Structure-based drug repositioning explains ibrutinib as VEGFR2 inhibitor
Many drugs are promiscuous and bind to multiple targets. On the one hand, these targets may be linked to unwanted side effects, but on the other, they may achieve a combined desired effect (polypharmacology) or represent multiple diseases (drug repositioning). With the growth of 3D structures of dru...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-05, Vol.15 (5), p.e0233089 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | e0233089 |
container_title | PloS one |
container_volume | 15 |
creator | Adasme, Melissa F Parisi, Daniele Van Belle, Kristien Salentin, Sebastian Haupt, V Joachim Jennings, Gary S Heinrich, Jörg-Christian Herman, Jean Sprangers, Ben Louat, Thierry Moreau, Yves Schroeder, Michael |
description | Many drugs are promiscuous and bind to multiple targets. On the one hand, these targets may be linked to unwanted side effects, but on the other, they may achieve a combined desired effect (polypharmacology) or represent multiple diseases (drug repositioning). With the growth of 3D structures of drug-target complexes, it is today possible to study drug promiscuity at the structural level and to screen vast amounts of drug-target interactions to predict side effects, polypharmacological potential, and repositioning opportunities. Here, we pursue such an approach to identify drugs inactivating B-cells, whose dysregulation can function as a driver of autoimmune diseases. Screening over 500 kinases, we identified 22 candidate targets, whose knock out impeded the activation of B-cells. Among these 22 is the gene KDR, whose gene product VEGFR2 is a prominent cancer target with anti-VEGFR2 drugs on the market for over a decade. The main result of this paper is that structure-based drug repositioning for the identified kinase targets identified the cancer drug ibrutinib as micromolar VEGFR2 inhibitor with a very high therapeutic index in B-cell inactivation. These findings prove that ibrutinib is not only acting on the Bruton's tyrosine kinase BTK, against which it was designed. Instead, it may be a polypharmacological drug, which additionally targets angiogenesis via inhibition of VEGFR2. Therefore ibrutinib carries potential to treat other VEGFR2 associated disease. Structure-based drug repositioning explains ibrutinib's anti VEGFR2 action through the conservation of a specific pattern of interactions of the drug with BTK and VEGFR2. Overall, structure-based drug repositioning was able to predict these findings at a fraction of the time and cost of a conventional screen. |
doi_str_mv | 10.1371/journal.pone.0233089 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2407307252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A625022579</galeid><doaj_id>oai_doaj_org_article_682c47392a2d44ffb4edd44602bd8f10</doaj_id><sourcerecordid>A625022579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-181d55406b0f2f060172f8ad3210ecf605afe346aab5740f3223900ed55c7e113</originalsourceid><addsrcrecordid>eNqNklGL1DAUhYso7jr6D0QLguDDjDc3bdq-CMuyuw4sLOzqvoY0TToZOs2YpLL-e1Onu0xBQfKQcPOdk8vNSZK3BFaEFuTz1g6uF91qb3u1AqQUyupZckoqikuGQJ8fnU-SV95vAXJaMvYyOaGY5VVJ4DRZ3wU3yDA4tayFV03auKFNndpbb4KxvenbVD3sO2F6n5raDcH0pk6FT-8vri5vMTX9xtQmWPc6eaFF59WbaV8k3y8vvp1_XV7fXK3Pz66XklUYlqQkTZ5nwGrQqIEBKVCXoqFIQEnNIBda0YwJUedFBpoi0gpARZEsFCF0kbw_-O476_k0Bc8xg4JCgTlGYn0gGiu2fO_MTrhf3ArD_xSsa7lwwchOcVaizApaocAmy7SuM9XEAwOsm1ITiF5fpteGeqcaqfrgRDcznd_0ZsNb-5OPnbD4AYvkw2Tg7I9B-fCPlieqFbEr02sbzeTOeMnPGOaAmBej1-ovVFyN2hkZc6BNrM8En2aCyAT1EFoxeM_Xd7f_z97cz9mPR-xGiS5svO2GMTF-DmYHUDrrvVP6aXIE-Bjjx2nwMcZ8inGUvTue-pPoMbf0N8Qi6-U</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407307252</pqid></control><display><type>article</type><title>Structure-based drug repositioning explains ibrutinib as VEGFR2 inhibitor</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Adasme, Melissa F ; Parisi, Daniele ; Van Belle, Kristien ; Salentin, Sebastian ; Haupt, V Joachim ; Jennings, Gary S ; Heinrich, Jörg-Christian ; Herman, Jean ; Sprangers, Ben ; Louat, Thierry ; Moreau, Yves ; Schroeder, Michael</creator><contributor>Maga, Giovanni</contributor><creatorcontrib>Adasme, Melissa F ; Parisi, Daniele ; Van Belle, Kristien ; Salentin, Sebastian ; Haupt, V Joachim ; Jennings, Gary S ; Heinrich, Jörg-Christian ; Herman, Jean ; Sprangers, Ben ; Louat, Thierry ; Moreau, Yves ; Schroeder, Michael ; Maga, Giovanni</creatorcontrib><description>Many drugs are promiscuous and bind to multiple targets. On the one hand, these targets may be linked to unwanted side effects, but on the other, they may achieve a combined desired effect (polypharmacology) or represent multiple diseases (drug repositioning). With the growth of 3D structures of drug-target complexes, it is today possible to study drug promiscuity at the structural level and to screen vast amounts of drug-target interactions to predict side effects, polypharmacological potential, and repositioning opportunities. Here, we pursue such an approach to identify drugs inactivating B-cells, whose dysregulation can function as a driver of autoimmune diseases. Screening over 500 kinases, we identified 22 candidate targets, whose knock out impeded the activation of B-cells. Among these 22 is the gene KDR, whose gene product VEGFR2 is a prominent cancer target with anti-VEGFR2 drugs on the market for over a decade. The main result of this paper is that structure-based drug repositioning for the identified kinase targets identified the cancer drug ibrutinib as micromolar VEGFR2 inhibitor with a very high therapeutic index in B-cell inactivation. These findings prove that ibrutinib is not only acting on the Bruton's tyrosine kinase BTK, against which it was designed. Instead, it may be a polypharmacological drug, which additionally targets angiogenesis via inhibition of VEGFR2. Therefore ibrutinib carries potential to treat other VEGFR2 associated disease. Structure-based drug repositioning explains ibrutinib's anti VEGFR2 action through the conservation of a specific pattern of interactions of the drug with BTK and VEGFR2. Overall, structure-based drug repositioning was able to predict these findings at a fraction of the time and cost of a conventional screen.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0233089</identifier><identifier>PMID: 32459810</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agammaglobulinaemia Tyrosine Kinase - antagonists & inhibitors ; Agammaglobulinaemia Tyrosine Kinase - metabolism ; Angiogenesis ; Antineoplastic agents ; Autoimmune diseases ; B cells ; B-Lymphocytes - metabolism ; Binding sites ; Biology and Life Sciences ; Biotechnology ; Bruton's tyrosine kinase ; Cancer ; Cancer therapies ; Cell activation ; Chemotherapy ; Conservation ; Cytotoxicity ; Deactivation ; Disease ; Diseases ; Drug interactions ; Drug Repositioning - methods ; Drugs ; Genes ; Growth factor receptors ; Growth factors ; Humans ; Ibrutinib ; Identification and classification ; Immunology ; Inactivation ; Inhibitor drugs ; Interfaces ; Jurkat Cells ; Kidney cancer ; Kinases ; Laboratories ; Lupus ; Lymphocytes B ; Lymphoma ; Medicine and Health Sciences ; Multiple myeloma ; Nephrology ; Pazopanib ; Pharmacological research ; Phenols (Class of compounds) ; Promiscuity ; Protein-tyrosine kinase ; Pyrazoles - chemistry ; Pyrazoles - pharmacology ; Pyrimidines - chemistry ; Pyrimidines - pharmacology ; Research and Analysis Methods ; Rheumatoid arthritis ; RNA Interference ; Side effects ; Signal Transduction - drug effects ; Sorafenib ; Structure (Literature) ; Structure-activity relationships (Pharmacology) ; Sunitinib ; Suramin - chemistry ; Suramin - pharmacology ; Target recognition ; Targeted cancer therapy ; Therapeutic targets ; Time ; Tyrosine ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor Receptor-2 - antagonists & inhibitors ; Vascular Endothelial Growth Factor Receptor-2 - metabolism</subject><ispartof>PloS one, 2020-05, Vol.15 (5), p.e0233089</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Adasme et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Adasme et al 2020 Adasme et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-181d55406b0f2f060172f8ad3210ecf605afe346aab5740f3223900ed55c7e113</citedby><cites>FETCH-LOGICAL-c692t-181d55406b0f2f060172f8ad3210ecf605afe346aab5740f3223900ed55c7e113</cites><orcidid>0000-0002-3920-2916 ; 0000-0003-2217-4629 ; 0000-0003-0547-1285</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7252619/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7252619/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32459810$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Maga, Giovanni</contributor><creatorcontrib>Adasme, Melissa F</creatorcontrib><creatorcontrib>Parisi, Daniele</creatorcontrib><creatorcontrib>Van Belle, Kristien</creatorcontrib><creatorcontrib>Salentin, Sebastian</creatorcontrib><creatorcontrib>Haupt, V Joachim</creatorcontrib><creatorcontrib>Jennings, Gary S</creatorcontrib><creatorcontrib>Heinrich, Jörg-Christian</creatorcontrib><creatorcontrib>Herman, Jean</creatorcontrib><creatorcontrib>Sprangers, Ben</creatorcontrib><creatorcontrib>Louat, Thierry</creatorcontrib><creatorcontrib>Moreau, Yves</creatorcontrib><creatorcontrib>Schroeder, Michael</creatorcontrib><title>Structure-based drug repositioning explains ibrutinib as VEGFR2 inhibitor</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Many drugs are promiscuous and bind to multiple targets. On the one hand, these targets may be linked to unwanted side effects, but on the other, they may achieve a combined desired effect (polypharmacology) or represent multiple diseases (drug repositioning). With the growth of 3D structures of drug-target complexes, it is today possible to study drug promiscuity at the structural level and to screen vast amounts of drug-target interactions to predict side effects, polypharmacological potential, and repositioning opportunities. Here, we pursue such an approach to identify drugs inactivating B-cells, whose dysregulation can function as a driver of autoimmune diseases. Screening over 500 kinases, we identified 22 candidate targets, whose knock out impeded the activation of B-cells. Among these 22 is the gene KDR, whose gene product VEGFR2 is a prominent cancer target with anti-VEGFR2 drugs on the market for over a decade. The main result of this paper is that structure-based drug repositioning for the identified kinase targets identified the cancer drug ibrutinib as micromolar VEGFR2 inhibitor with a very high therapeutic index in B-cell inactivation. These findings prove that ibrutinib is not only acting on the Bruton's tyrosine kinase BTK, against which it was designed. Instead, it may be a polypharmacological drug, which additionally targets angiogenesis via inhibition of VEGFR2. Therefore ibrutinib carries potential to treat other VEGFR2 associated disease. Structure-based drug repositioning explains ibrutinib's anti VEGFR2 action through the conservation of a specific pattern of interactions of the drug with BTK and VEGFR2. Overall, structure-based drug repositioning was able to predict these findings at a fraction of the time and cost of a conventional screen.</description><subject>Agammaglobulinaemia Tyrosine Kinase - antagonists & inhibitors</subject><subject>Agammaglobulinaemia Tyrosine Kinase - metabolism</subject><subject>Angiogenesis</subject><subject>Antineoplastic agents</subject><subject>Autoimmune diseases</subject><subject>B cells</subject><subject>B-Lymphocytes - metabolism</subject><subject>Binding sites</subject><subject>Biology and Life Sciences</subject><subject>Biotechnology</subject><subject>Bruton's tyrosine kinase</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Cell activation</subject><subject>Chemotherapy</subject><subject>Conservation</subject><subject>Cytotoxicity</subject><subject>Deactivation</subject><subject>Disease</subject><subject>Diseases</subject><subject>Drug interactions</subject><subject>Drug Repositioning - methods</subject><subject>Drugs</subject><subject>Genes</subject><subject>Growth factor receptors</subject><subject>Growth factors</subject><subject>Humans</subject><subject>Ibrutinib</subject><subject>Identification and classification</subject><subject>Immunology</subject><subject>Inactivation</subject><subject>Inhibitor drugs</subject><subject>Interfaces</subject><subject>Jurkat Cells</subject><subject>Kidney cancer</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Lupus</subject><subject>Lymphocytes B</subject><subject>Lymphoma</subject><subject>Medicine and Health Sciences</subject><subject>Multiple myeloma</subject><subject>Nephrology</subject><subject>Pazopanib</subject><subject>Pharmacological research</subject><subject>Phenols (Class of compounds)</subject><subject>Promiscuity</subject><subject>Protein-tyrosine kinase</subject><subject>Pyrazoles - chemistry</subject><subject>Pyrazoles - pharmacology</subject><subject>Pyrimidines - chemistry</subject><subject>Pyrimidines - pharmacology</subject><subject>Research and Analysis Methods</subject><subject>Rheumatoid arthritis</subject><subject>RNA Interference</subject><subject>Side effects</subject><subject>Signal Transduction - drug effects</subject><subject>Sorafenib</subject><subject>Structure (Literature)</subject><subject>Structure-activity relationships (Pharmacology)</subject><subject>Sunitinib</subject><subject>Suramin - chemistry</subject><subject>Suramin - pharmacology</subject><subject>Target recognition</subject><subject>Targeted cancer therapy</subject><subject>Therapeutic targets</subject><subject>Time</subject><subject>Tyrosine</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor Receptor-2 - antagonists & inhibitors</subject><subject>Vascular Endothelial Growth Factor Receptor-2 - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNklGL1DAUhYso7jr6D0QLguDDjDc3bdq-CMuyuw4sLOzqvoY0TToZOs2YpLL-e1Onu0xBQfKQcPOdk8vNSZK3BFaEFuTz1g6uF91qb3u1AqQUyupZckoqikuGQJ8fnU-SV95vAXJaMvYyOaGY5VVJ4DRZ3wU3yDA4tayFV03auKFNndpbb4KxvenbVD3sO2F6n5raDcH0pk6FT-8vri5vMTX9xtQmWPc6eaFF59WbaV8k3y8vvp1_XV7fXK3Pz66XklUYlqQkTZ5nwGrQqIEBKVCXoqFIQEnNIBda0YwJUedFBpoi0gpARZEsFCF0kbw_-O476_k0Bc8xg4JCgTlGYn0gGiu2fO_MTrhf3ArD_xSsa7lwwchOcVaizApaocAmy7SuM9XEAwOsm1ITiF5fpteGeqcaqfrgRDcznd_0ZsNb-5OPnbD4AYvkw2Tg7I9B-fCPlieqFbEr02sbzeTOeMnPGOaAmBej1-ovVFyN2hkZc6BNrM8En2aCyAT1EFoxeM_Xd7f_z97cz9mPR-xGiS5svO2GMTF-DmYHUDrrvVP6aXIE-Bjjx2nwMcZ8inGUvTue-pPoMbf0N8Qi6-U</recordid><startdate>20200527</startdate><enddate>20200527</enddate><creator>Adasme, Melissa F</creator><creator>Parisi, Daniele</creator><creator>Van Belle, Kristien</creator><creator>Salentin, Sebastian</creator><creator>Haupt, V Joachim</creator><creator>Jennings, Gary S</creator><creator>Heinrich, Jörg-Christian</creator><creator>Herman, Jean</creator><creator>Sprangers, Ben</creator><creator>Louat, Thierry</creator><creator>Moreau, Yves</creator><creator>Schroeder, Michael</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3920-2916</orcidid><orcidid>https://orcid.org/0000-0003-2217-4629</orcidid><orcidid>https://orcid.org/0000-0003-0547-1285</orcidid></search><sort><creationdate>20200527</creationdate><title>Structure-based drug repositioning explains ibrutinib as VEGFR2 inhibitor</title><author>Adasme, Melissa F ; Parisi, Daniele ; Van Belle, Kristien ; Salentin, Sebastian ; Haupt, V Joachim ; Jennings, Gary S ; Heinrich, Jörg-Christian ; Herman, Jean ; Sprangers, Ben ; Louat, Thierry ; Moreau, Yves ; Schroeder, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-181d55406b0f2f060172f8ad3210ecf605afe346aab5740f3223900ed55c7e113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agammaglobulinaemia Tyrosine Kinase - antagonists & inhibitors</topic><topic>Agammaglobulinaemia Tyrosine Kinase - metabolism</topic><topic>Angiogenesis</topic><topic>Antineoplastic agents</topic><topic>Autoimmune diseases</topic><topic>B cells</topic><topic>B-Lymphocytes - metabolism</topic><topic>Binding sites</topic><topic>Biology and Life Sciences</topic><topic>Biotechnology</topic><topic>Bruton's tyrosine kinase</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Cell activation</topic><topic>Chemotherapy</topic><topic>Conservation</topic><topic>Cytotoxicity</topic><topic>Deactivation</topic><topic>Disease</topic><topic>Diseases</topic><topic>Drug interactions</topic><topic>Drug Repositioning - methods</topic><topic>Drugs</topic><topic>Genes</topic><topic>Growth factor receptors</topic><topic>Growth factors</topic><topic>Humans</topic><topic>Ibrutinib</topic><topic>Identification and classification</topic><topic>Immunology</topic><topic>Inactivation</topic><topic>Inhibitor drugs</topic><topic>Interfaces</topic><topic>Jurkat Cells</topic><topic>Kidney cancer</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Lupus</topic><topic>Lymphocytes B</topic><topic>Lymphoma</topic><topic>Medicine and Health Sciences</topic><topic>Multiple myeloma</topic><topic>Nephrology</topic><topic>Pazopanib</topic><topic>Pharmacological research</topic><topic>Phenols (Class of compounds)</topic><topic>Promiscuity</topic><topic>Protein-tyrosine kinase</topic><topic>Pyrazoles - chemistry</topic><topic>Pyrazoles - pharmacology</topic><topic>Pyrimidines - chemistry</topic><topic>Pyrimidines - pharmacology</topic><topic>Research and Analysis Methods</topic><topic>Rheumatoid arthritis</topic><topic>RNA Interference</topic><topic>Side effects</topic><topic>Signal Transduction - drug effects</topic><topic>Sorafenib</topic><topic>Structure (Literature)</topic><topic>Structure-activity relationships (Pharmacology)</topic><topic>Sunitinib</topic><topic>Suramin - chemistry</topic><topic>Suramin - pharmacology</topic><topic>Target recognition</topic><topic>Targeted cancer therapy</topic><topic>Therapeutic targets</topic><topic>Time</topic><topic>Tyrosine</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor Receptor-2 - antagonists & inhibitors</topic><topic>Vascular Endothelial Growth Factor Receptor-2 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adasme, Melissa F</creatorcontrib><creatorcontrib>Parisi, Daniele</creatorcontrib><creatorcontrib>Van Belle, Kristien</creatorcontrib><creatorcontrib>Salentin, Sebastian</creatorcontrib><creatorcontrib>Haupt, V Joachim</creatorcontrib><creatorcontrib>Jennings, Gary S</creatorcontrib><creatorcontrib>Heinrich, Jörg-Christian</creatorcontrib><creatorcontrib>Herman, Jean</creatorcontrib><creatorcontrib>Sprangers, Ben</creatorcontrib><creatorcontrib>Louat, Thierry</creatorcontrib><creatorcontrib>Moreau, Yves</creatorcontrib><creatorcontrib>Schroeder, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adasme, Melissa F</au><au>Parisi, Daniele</au><au>Van Belle, Kristien</au><au>Salentin, Sebastian</au><au>Haupt, V Joachim</au><au>Jennings, Gary S</au><au>Heinrich, Jörg-Christian</au><au>Herman, Jean</au><au>Sprangers, Ben</au><au>Louat, Thierry</au><au>Moreau, Yves</au><au>Schroeder, Michael</au><au>Maga, Giovanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure-based drug repositioning explains ibrutinib as VEGFR2 inhibitor</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-05-27</date><risdate>2020</risdate><volume>15</volume><issue>5</issue><spage>e0233089</spage><pages>e0233089-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Many drugs are promiscuous and bind to multiple targets. On the one hand, these targets may be linked to unwanted side effects, but on the other, they may achieve a combined desired effect (polypharmacology) or represent multiple diseases (drug repositioning). With the growth of 3D structures of drug-target complexes, it is today possible to study drug promiscuity at the structural level and to screen vast amounts of drug-target interactions to predict side effects, polypharmacological potential, and repositioning opportunities. Here, we pursue such an approach to identify drugs inactivating B-cells, whose dysregulation can function as a driver of autoimmune diseases. Screening over 500 kinases, we identified 22 candidate targets, whose knock out impeded the activation of B-cells. Among these 22 is the gene KDR, whose gene product VEGFR2 is a prominent cancer target with anti-VEGFR2 drugs on the market for over a decade. The main result of this paper is that structure-based drug repositioning for the identified kinase targets identified the cancer drug ibrutinib as micromolar VEGFR2 inhibitor with a very high therapeutic index in B-cell inactivation. These findings prove that ibrutinib is not only acting on the Bruton's tyrosine kinase BTK, against which it was designed. Instead, it may be a polypharmacological drug, which additionally targets angiogenesis via inhibition of VEGFR2. Therefore ibrutinib carries potential to treat other VEGFR2 associated disease. Structure-based drug repositioning explains ibrutinib's anti VEGFR2 action through the conservation of a specific pattern of interactions of the drug with BTK and VEGFR2. Overall, structure-based drug repositioning was able to predict these findings at a fraction of the time and cost of a conventional screen.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32459810</pmid><doi>10.1371/journal.pone.0233089</doi><tpages>e0233089</tpages><orcidid>https://orcid.org/0000-0002-3920-2916</orcidid><orcidid>https://orcid.org/0000-0003-2217-4629</orcidid><orcidid>https://orcid.org/0000-0003-0547-1285</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-05, Vol.15 (5), p.e0233089 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2407307252 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Agammaglobulinaemia Tyrosine Kinase - antagonists & inhibitors Agammaglobulinaemia Tyrosine Kinase - metabolism Angiogenesis Antineoplastic agents Autoimmune diseases B cells B-Lymphocytes - metabolism Binding sites Biology and Life Sciences Biotechnology Bruton's tyrosine kinase Cancer Cancer therapies Cell activation Chemotherapy Conservation Cytotoxicity Deactivation Disease Diseases Drug interactions Drug Repositioning - methods Drugs Genes Growth factor receptors Growth factors Humans Ibrutinib Identification and classification Immunology Inactivation Inhibitor drugs Interfaces Jurkat Cells Kidney cancer Kinases Laboratories Lupus Lymphocytes B Lymphoma Medicine and Health Sciences Multiple myeloma Nephrology Pazopanib Pharmacological research Phenols (Class of compounds) Promiscuity Protein-tyrosine kinase Pyrazoles - chemistry Pyrazoles - pharmacology Pyrimidines - chemistry Pyrimidines - pharmacology Research and Analysis Methods Rheumatoid arthritis RNA Interference Side effects Signal Transduction - drug effects Sorafenib Structure (Literature) Structure-activity relationships (Pharmacology) Sunitinib Suramin - chemistry Suramin - pharmacology Target recognition Targeted cancer therapy Therapeutic targets Time Tyrosine Vascular endothelial growth factor Vascular Endothelial Growth Factor Receptor-2 - antagonists & inhibitors Vascular Endothelial Growth Factor Receptor-2 - metabolism |
title | Structure-based drug repositioning explains ibrutinib as VEGFR2 inhibitor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T03%3A04%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure-based%20drug%20repositioning%20explains%20ibrutinib%20as%20VEGFR2%20inhibitor&rft.jtitle=PloS%20one&rft.au=Adasme,%20Melissa%20F&rft.date=2020-05-27&rft.volume=15&rft.issue=5&rft.spage=e0233089&rft.pages=e0233089-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0233089&rft_dat=%3Cgale_plos_%3EA625022579%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407307252&rft_id=info:pmid/32459810&rft_galeid=A625022579&rft_doaj_id=oai_doaj_org_article_682c47392a2d44ffb4edd44602bd8f10&rfr_iscdi=true |