Drought index prediction using advanced fuzzy logic model: Regional case study over Kumaon in India

A new version of the fuzzy logic model, called the co-active neuro fuzzy inference system (CANFIS), is introduced for predicting standardized precipitation index (SPI). Multiple scales of drought information at six meteorological stations located in Uttarakhand State, India, are used. Different lead...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-05, Vol.15 (5), p.e0233280-e0233280
Hauptverfasser: Malik, Anurag, Kumar, Anil, Salih, Sinan Q, Kim, Sungwon, Kim, Nam Won, Yaseen, Zaher Mundher, Singh, Vijay P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0233280
container_issue 5
container_start_page e0233280
container_title PloS one
container_volume 15
creator Malik, Anurag
Kumar, Anil
Salih, Sinan Q
Kim, Sungwon
Kim, Nam Won
Yaseen, Zaher Mundher
Singh, Vijay P
description A new version of the fuzzy logic model, called the co-active neuro fuzzy inference system (CANFIS), is introduced for predicting standardized precipitation index (SPI). Multiple scales of drought information at six meteorological stations located in Uttarakhand State, India, are used. Different lead times of SPI were computed for prediction, including 1, 3, 6, 9, 12, and 24 months, with inputs abstracted by autocorrelation function (ACF) and partial-ACF (PACF) analysis at 5% significance level. The proposed CANFIS model was validated against two models: classical artificial intelligence model (e.g., multilayer perceptron neural network (MLPNN)) and regression model (e.g., multiple linear regression (MLR)). Several performance evaluation metrices (root mean square error, Nash-Sutcliffe efficiency, coefficient of correlation, and Willmott index), and graphical visualizations (scatter plot and Taylor diagram) were computed for the evaluation of model performance. Results indicated that the CANFIS model predicted the SPI better than the other models and prediction results were different for different meteorological stations. The proposed model can build a reliable expert intelligent system for predicting meteorological drought at multi-time scales and decision making for remedial schemes to cope with meteorological drought at the study stations and can help to maintain sustainable water resources management.
doi_str_mv 10.1371/journal.pone.0233280
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2405599196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A624573622</galeid><doaj_id>oai_doaj_org_article_652211a7a6794aeb962ca1bbe278055a</doaj_id><sourcerecordid>A624573622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-3895bd5b2cb26329e135d1a17e929856a7ad7c869c1062335804eb79240b75693</originalsourceid><addsrcrecordid>eNqNk99r2zAQx83YWLtu_8HYBIOxPSSzJFu29jAo3a-wQqH78Spk6eIoKFIq2aHpXz-lcUs8-jD0IHH63Pd0p7sse4nzKaYV_rD0fXDSTtfewTQnlJI6f5QdY07JhJGcPj44H2XPYlzmeUlrxp5mR5QUtErn40x9Dr5vFx0yTsM1WgfQRnXGO9RH41ok9UY6BRrN-5ubLbK-NQqtvAb7EV1Cm0BpkZIRUOx6vUV-AwH96FcyKRiHZk4b-Tx7Mpc2wothP8l-f_3y6-z75Pzi2-zs9HyiGCfdhNa8bHTZENUQRgkHTEuNJa6AE16XTFZSV6pmXOGcpXzLOi-gqTgp8qYqGacn2eu97tr6KIb6RJHuy5JzzFkiZntCe7kU62BWMmyFl0bcGnxohQydURYEKwnBOMVkFS8kNJwRJXHTAKnqpCeT1qchWt-sQCtwXZB2JDq-cWYhWr8RFSlwRXESeDcIBH_VQ-zEykQF1koHvr99N6OYsHz37jf_oA9nN1CtTAkYN_cprtqJilNGirKijJBETR-g0tKwMio109wk-8jh_cghMR1cd63sYxSzn5f_z178GbNvD9gFSNstorf9rvviGCz2oAo-xgDz-yLjXOxm4a4aYjcLYpiF5Pbq8IPune6an_4FssICTw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405599196</pqid></control><display><type>article</type><title>Drought index prediction using advanced fuzzy logic model: Regional case study over Kumaon in India</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Malik, Anurag ; Kumar, Anil ; Salih, Sinan Q ; Kim, Sungwon ; Kim, Nam Won ; Yaseen, Zaher Mundher ; Singh, Vijay P</creator><contributor>Ab Wahab, Mohd Nadhir</contributor><creatorcontrib>Malik, Anurag ; Kumar, Anil ; Salih, Sinan Q ; Kim, Sungwon ; Kim, Nam Won ; Yaseen, Zaher Mundher ; Singh, Vijay P ; Ab Wahab, Mohd Nadhir</creatorcontrib><description>A new version of the fuzzy logic model, called the co-active neuro fuzzy inference system (CANFIS), is introduced for predicting standardized precipitation index (SPI). Multiple scales of drought information at six meteorological stations located in Uttarakhand State, India, are used. Different lead times of SPI were computed for prediction, including 1, 3, 6, 9, 12, and 24 months, with inputs abstracted by autocorrelation function (ACF) and partial-ACF (PACF) analysis at 5% significance level. The proposed CANFIS model was validated against two models: classical artificial intelligence model (e.g., multilayer perceptron neural network (MLPNN)) and regression model (e.g., multiple linear regression (MLR)). Several performance evaluation metrices (root mean square error, Nash-Sutcliffe efficiency, coefficient of correlation, and Willmott index), and graphical visualizations (scatter plot and Taylor diagram) were computed for the evaluation of model performance. Results indicated that the CANFIS model predicted the SPI better than the other models and prediction results were different for different meteorological stations. The proposed model can build a reliable expert intelligent system for predicting meteorological drought at multi-time scales and decision making for remedial schemes to cope with meteorological drought at the study stations and can help to maintain sustainable water resources management.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0233280</identifier><identifier>PMID: 32437386</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agriculture ; Artificial intelligence ; Artificial neural networks ; Atmospheric models ; Autocorrelation function ; Autocorrelation functions ; Biology and Life Sciences ; Case reports ; Case studies ; Civil engineering ; Computation ; Computer and Information Sciences ; Decision making ; Drought ; Drought index ; Droughts ; Earth Sciences ; Ecology and Environmental Sciences ; Emergency preparedness ; Fuzzy logic ; Fuzzy systems ; Meteorological research ; Multilayer perceptrons ; Neural networks ; Performance evaluation ; Physical Sciences ; Precipitation ; Precipitation (Meteorology) ; Predictions ; R&amp;D ; Regression analysis ; Regression models ; Research &amp; development ; Research and Analysis Methods ; Resource management ; Standardized precipitation index ; Time ; Vietnam ; Visualization (Computer) ; Water management ; Water resource management ; Water resources ; Water resources management ; Water shortages ; Weather ; Weather forecasting ; Weather stations</subject><ispartof>PloS one, 2020-05, Vol.15 (5), p.e0233280-e0233280</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Malik et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Malik et al 2020 Malik et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-3895bd5b2cb26329e135d1a17e929856a7ad7c869c1062335804eb79240b75693</citedby><cites>FETCH-LOGICAL-c692t-3895bd5b2cb26329e135d1a17e929856a7ad7c869c1062335804eb79240b75693</cites><orcidid>0000-0002-0298-5777 ; 0000-0003-3647-7137</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7241731/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7241731/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23864,27922,27923,53789,53791,79370,79371</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32437386$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ab Wahab, Mohd Nadhir</contributor><creatorcontrib>Malik, Anurag</creatorcontrib><creatorcontrib>Kumar, Anil</creatorcontrib><creatorcontrib>Salih, Sinan Q</creatorcontrib><creatorcontrib>Kim, Sungwon</creatorcontrib><creatorcontrib>Kim, Nam Won</creatorcontrib><creatorcontrib>Yaseen, Zaher Mundher</creatorcontrib><creatorcontrib>Singh, Vijay P</creatorcontrib><title>Drought index prediction using advanced fuzzy logic model: Regional case study over Kumaon in India</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>A new version of the fuzzy logic model, called the co-active neuro fuzzy inference system (CANFIS), is introduced for predicting standardized precipitation index (SPI). Multiple scales of drought information at six meteorological stations located in Uttarakhand State, India, are used. Different lead times of SPI were computed for prediction, including 1, 3, 6, 9, 12, and 24 months, with inputs abstracted by autocorrelation function (ACF) and partial-ACF (PACF) analysis at 5% significance level. The proposed CANFIS model was validated against two models: classical artificial intelligence model (e.g., multilayer perceptron neural network (MLPNN)) and regression model (e.g., multiple linear regression (MLR)). Several performance evaluation metrices (root mean square error, Nash-Sutcliffe efficiency, coefficient of correlation, and Willmott index), and graphical visualizations (scatter plot and Taylor diagram) were computed for the evaluation of model performance. Results indicated that the CANFIS model predicted the SPI better than the other models and prediction results were different for different meteorological stations. The proposed model can build a reliable expert intelligent system for predicting meteorological drought at multi-time scales and decision making for remedial schemes to cope with meteorological drought at the study stations and can help to maintain sustainable water resources management.</description><subject>Agriculture</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Atmospheric models</subject><subject>Autocorrelation function</subject><subject>Autocorrelation functions</subject><subject>Biology and Life Sciences</subject><subject>Case reports</subject><subject>Case studies</subject><subject>Civil engineering</subject><subject>Computation</subject><subject>Computer and Information Sciences</subject><subject>Decision making</subject><subject>Drought</subject><subject>Drought index</subject><subject>Droughts</subject><subject>Earth Sciences</subject><subject>Ecology and Environmental Sciences</subject><subject>Emergency preparedness</subject><subject>Fuzzy logic</subject><subject>Fuzzy systems</subject><subject>Meteorological research</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Performance evaluation</subject><subject>Physical Sciences</subject><subject>Precipitation</subject><subject>Precipitation (Meteorology)</subject><subject>Predictions</subject><subject>R&amp;D</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Research &amp; development</subject><subject>Research and Analysis Methods</subject><subject>Resource management</subject><subject>Standardized precipitation index</subject><subject>Time</subject><subject>Vietnam</subject><subject>Visualization (Computer)</subject><subject>Water management</subject><subject>Water resource management</subject><subject>Water resources</subject><subject>Water resources management</subject><subject>Water shortages</subject><subject>Weather</subject><subject>Weather forecasting</subject><subject>Weather stations</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk99r2zAQx83YWLtu_8HYBIOxPSSzJFu29jAo3a-wQqH78Spk6eIoKFIq2aHpXz-lcUs8-jD0IHH63Pd0p7sse4nzKaYV_rD0fXDSTtfewTQnlJI6f5QdY07JhJGcPj44H2XPYlzmeUlrxp5mR5QUtErn40x9Dr5vFx0yTsM1WgfQRnXGO9RH41ok9UY6BRrN-5ubLbK-NQqtvAb7EV1Cm0BpkZIRUOx6vUV-AwH96FcyKRiHZk4b-Tx7Mpc2wothP8l-f_3y6-z75Pzi2-zs9HyiGCfdhNa8bHTZENUQRgkHTEuNJa6AE16XTFZSV6pmXOGcpXzLOi-gqTgp8qYqGacn2eu97tr6KIb6RJHuy5JzzFkiZntCe7kU62BWMmyFl0bcGnxohQydURYEKwnBOMVkFS8kNJwRJXHTAKnqpCeT1qchWt-sQCtwXZB2JDq-cWYhWr8RFSlwRXESeDcIBH_VQ-zEykQF1koHvr99N6OYsHz37jf_oA9nN1CtTAkYN_cprtqJilNGirKijJBETR-g0tKwMio109wk-8jh_cghMR1cd63sYxSzn5f_z178GbNvD9gFSNstorf9rvviGCz2oAo-xgDz-yLjXOxm4a4aYjcLYpiF5Pbq8IPune6an_4FssICTw</recordid><startdate>20200521</startdate><enddate>20200521</enddate><creator>Malik, Anurag</creator><creator>Kumar, Anil</creator><creator>Salih, Sinan Q</creator><creator>Kim, Sungwon</creator><creator>Kim, Nam Won</creator><creator>Yaseen, Zaher Mundher</creator><creator>Singh, Vijay P</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0298-5777</orcidid><orcidid>https://orcid.org/0000-0003-3647-7137</orcidid></search><sort><creationdate>20200521</creationdate><title>Drought index prediction using advanced fuzzy logic model: Regional case study over Kumaon in India</title><author>Malik, Anurag ; Kumar, Anil ; Salih, Sinan Q ; Kim, Sungwon ; Kim, Nam Won ; Yaseen, Zaher Mundher ; Singh, Vijay P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-3895bd5b2cb26329e135d1a17e929856a7ad7c869c1062335804eb79240b75693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agriculture</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Atmospheric models</topic><topic>Autocorrelation function</topic><topic>Autocorrelation functions</topic><topic>Biology and Life Sciences</topic><topic>Case reports</topic><topic>Case studies</topic><topic>Civil engineering</topic><topic>Computation</topic><topic>Computer and Information Sciences</topic><topic>Decision making</topic><topic>Drought</topic><topic>Drought index</topic><topic>Droughts</topic><topic>Earth Sciences</topic><topic>Ecology and Environmental Sciences</topic><topic>Emergency preparedness</topic><topic>Fuzzy logic</topic><topic>Fuzzy systems</topic><topic>Meteorological research</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Performance evaluation</topic><topic>Physical Sciences</topic><topic>Precipitation</topic><topic>Precipitation (Meteorology)</topic><topic>Predictions</topic><topic>R&amp;D</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Research &amp; development</topic><topic>Research and Analysis Methods</topic><topic>Resource management</topic><topic>Standardized precipitation index</topic><topic>Time</topic><topic>Vietnam</topic><topic>Visualization (Computer)</topic><topic>Water management</topic><topic>Water resource management</topic><topic>Water resources</topic><topic>Water resources management</topic><topic>Water shortages</topic><topic>Weather</topic><topic>Weather forecasting</topic><topic>Weather stations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malik, Anurag</creatorcontrib><creatorcontrib>Kumar, Anil</creatorcontrib><creatorcontrib>Salih, Sinan Q</creatorcontrib><creatorcontrib>Kim, Sungwon</creatorcontrib><creatorcontrib>Kim, Nam Won</creatorcontrib><creatorcontrib>Yaseen, Zaher Mundher</creatorcontrib><creatorcontrib>Singh, Vijay P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malik, Anurag</au><au>Kumar, Anil</au><au>Salih, Sinan Q</au><au>Kim, Sungwon</au><au>Kim, Nam Won</au><au>Yaseen, Zaher Mundher</au><au>Singh, Vijay P</au><au>Ab Wahab, Mohd Nadhir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drought index prediction using advanced fuzzy logic model: Regional case study over Kumaon in India</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-05-21</date><risdate>2020</risdate><volume>15</volume><issue>5</issue><spage>e0233280</spage><epage>e0233280</epage><pages>e0233280-e0233280</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>A new version of the fuzzy logic model, called the co-active neuro fuzzy inference system (CANFIS), is introduced for predicting standardized precipitation index (SPI). Multiple scales of drought information at six meteorological stations located in Uttarakhand State, India, are used. Different lead times of SPI were computed for prediction, including 1, 3, 6, 9, 12, and 24 months, with inputs abstracted by autocorrelation function (ACF) and partial-ACF (PACF) analysis at 5% significance level. The proposed CANFIS model was validated against two models: classical artificial intelligence model (e.g., multilayer perceptron neural network (MLPNN)) and regression model (e.g., multiple linear regression (MLR)). Several performance evaluation metrices (root mean square error, Nash-Sutcliffe efficiency, coefficient of correlation, and Willmott index), and graphical visualizations (scatter plot and Taylor diagram) were computed for the evaluation of model performance. Results indicated that the CANFIS model predicted the SPI better than the other models and prediction results were different for different meteorological stations. The proposed model can build a reliable expert intelligent system for predicting meteorological drought at multi-time scales and decision making for remedial schemes to cope with meteorological drought at the study stations and can help to maintain sustainable water resources management.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32437386</pmid><doi>10.1371/journal.pone.0233280</doi><tpages>e0233280</tpages><orcidid>https://orcid.org/0000-0002-0298-5777</orcidid><orcidid>https://orcid.org/0000-0003-3647-7137</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-05, Vol.15 (5), p.e0233280-e0233280
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2405599196
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Agriculture
Artificial intelligence
Artificial neural networks
Atmospheric models
Autocorrelation function
Autocorrelation functions
Biology and Life Sciences
Case reports
Case studies
Civil engineering
Computation
Computer and Information Sciences
Decision making
Drought
Drought index
Droughts
Earth Sciences
Ecology and Environmental Sciences
Emergency preparedness
Fuzzy logic
Fuzzy systems
Meteorological research
Multilayer perceptrons
Neural networks
Performance evaluation
Physical Sciences
Precipitation
Precipitation (Meteorology)
Predictions
R&D
Regression analysis
Regression models
Research & development
Research and Analysis Methods
Resource management
Standardized precipitation index
Time
Vietnam
Visualization (Computer)
Water management
Water resource management
Water resources
Water resources management
Water shortages
Weather
Weather forecasting
Weather stations
title Drought index prediction using advanced fuzzy logic model: Regional case study over Kumaon in India
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T02%3A21%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drought%20index%20prediction%20using%20advanced%20fuzzy%20logic%20model:%20Regional%20case%20study%20over%20Kumaon%20in%20India&rft.jtitle=PloS%20one&rft.au=Malik,%20Anurag&rft.date=2020-05-21&rft.volume=15&rft.issue=5&rft.spage=e0233280&rft.epage=e0233280&rft.pages=e0233280-e0233280&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0233280&rft_dat=%3Cgale_plos_%3EA624573622%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2405599196&rft_id=info:pmid/32437386&rft_galeid=A624573622&rft_doaj_id=oai_doaj_org_article_652211a7a6794aeb962ca1bbe278055a&rfr_iscdi=true