.e0223872-e0223872</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Lovelace et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Lovelace et al 2020 Lovelace et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-d89fc5babf9a33b2ce97eddb2b1aecd7642881c355a765a3b5d2856e57a436163</citedby><cites>FETCH-LOGICAL-c692t-d89fc5babf9a33b2ce97eddb2b1aecd7642881c355a765a3b5d2856e57a436163</cites><orcidid>0000-0002-3148-4971 ; 0000-0002-0154-4777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7259893/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7259893/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32469936$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Joger, Ulrich</contributor><creatorcontrib>Lovelace, David M</creatorcontrib><creatorcontrib>Hartman, Scott A</creatorcontrib><creatorcontrib>Mathewson, Paul D</creatorcontrib><creatorcontrib>Linzmeier, Benjamin J</creatorcontrib><creatorcontrib>Porter, Warren P</creatorcontrib><title>Modeling Dragons: Using linked mechanistic physiological and microclimate models to explore environmental, physiological, and morphological constraints on the early evolution of dinosaurs</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>We employed the widely-tested biophysiological modeling software, Niche Mapper™ to investigate the metabolic function of the Late Triassic dinosaurs Plateosaurus and Coelophysis during global greenhouse conditions. We tested a variety of assumptions about resting metabolic rate, each evaluated within six microclimate models that bound paleoenvironmental conditions at 12° N paleolatitude, as determined by sedimentological and isotopic proxies for climate within the Chinle Formation of the southwestern United States. Sensitivity testing of metabolic variables and simulated "metabolic chamber" analyses support elevated "ratite-like" metabolic rates and intermediate "monotreme-like" core temperature ranges in these species of early saurischian dinosaur. Our results suggest small theropods may have needed partial to full epidermal insulation in temperate environments, while fully grown prosauropods would have likely been heat stressed in open, hot environments and should have been restricted to cooler microclimates such as dense forests or higher latitudes and elevations. This is in agreement with the Late Triassic fossil record and may have contributed to the latitudinal gap in the Triassic prosauropod record.</description><subject>Biological research</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Body temperature</subject><subject>Boundary conditions</subject><subject>Computer simulation</subject><subject>Dinosaurs</subject><subject>Earth science</subject><subject>Earth Sciences</subject><subject>Ecology and Environmental Sciences</subject><subject>Environment models</subject><subject>Extinction</subject><subject>Heat</subject><subject>Heat tolerance</subject><subject>Humidity</subject><subject>Hypotheses</subject><subject>Insulation</subject><subject>Medicine and Health Sciences</subject><subject>Metabolic rate</subject><subject>Metabolism</subject><subject>Microclimate</subject><subject>Microclimate models</subject><subject>Morphology</subject><subject>Natural history</subject><subject>Niches</subject><subject>Organisms</subject><subject>Paleobiogeography</subject><subject>Paleolatitude</subject><subject>Phylogenetics</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Precipitation</subject><subject>Sensitivity analysis</subject><subject>Temperate environments</subject><subject>Temperature range</subject><subject>Triassic</subject><subject>Triassic period</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk91u1DAQhSMEoqXwBggsVUIgdZfETpyEC6Sq_FUqqgSUW2viOImL115sp2qfjZdjtptWDeoFykXi8Tdn7JOZJHmepcuMldnbczd6C2a5dlYtU0pZVdIHyW5WM7rgNGUP73zvJE9COE_TglWcP052GM15XTO-m_z56lpltO3JBw-9s-EdOQubJcZ-qZaslBzA6hC1JOvhKmhnXK8lGAIWd7X0Thq9gqjIaqMUSHREXa6N84ooe6G9sytlI5iDef7BVsD59XArKbF-9KBtDMRZEgeUAG-uiLpwZowaY64jrbYuwOjD0-RRByaoZ9N7Lzn79PHH0ZfFyenn46PDk4XkNY2Ltqo7WTTQdDUw1lCp6lK1bUObDJRsS57TqsokKwooeQGsKVpaFVwVJeSMZ5ztJS-3unirICbfg6B5WpY8Q0-RON4SrYNzsfZoiL8SDrS4DjjfC_BooVGCAurnRdFhZo4naypKM5B1pireNC1DrfdTtbFZqVaieR7MTHS-Y_UgenchSlrUVb0ReD0JePd7VCGKlQ5SGQNWufH63BVNecpSRPf_Qe-_3UT1gBfQtnNYV25ExSGnZc6wmUqklvdQ-LQK2wSbtNMYnyW8mSUgE9Vl7GEMQRx___b_7OnPOfvqDjsoMHEIU_-EOZhvQWziELzqbk3OUrGZsRs3xGbGxDRjmPbi7g-6TboZKvYXF1Ynmg</recordid><startdate>20200529</startdate><enddate>20200529</enddate><creator>Lovelace, David M</creator><creator>Hartman, Scott A</creator><creator>Mathewson, Paul D</creator><creator>Linzmeier, Benjamin J</creator><creator>Porter, Warren P</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3148-4971</orcidid><orcidid>https://orcid.org/0000-0002-0154-4777</orcidid></search><sort><creationdate>20200529</creationdate><title>Modeling Dragons: Using linked mechanistic physiological and microclimate models to explore environmental, physiological, and morphological constraints on the early evolution of dinosaurs</title><author>Lovelace, David M ; Hartman, Scott A ; Mathewson, Paul D ; Linzmeier, Benjamin J ; Porter, Warren P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-d89fc5babf9a33b2ce97eddb2b1aecd7642881c355a765a3b5d2856e57a436163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biological research</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Body temperature</topic><topic>Boundary conditions</topic><topic>Computer simulation</topic><topic>Dinosaurs</topic><topic>Earth science</topic><topic>Earth Sciences</topic><topic>Ecology and Environmental Sciences</topic><topic>Environment models</topic><topic>Extinction</topic><topic>Heat</topic><topic>Heat tolerance</topic><topic>Humidity</topic><topic>Hypotheses</topic><topic>Insulation</topic><topic>Medicine and Health Sciences</topic><topic>Metabolic rate</topic><topic>Metabolism</topic><topic>Microclimate</topic><topic>Microclimate models</topic><topic>Morphology</topic><topic>Natural history</topic><topic>Niches</topic><topic>Organisms</topic><topic>Paleobiogeography</topic><topic>Paleolatitude</topic><topic>Phylogenetics</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Precipitation</topic><topic>Sensitivity analysis</topic><topic>Temperate environments</topic><topic>Temperature range</topic><topic>Triassic</topic><topic>Triassic period</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lovelace, David M</creatorcontrib><creatorcontrib>Hartman, Scott A</creatorcontrib><creatorcontrib>Mathewson, Paul D</creatorcontrib><creatorcontrib>Linzmeier, Benjamin J</creatorcontrib><creatorcontrib>Porter, Warren P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lovelace, David M</au><au>Hartman, Scott A</au><au>Mathewson, Paul D</au><au>Linzmeier, Benjamin J</au><au>Porter, Warren P</au><au>Joger, Ulrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Dragons: Using linked mechanistic physiological and microclimate models to explore environmental, physiological, and morphological constraints on the early evolution of dinosaurs</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-05-29</date><risdate>2020</risdate><volume>15</volume><issue>5</issue><spage>e0223872</spage><epage>e0223872</epage><pages>e0223872-e0223872</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>We employed the widely-tested biophysiological modeling software, Niche Mapper™ to investigate the metabolic function of the Late Triassic dinosaurs Plateosaurus and Coelophysis during global greenhouse conditions. We tested a variety of assumptions about resting metabolic rate, each evaluated within six microclimate models that bound paleoenvironmental conditions at 12° N paleolatitude, as determined by sedimentological and isotopic proxies for climate within the Chinle Formation of the southwestern United States. Sensitivity testing of metabolic variables and simulated "metabolic chamber" analyses support elevated "ratite-like" metabolic rates and intermediate "monotreme-like" core temperature ranges in these species of early saurischian dinosaur. Our results suggest small theropods may have needed partial to full epidermal insulation in temperate environments, while fully grown prosauropods would have likely been heat stressed in open, hot environments and should have been restricted to cooler microclimates such as dense forests or higher latitudes and elevations. This is in agreement with the Late Triassic fossil record and may have contributed to the latitudinal gap in the Triassic prosauropod record.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32469936</pmid><doi>10.1371/journal.pone.0223872</doi><tpages>e0223872</tpages><orcidid>https://orcid.org/0000-0002-3148-4971</orcidid><orcidid>https://orcid.org/0000-0002-0154-4777</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-05, Vol.15 (5), p.e0223872-e0223872 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2407761538 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Biological research Biology Biology and Life Sciences Body temperature Boundary conditions Computer simulation Dinosaurs Earth science Earth Sciences Ecology and Environmental Sciences Environment models Extinction Heat Heat tolerance Humidity Hypotheses Insulation Medicine and Health Sciences Metabolic rate Metabolism Microclimate Microclimate models Morphology Natural history Niches Organisms Paleobiogeography Paleolatitude Phylogenetics Physical Sciences Physics Physiological aspects Physiology Precipitation Sensitivity analysis Temperate environments Temperature range Triassic Triassic period |
title | Modeling Dragons: Using linked mechanistic physiological and microclimate models to explore environmental, physiological, and morphological constraints on the early evolution of dinosaurs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A30%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Dragons:%20Using%20linked%20mechanistic%20physiological%20and%20microclimate%20models%20to%20explore%20environmental,%20physiological,%20and%20morphological%20constraints%20on%20the%20early%20evolution%20of%20dinosaurs&rft.jtitle=PloS%20one&rft.au=Lovelace,%20David%20M&rft.date=2020-05-29&rft.volume=15&rft.issue=5&rft.spage=e0223872&rft.epage=e0223872&rft.pages=e0223872-e0223872&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0223872&rft_dat=%3Cgale_plos_%3EA627434697%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407761538&rft_id=info:pmid/32469936&rft_galeid=A627434697&rft_doaj_id=oai_doaj_org_article_2ab5d455f615489fb8221ac91e86bbd3&rfr_iscdi=true |