Role for the shelterin protein TRF2 in human herpesvirus 6A/B chromosomal integration

Human herpesviruses 6A and 6B (HHV-6A/B) are unique among human herpesviruses in their ability to integrate their genome into host chromosomes. Viral integration occurs at the ends of chromosomes within the host telomeres. The ends of the HHV-6A/B genomes contain telomeric repeats that facilitate th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens 2020-04, Vol.16 (4), p.e1008496-e1008496
Hauptverfasser: Gilbert-Girard, Shella, Gravel, Annie, Collin, Vanessa, Wight, Darren J, Kaufer, Benedikt B, Lazzerini-Denchi, Eros, Flamand, Louis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1008496
container_issue 4
container_start_page e1008496
container_title PLoS pathogens
container_volume 16
creator Gilbert-Girard, Shella
Gravel, Annie
Collin, Vanessa
Wight, Darren J
Kaufer, Benedikt B
Lazzerini-Denchi, Eros
Flamand, Louis
description Human herpesviruses 6A and 6B (HHV-6A/B) are unique among human herpesviruses in their ability to integrate their genome into host chromosomes. Viral integration occurs at the ends of chromosomes within the host telomeres. The ends of the HHV-6A/B genomes contain telomeric repeats that facilitate the integration process. Here, we report that productive infections are associated with a massive increase in telomeric sequences of viral origin. The majority of the viral telomeric signals can be detected within viral replication compartments (VRC) that contain the viral DNA processivity factor p41 and the viral immediate-early 2 (IE2) protein. Components of the shelterin protein complex present at telomeres, including TRF1 and TRF2 are also recruited to VRC during infection. Biochemical, immunofluorescence coupled with in situ hybridization and chromatin immunoprecipitation demonstrated the binding of TRF2 to the HHV-6A/B telomeric repeats. In addition, approximately 60% of the viral IE2 protein localize at cellular telomeres during infection. Transient knockdown of TRF2 resulted in greatly reduced (13%) localization of IE2 at cellular telomeres (p
doi_str_mv 10.1371/journal.ppat.1008496
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2403776243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A622511134</galeid><doaj_id>oai_doaj_org_article_ca1db6804d90497b9495b8a2c15ed172</doaj_id><sourcerecordid>A622511134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-438d23dbf1d0c569c0ac2307f696fb4d4280c76c2070d2937e416798b5b554193</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEoqXwDxBE4gKH3fordnxBWioKK1UgLe3Zcmwn8SqJg-1U8O_xsmnVoF6QJY9lP-87ntFk2WsI1hAzeL53kx9ktx5HGdcQgJJw-iQ7hUWBVwwz8vTB-SR7EcIeAAIxpM-zE4wwAoSg0-xm5zqT187nsTV5aE0XjbdDPnoXTYrXu0uUp9hOvUy78aMJt9ZPIaeb80-5ar3rXXC97BIVTeNltG54mT2rZRfMqzmeZTeXn68vvq6uvn_ZXmyuVopSGFcElxphXdVQA1VQroBUCANWU07rimiCSqAYVQgwoBHHzBBIGS-roioKAjk-y94efcfOBTF3JAhEAGaMIoITsT0S2sm9GL3tpf8tnLTi74XzjZA-WtUZoSTUFS0B0RwQzipOeFGVEilYGA0ZSl4f52xT1RutzBC97Bamy5fBtqJxt4JBzkpaJIP3s4F3PycTouhtUKbr5GDclP6NOUGUcHSo7N0_6OPVzVQjUwF2qF3Kqw6mYkMRKiCEmCRq_QiVlja9VW4wtU33C8GHhSAx0fyKjZxCENsfu_9gvy1ZcmSVdyF4U9_3DgJxGOq7IsVhqMU81En25mHf70V3U4z_AIaL8BU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2403776243</pqid></control><display><type>article</type><title>Role for the shelterin protein TRF2 in human herpesvirus 6A/B chromosomal integration</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS)</source><creator>Gilbert-Girard, Shella ; Gravel, Annie ; Collin, Vanessa ; Wight, Darren J ; Kaufer, Benedikt B ; Lazzerini-Denchi, Eros ; Flamand, Louis</creator><creatorcontrib>Gilbert-Girard, Shella ; Gravel, Annie ; Collin, Vanessa ; Wight, Darren J ; Kaufer, Benedikt B ; Lazzerini-Denchi, Eros ; Flamand, Louis</creatorcontrib><description>Human herpesviruses 6A and 6B (HHV-6A/B) are unique among human herpesviruses in their ability to integrate their genome into host chromosomes. Viral integration occurs at the ends of chromosomes within the host telomeres. The ends of the HHV-6A/B genomes contain telomeric repeats that facilitate the integration process. Here, we report that productive infections are associated with a massive increase in telomeric sequences of viral origin. The majority of the viral telomeric signals can be detected within viral replication compartments (VRC) that contain the viral DNA processivity factor p41 and the viral immediate-early 2 (IE2) protein. Components of the shelterin protein complex present at telomeres, including TRF1 and TRF2 are also recruited to VRC during infection. Biochemical, immunofluorescence coupled with in situ hybridization and chromatin immunoprecipitation demonstrated the binding of TRF2 to the HHV-6A/B telomeric repeats. In addition, approximately 60% of the viral IE2 protein localize at cellular telomeres during infection. Transient knockdown of TRF2 resulted in greatly reduced (13%) localization of IE2 at cellular telomeres (p&lt;0.0001). Lastly, TRF2 knockdown reduced HHV-6A/B integration frequency (p&lt;0.05), while no effect was observed on the infection efficiency. Overall, our study identified that HHV-6A/B IE2 localizes to telomeres during infection and highlight the role of TRF2 in HHV-6A/B infection and chromosomal integration.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1008496</identifier><identifier>PMID: 32320442</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Angina pectoris ; Antibodies ; Ataxia ; Biology and Life Sciences ; Cell division ; Chromatin ; Chromosomes ; Deoxyribonucleic acid ; DNA ; DNA damage ; EDTA ; Fluorescent antibody technique ; Genomes ; Genomics ; Health aspects ; Herpes viruses ; Herpesviruses ; Human performance ; Hybridization ; IE2 protein ; Immunofluorescence ; Immunoprecipitation ; Infection ; Infections ; Infectious diseases ; Integration ; Localization ; Medical research ; Plasmids ; Proteins ; Research and Analysis Methods ; Telomerase ; Telomere-binding protein ; Telomeres ; TRF2 protein ; Virus replication</subject><ispartof>PLoS pathogens, 2020-04, Vol.16 (4), p.e1008496-e1008496</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-438d23dbf1d0c569c0ac2307f696fb4d4280c76c2070d2937e416798b5b554193</citedby><cites>FETCH-LOGICAL-c661t-438d23dbf1d0c569c0ac2307f696fb4d4280c76c2070d2937e416798b5b554193</cites><orcidid>0000-0003-1328-2695 ; 0000-0003-2338-5698 ; 0000-0001-6320-5597 ; 0000-0001-5229-5750 ; 0000-0001-5010-4586</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7197865/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7197865/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32320442$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gilbert-Girard, Shella</creatorcontrib><creatorcontrib>Gravel, Annie</creatorcontrib><creatorcontrib>Collin, Vanessa</creatorcontrib><creatorcontrib>Wight, Darren J</creatorcontrib><creatorcontrib>Kaufer, Benedikt B</creatorcontrib><creatorcontrib>Lazzerini-Denchi, Eros</creatorcontrib><creatorcontrib>Flamand, Louis</creatorcontrib><title>Role for the shelterin protein TRF2 in human herpesvirus 6A/B chromosomal integration</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Human herpesviruses 6A and 6B (HHV-6A/B) are unique among human herpesviruses in their ability to integrate their genome into host chromosomes. Viral integration occurs at the ends of chromosomes within the host telomeres. The ends of the HHV-6A/B genomes contain telomeric repeats that facilitate the integration process. Here, we report that productive infections are associated with a massive increase in telomeric sequences of viral origin. The majority of the viral telomeric signals can be detected within viral replication compartments (VRC) that contain the viral DNA processivity factor p41 and the viral immediate-early 2 (IE2) protein. Components of the shelterin protein complex present at telomeres, including TRF1 and TRF2 are also recruited to VRC during infection. Biochemical, immunofluorescence coupled with in situ hybridization and chromatin immunoprecipitation demonstrated the binding of TRF2 to the HHV-6A/B telomeric repeats. In addition, approximately 60% of the viral IE2 protein localize at cellular telomeres during infection. Transient knockdown of TRF2 resulted in greatly reduced (13%) localization of IE2 at cellular telomeres (p&lt;0.0001). Lastly, TRF2 knockdown reduced HHV-6A/B integration frequency (p&lt;0.05), while no effect was observed on the infection efficiency. Overall, our study identified that HHV-6A/B IE2 localizes to telomeres during infection and highlight the role of TRF2 in HHV-6A/B infection and chromosomal integration.</description><subject>Angina pectoris</subject><subject>Antibodies</subject><subject>Ataxia</subject><subject>Biology and Life Sciences</subject><subject>Cell division</subject><subject>Chromatin</subject><subject>Chromosomes</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>EDTA</subject><subject>Fluorescent antibody technique</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Health aspects</subject><subject>Herpes viruses</subject><subject>Herpesviruses</subject><subject>Human performance</subject><subject>Hybridization</subject><subject>IE2 protein</subject><subject>Immunofluorescence</subject><subject>Immunoprecipitation</subject><subject>Infection</subject><subject>Infections</subject><subject>Infectious diseases</subject><subject>Integration</subject><subject>Localization</subject><subject>Medical research</subject><subject>Plasmids</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Telomerase</subject><subject>Telomere-binding protein</subject><subject>Telomeres</subject><subject>TRF2 protein</subject><subject>Virus replication</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEoqXwDxBE4gKH3fordnxBWioKK1UgLe3Zcmwn8SqJg-1U8O_xsmnVoF6QJY9lP-87ntFk2WsI1hAzeL53kx9ktx5HGdcQgJJw-iQ7hUWBVwwz8vTB-SR7EcIeAAIxpM-zE4wwAoSg0-xm5zqT187nsTV5aE0XjbdDPnoXTYrXu0uUp9hOvUy78aMJt9ZPIaeb80-5ar3rXXC97BIVTeNltG54mT2rZRfMqzmeZTeXn68vvq6uvn_ZXmyuVopSGFcElxphXdVQA1VQroBUCANWU07rimiCSqAYVQgwoBHHzBBIGS-roioKAjk-y94efcfOBTF3JAhEAGaMIoITsT0S2sm9GL3tpf8tnLTi74XzjZA-WtUZoSTUFS0B0RwQzipOeFGVEilYGA0ZSl4f52xT1RutzBC97Bamy5fBtqJxt4JBzkpaJIP3s4F3PycTouhtUKbr5GDclP6NOUGUcHSo7N0_6OPVzVQjUwF2qF3Kqw6mYkMRKiCEmCRq_QiVlja9VW4wtU33C8GHhSAx0fyKjZxCENsfu_9gvy1ZcmSVdyF4U9_3DgJxGOq7IsVhqMU81En25mHf70V3U4z_AIaL8BU</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Gilbert-Girard, Shella</creator><creator>Gravel, Annie</creator><creator>Collin, Vanessa</creator><creator>Wight, Darren J</creator><creator>Kaufer, Benedikt B</creator><creator>Lazzerini-Denchi, Eros</creator><creator>Flamand, Louis</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1328-2695</orcidid><orcidid>https://orcid.org/0000-0003-2338-5698</orcidid><orcidid>https://orcid.org/0000-0001-6320-5597</orcidid><orcidid>https://orcid.org/0000-0001-5229-5750</orcidid><orcidid>https://orcid.org/0000-0001-5010-4586</orcidid></search><sort><creationdate>20200401</creationdate><title>Role for the shelterin protein TRF2 in human herpesvirus 6A/B chromosomal integration</title><author>Gilbert-Girard, Shella ; Gravel, Annie ; Collin, Vanessa ; Wight, Darren J ; Kaufer, Benedikt B ; Lazzerini-Denchi, Eros ; Flamand, Louis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-438d23dbf1d0c569c0ac2307f696fb4d4280c76c2070d2937e416798b5b554193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Angina pectoris</topic><topic>Antibodies</topic><topic>Ataxia</topic><topic>Biology and Life Sciences</topic><topic>Cell division</topic><topic>Chromatin</topic><topic>Chromosomes</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>EDTA</topic><topic>Fluorescent antibody technique</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Health aspects</topic><topic>Herpes viruses</topic><topic>Herpesviruses</topic><topic>Human performance</topic><topic>Hybridization</topic><topic>IE2 protein</topic><topic>Immunofluorescence</topic><topic>Immunoprecipitation</topic><topic>Infection</topic><topic>Infections</topic><topic>Infectious diseases</topic><topic>Integration</topic><topic>Localization</topic><topic>Medical research</topic><topic>Plasmids</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Telomerase</topic><topic>Telomere-binding protein</topic><topic>Telomeres</topic><topic>TRF2 protein</topic><topic>Virus replication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gilbert-Girard, Shella</creatorcontrib><creatorcontrib>Gravel, Annie</creatorcontrib><creatorcontrib>Collin, Vanessa</creatorcontrib><creatorcontrib>Wight, Darren J</creatorcontrib><creatorcontrib>Kaufer, Benedikt B</creatorcontrib><creatorcontrib>Lazzerini-Denchi, Eros</creatorcontrib><creatorcontrib>Flamand, Louis</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gilbert-Girard, Shella</au><au>Gravel, Annie</au><au>Collin, Vanessa</au><au>Wight, Darren J</au><au>Kaufer, Benedikt B</au><au>Lazzerini-Denchi, Eros</au><au>Flamand, Louis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role for the shelterin protein TRF2 in human herpesvirus 6A/B chromosomal integration</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>16</volume><issue>4</issue><spage>e1008496</spage><epage>e1008496</epage><pages>e1008496-e1008496</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Human herpesviruses 6A and 6B (HHV-6A/B) are unique among human herpesviruses in their ability to integrate their genome into host chromosomes. Viral integration occurs at the ends of chromosomes within the host telomeres. The ends of the HHV-6A/B genomes contain telomeric repeats that facilitate the integration process. Here, we report that productive infections are associated with a massive increase in telomeric sequences of viral origin. The majority of the viral telomeric signals can be detected within viral replication compartments (VRC) that contain the viral DNA processivity factor p41 and the viral immediate-early 2 (IE2) protein. Components of the shelterin protein complex present at telomeres, including TRF1 and TRF2 are also recruited to VRC during infection. Biochemical, immunofluorescence coupled with in situ hybridization and chromatin immunoprecipitation demonstrated the binding of TRF2 to the HHV-6A/B telomeric repeats. In addition, approximately 60% of the viral IE2 protein localize at cellular telomeres during infection. Transient knockdown of TRF2 resulted in greatly reduced (13%) localization of IE2 at cellular telomeres (p&lt;0.0001). Lastly, TRF2 knockdown reduced HHV-6A/B integration frequency (p&lt;0.05), while no effect was observed on the infection efficiency. Overall, our study identified that HHV-6A/B IE2 localizes to telomeres during infection and highlight the role of TRF2 in HHV-6A/B infection and chromosomal integration.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32320442</pmid><doi>10.1371/journal.ppat.1008496</doi><orcidid>https://orcid.org/0000-0003-1328-2695</orcidid><orcidid>https://orcid.org/0000-0003-2338-5698</orcidid><orcidid>https://orcid.org/0000-0001-6320-5597</orcidid><orcidid>https://orcid.org/0000-0001-5229-5750</orcidid><orcidid>https://orcid.org/0000-0001-5010-4586</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7374
ispartof PLoS pathogens, 2020-04, Vol.16 (4), p.e1008496-e1008496
issn 1553-7374
1553-7366
1553-7374
language eng
recordid cdi_plos_journals_2403776243
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access; Public Library of Science (PLoS)
subjects Angina pectoris
Antibodies
Ataxia
Biology and Life Sciences
Cell division
Chromatin
Chromosomes
Deoxyribonucleic acid
DNA
DNA damage
EDTA
Fluorescent antibody technique
Genomes
Genomics
Health aspects
Herpes viruses
Herpesviruses
Human performance
Hybridization
IE2 protein
Immunofluorescence
Immunoprecipitation
Infection
Infections
Infectious diseases
Integration
Localization
Medical research
Plasmids
Proteins
Research and Analysis Methods
Telomerase
Telomere-binding protein
Telomeres
TRF2 protein
Virus replication
title Role for the shelterin protein TRF2 in human herpesvirus 6A/B chromosomal integration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A52%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20for%20the%20shelterin%20protein%20TRF2%20in%20human%20herpesvirus%206A/B%20chromosomal%20integration&rft.jtitle=PLoS%20pathogens&rft.au=Gilbert-Girard,%20Shella&rft.date=2020-04-01&rft.volume=16&rft.issue=4&rft.spage=e1008496&rft.epage=e1008496&rft.pages=e1008496-e1008496&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1008496&rft_dat=%3Cgale_plos_%3EA622511134%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2403776243&rft_id=info:pmid/32320442&rft_galeid=A622511134&rft_doaj_id=oai_doaj_org_article_ca1db6804d90497b9495b8a2c15ed172&rfr_iscdi=true