Killer cell proteases can target viral immediate-early proteins to control human cytomegalovirus infection in a noncytotoxic manner

Human cytomegalovirus (HCMV) is the most frequent viral cause of congenital defects and can trigger devastating disease in immune-suppressed patients. Cytotoxic lymphocytes (CD8+ T cells and NK cells) control HCMV infection by releasing interferon-γ and five granzymes (GrA, GrB, GrH, GrK, GrM), whic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens 2020-04, Vol.16 (4), p.e1008426
Hauptverfasser: Shan, Liling, Li, Shuang, Meeldijk, Jan, Blijenberg, Bernadet, Hendriks, Astrid, van Boxtel, Karlijn J W M, van den Berg, Sara P H, Groves, Ian J, Potts, Martin, Svrlanska, Adriana, Stamminger, Thomas, Wills, Mark R, Bovenschen, Niels
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page e1008426
container_title PLoS pathogens
container_volume 16
creator Shan, Liling
Li, Shuang
Meeldijk, Jan
Blijenberg, Bernadet
Hendriks, Astrid
van Boxtel, Karlijn J W M
van den Berg, Sara P H
Groves, Ian J
Potts, Martin
Svrlanska, Adriana
Stamminger, Thomas
Wills, Mark R
Bovenschen, Niels
description Human cytomegalovirus (HCMV) is the most frequent viral cause of congenital defects and can trigger devastating disease in immune-suppressed patients. Cytotoxic lymphocytes (CD8+ T cells and NK cells) control HCMV infection by releasing interferon-γ and five granzymes (GrA, GrB, GrH, GrK, GrM), which are believed to kill infected host cells through cleavage of intracellular death substrates. However, it has recently been demonstrated that the in vivo killing capacity of cytotoxic T cells is limited and multiple T cell hits are required to kill a single virus-infected cell. This raises the question whether cytotoxic lymphocytes can use granzymes to control HCMV infection in a noncytotoxic manner. Here, we demonstrate that (primary) cytotoxic lymphocytes can block HCMV dissemination independent of host cell death, and interferon-α/β/γ. Prior to killing, cytotoxic lymphocytes induce the degradation of viral immediate-early (IE) proteins IE1 and IE2 in HCMV-infected cells. Intriguingly, both IE1 and/or IE2 are directly proteolyzed by all human granzymes, with GrB and GrM being most efficient. GrB and GrM cleave IE1 after Asp398 and Leu414, respectively, likely resulting in IE1 aberrant cellular localization, IE1 instability, and functional impairment of IE1 to interfere with the JAK-STAT signaling pathway. Furthermore, GrB and GrM cleave IE2 after Asp184 and Leu173, respectively, resulting in IE2 aberrant cellular localization and functional abolishment of IE2 to transactivate the HCMV UL112 early promoter. Taken together, our data indicate that cytotoxic lymphocytes can also employ noncytotoxic ways to control HCMV infection, which may be explained by granzyme-mediated targeting of indispensable viral proteins during lytic infection.
doi_str_mv 10.1371/journal.ppat.1008426
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2403776206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A622509559</galeid><doaj_id>oai_doaj_org_article_6ff67a32b4e94200a6663aca68de5f72</doaj_id><sourcerecordid>A622509559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-375db1bc1be1c8c14ccf157912c6f64a2248bbf6c5293713f6c0a291e2eca8593</originalsourceid><addsrcrecordid>eNqVkktv1DAUhSMEoqXwDxBY6qqLGfxI7GSDVFUURlQg8VhbN56bqUdOPNhO1Vnzx_F00qojwQJ54Sv7O8f28S2K14zOmVDs3dqPYQA332wgzRmldcnlk-KYVZWYKaHKp4_qo-JFjGtKSyaYfF4cCc5rXgtxXPz-bJ3DQAw6RzbBJ4SIkRgYSIKwwkRubABHbN_j0kLCGUJw2z1qh0iSJ8YPKXhHrsc-y8w2-R5X4HxWjpHYoUOTrB9yRYAMftgRyd9aQzI_YHhZPOvARXw1zSfFz8sPPy4-za6-flxcnF_NjJQszYSqli1rDWuRmdqw0piOVaph3MhOlsB5WbdtJ03FmxyQyBUF3jDkaKCuGnFSvN37bpyPesoval5SoZTkVGZisSeWHtZ6E2wPYas9WH234MNKQ0jWONSy66QCwdsSm5JTClJKAQZkvcSqUzx7vZ9OG9ucncEcErgD08OdwV7rlb_Riqmm4bvrnk4Gwf8aMaZ_XHmicuKoc9g-m5neRqPPJecVbaq7p8__QuWxxN7m_8PO5vUDwdmBYPfHeJtWMMaoF9-__Qf75ZAt96wJPsaA3UMgjOpdX98_Uu_6Wk99nWVvHof5ILpvZPEHaXb29w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2403776206</pqid></control><display><type>article</type><title>Killer cell proteases can target viral immediate-early proteins to control human cytomegalovirus infection in a noncytotoxic manner</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Shan, Liling ; Li, Shuang ; Meeldijk, Jan ; Blijenberg, Bernadet ; Hendriks, Astrid ; van Boxtel, Karlijn J W M ; van den Berg, Sara P H ; Groves, Ian J ; Potts, Martin ; Svrlanska, Adriana ; Stamminger, Thomas ; Wills, Mark R ; Bovenschen, Niels</creator><contributor>Snyder, Christopher M.</contributor><creatorcontrib>Shan, Liling ; Li, Shuang ; Meeldijk, Jan ; Blijenberg, Bernadet ; Hendriks, Astrid ; van Boxtel, Karlijn J W M ; van den Berg, Sara P H ; Groves, Ian J ; Potts, Martin ; Svrlanska, Adriana ; Stamminger, Thomas ; Wills, Mark R ; Bovenschen, Niels ; Snyder, Christopher M.</creatorcontrib><description>Human cytomegalovirus (HCMV) is the most frequent viral cause of congenital defects and can trigger devastating disease in immune-suppressed patients. Cytotoxic lymphocytes (CD8+ T cells and NK cells) control HCMV infection by releasing interferon-γ and five granzymes (GrA, GrB, GrH, GrK, GrM), which are believed to kill infected host cells through cleavage of intracellular death substrates. However, it has recently been demonstrated that the in vivo killing capacity of cytotoxic T cells is limited and multiple T cell hits are required to kill a single virus-infected cell. This raises the question whether cytotoxic lymphocytes can use granzymes to control HCMV infection in a noncytotoxic manner. Here, we demonstrate that (primary) cytotoxic lymphocytes can block HCMV dissemination independent of host cell death, and interferon-α/β/γ. Prior to killing, cytotoxic lymphocytes induce the degradation of viral immediate-early (IE) proteins IE1 and IE2 in HCMV-infected cells. Intriguingly, both IE1 and/or IE2 are directly proteolyzed by all human granzymes, with GrB and GrM being most efficient. GrB and GrM cleave IE1 after Asp398 and Leu414, respectively, likely resulting in IE1 aberrant cellular localization, IE1 instability, and functional impairment of IE1 to interfere with the JAK-STAT signaling pathway. Furthermore, GrB and GrM cleave IE2 after Asp184 and Leu173, respectively, resulting in IE2 aberrant cellular localization and functional abolishment of IE2 to transactivate the HCMV UL112 early promoter. Taken together, our data indicate that cytotoxic lymphocytes can also employ noncytotoxic ways to control HCMV infection, which may be explained by granzyme-mediated targeting of indispensable viral proteins during lytic infection.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1008426</identifier><identifier>PMID: 32282833</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino Acid Motifs ; Antigens ; Biological response modifiers ; Biology and Life Sciences ; Birth defects ; CD8 antigen ; Cell death ; Congenital defects ; Cytomegalovirus ; Cytomegalovirus - genetics ; Cytomegalovirus - metabolism ; Cytomegalovirus infections ; Cytomegalovirus Infections - enzymology ; Cytomegalovirus Infections - virology ; Cytotoxicity ; Diseases ; Drug resistance ; Endopeptidase ; Fibroblasts ; Flow cytometry ; Funding ; Genetic disorders ; Granzymes - genetics ; Granzymes - metabolism ; Health aspects ; Host-Pathogen Interactions ; Humans ; IE1 protein ; IE2 protein ; Immediate-early proteins ; Immediate-Early Proteins - genetics ; Immediate-Early Proteins - metabolism ; Immunology ; Infection ; Infections ; Interferon ; Killer cells ; Killer Cells, Natural - enzymology ; Localization ; Lymphocytes ; Lymphocytes T ; Medicine ; Medicine and Health Sciences ; Pathology ; Proteases ; Proteins ; Proteolysis ; Research and Analysis Methods ; Signal transduction ; Substrates ; T cells ; T-Lymphocytes, Cytotoxic - enzymology ; Trans-Activators - genetics ; Trans-Activators - metabolism ; Viral infections ; Viral proteins ; Virology ; Viruses ; α-Interferon ; γ-Interferon</subject><ispartof>PLoS pathogens, 2020-04, Vol.16 (4), p.e1008426</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Shan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Shan et al 2020 Shan et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-375db1bc1be1c8c14ccf157912c6f64a2248bbf6c5293713f6c0a291e2eca8593</citedby><cites>FETCH-LOGICAL-c661t-375db1bc1be1c8c14ccf157912c6f64a2248bbf6c5293713f6c0a291e2eca8593</cites><orcidid>0000-0001-6062-9909 ; 0000-0001-8882-6701 ; 0000-0002-8526-4456 ; 0000-0001-8548-5729 ; 0000-0001-8897-443X ; 0000-0002-6738-0066 ; 0000-0001-9878-3119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7179929/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7179929/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32282833$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Snyder, Christopher M.</contributor><creatorcontrib>Shan, Liling</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Meeldijk, Jan</creatorcontrib><creatorcontrib>Blijenberg, Bernadet</creatorcontrib><creatorcontrib>Hendriks, Astrid</creatorcontrib><creatorcontrib>van Boxtel, Karlijn J W M</creatorcontrib><creatorcontrib>van den Berg, Sara P H</creatorcontrib><creatorcontrib>Groves, Ian J</creatorcontrib><creatorcontrib>Potts, Martin</creatorcontrib><creatorcontrib>Svrlanska, Adriana</creatorcontrib><creatorcontrib>Stamminger, Thomas</creatorcontrib><creatorcontrib>Wills, Mark R</creatorcontrib><creatorcontrib>Bovenschen, Niels</creatorcontrib><title>Killer cell proteases can target viral immediate-early proteins to control human cytomegalovirus infection in a noncytotoxic manner</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Human cytomegalovirus (HCMV) is the most frequent viral cause of congenital defects and can trigger devastating disease in immune-suppressed patients. Cytotoxic lymphocytes (CD8+ T cells and NK cells) control HCMV infection by releasing interferon-γ and five granzymes (GrA, GrB, GrH, GrK, GrM), which are believed to kill infected host cells through cleavage of intracellular death substrates. However, it has recently been demonstrated that the in vivo killing capacity of cytotoxic T cells is limited and multiple T cell hits are required to kill a single virus-infected cell. This raises the question whether cytotoxic lymphocytes can use granzymes to control HCMV infection in a noncytotoxic manner. Here, we demonstrate that (primary) cytotoxic lymphocytes can block HCMV dissemination independent of host cell death, and interferon-α/β/γ. Prior to killing, cytotoxic lymphocytes induce the degradation of viral immediate-early (IE) proteins IE1 and IE2 in HCMV-infected cells. Intriguingly, both IE1 and/or IE2 are directly proteolyzed by all human granzymes, with GrB and GrM being most efficient. GrB and GrM cleave IE1 after Asp398 and Leu414, respectively, likely resulting in IE1 aberrant cellular localization, IE1 instability, and functional impairment of IE1 to interfere with the JAK-STAT signaling pathway. Furthermore, GrB and GrM cleave IE2 after Asp184 and Leu173, respectively, resulting in IE2 aberrant cellular localization and functional abolishment of IE2 to transactivate the HCMV UL112 early promoter. Taken together, our data indicate that cytotoxic lymphocytes can also employ noncytotoxic ways to control HCMV infection, which may be explained by granzyme-mediated targeting of indispensable viral proteins during lytic infection.</description><subject>Amino Acid Motifs</subject><subject>Antigens</subject><subject>Biological response modifiers</subject><subject>Biology and Life Sciences</subject><subject>Birth defects</subject><subject>CD8 antigen</subject><subject>Cell death</subject><subject>Congenital defects</subject><subject>Cytomegalovirus</subject><subject>Cytomegalovirus - genetics</subject><subject>Cytomegalovirus - metabolism</subject><subject>Cytomegalovirus infections</subject><subject>Cytomegalovirus Infections - enzymology</subject><subject>Cytomegalovirus Infections - virology</subject><subject>Cytotoxicity</subject><subject>Diseases</subject><subject>Drug resistance</subject><subject>Endopeptidase</subject><subject>Fibroblasts</subject><subject>Flow cytometry</subject><subject>Funding</subject><subject>Genetic disorders</subject><subject>Granzymes - genetics</subject><subject>Granzymes - metabolism</subject><subject>Health aspects</subject><subject>Host-Pathogen Interactions</subject><subject>Humans</subject><subject>IE1 protein</subject><subject>IE2 protein</subject><subject>Immediate-early proteins</subject><subject>Immediate-Early Proteins - genetics</subject><subject>Immediate-Early Proteins - metabolism</subject><subject>Immunology</subject><subject>Infection</subject><subject>Infections</subject><subject>Interferon</subject><subject>Killer cells</subject><subject>Killer Cells, Natural - enzymology</subject><subject>Localization</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Pathology</subject><subject>Proteases</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>Research and Analysis Methods</subject><subject>Signal transduction</subject><subject>Substrates</subject><subject>T cells</subject><subject>T-Lymphocytes, Cytotoxic - enzymology</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>Viral infections</subject><subject>Viral proteins</subject><subject>Virology</subject><subject>Viruses</subject><subject>α-Interferon</subject><subject>γ-Interferon</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkktv1DAUhSMEoqXwDxBY6qqLGfxI7GSDVFUURlQg8VhbN56bqUdOPNhO1Vnzx_F00qojwQJ54Sv7O8f28S2K14zOmVDs3dqPYQA332wgzRmldcnlk-KYVZWYKaHKp4_qo-JFjGtKSyaYfF4cCc5rXgtxXPz-bJ3DQAw6RzbBJ4SIkRgYSIKwwkRubABHbN_j0kLCGUJw2z1qh0iSJ8YPKXhHrsc-y8w2-R5X4HxWjpHYoUOTrB9yRYAMftgRyd9aQzI_YHhZPOvARXw1zSfFz8sPPy4-za6-flxcnF_NjJQszYSqli1rDWuRmdqw0piOVaph3MhOlsB5WbdtJ03FmxyQyBUF3jDkaKCuGnFSvN37bpyPesoval5SoZTkVGZisSeWHtZ6E2wPYas9WH234MNKQ0jWONSy66QCwdsSm5JTClJKAQZkvcSqUzx7vZ9OG9ucncEcErgD08OdwV7rlb_Riqmm4bvrnk4Gwf8aMaZ_XHmicuKoc9g-m5neRqPPJecVbaq7p8__QuWxxN7m_8PO5vUDwdmBYPfHeJtWMMaoF9-__Qf75ZAt96wJPsaA3UMgjOpdX98_Uu_6Wk99nWVvHof5ILpvZPEHaXb29w</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Shan, Liling</creator><creator>Li, Shuang</creator><creator>Meeldijk, Jan</creator><creator>Blijenberg, Bernadet</creator><creator>Hendriks, Astrid</creator><creator>van Boxtel, Karlijn J W M</creator><creator>van den Berg, Sara P H</creator><creator>Groves, Ian J</creator><creator>Potts, Martin</creator><creator>Svrlanska, Adriana</creator><creator>Stamminger, Thomas</creator><creator>Wills, Mark R</creator><creator>Bovenschen, Niels</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6062-9909</orcidid><orcidid>https://orcid.org/0000-0001-8882-6701</orcidid><orcidid>https://orcid.org/0000-0002-8526-4456</orcidid><orcidid>https://orcid.org/0000-0001-8548-5729</orcidid><orcidid>https://orcid.org/0000-0001-8897-443X</orcidid><orcidid>https://orcid.org/0000-0002-6738-0066</orcidid><orcidid>https://orcid.org/0000-0001-9878-3119</orcidid></search><sort><creationdate>20200401</creationdate><title>Killer cell proteases can target viral immediate-early proteins to control human cytomegalovirus infection in a noncytotoxic manner</title><author>Shan, Liling ; Li, Shuang ; Meeldijk, Jan ; Blijenberg, Bernadet ; Hendriks, Astrid ; van Boxtel, Karlijn J W M ; van den Berg, Sara P H ; Groves, Ian J ; Potts, Martin ; Svrlanska, Adriana ; Stamminger, Thomas ; Wills, Mark R ; Bovenschen, Niels</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-375db1bc1be1c8c14ccf157912c6f64a2248bbf6c5293713f6c0a291e2eca8593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amino Acid Motifs</topic><topic>Antigens</topic><topic>Biological response modifiers</topic><topic>Biology and Life Sciences</topic><topic>Birth defects</topic><topic>CD8 antigen</topic><topic>Cell death</topic><topic>Congenital defects</topic><topic>Cytomegalovirus</topic><topic>Cytomegalovirus - genetics</topic><topic>Cytomegalovirus - metabolism</topic><topic>Cytomegalovirus infections</topic><topic>Cytomegalovirus Infections - enzymology</topic><topic>Cytomegalovirus Infections - virology</topic><topic>Cytotoxicity</topic><topic>Diseases</topic><topic>Drug resistance</topic><topic>Endopeptidase</topic><topic>Fibroblasts</topic><topic>Flow cytometry</topic><topic>Funding</topic><topic>Genetic disorders</topic><topic>Granzymes - genetics</topic><topic>Granzymes - metabolism</topic><topic>Health aspects</topic><topic>Host-Pathogen Interactions</topic><topic>Humans</topic><topic>IE1 protein</topic><topic>IE2 protein</topic><topic>Immediate-early proteins</topic><topic>Immediate-Early Proteins - genetics</topic><topic>Immediate-Early Proteins - metabolism</topic><topic>Immunology</topic><topic>Infection</topic><topic>Infections</topic><topic>Interferon</topic><topic>Killer cells</topic><topic>Killer Cells, Natural - enzymology</topic><topic>Localization</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Pathology</topic><topic>Proteases</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>Research and Analysis Methods</topic><topic>Signal transduction</topic><topic>Substrates</topic><topic>T cells</topic><topic>T-Lymphocytes, Cytotoxic - enzymology</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>Viral infections</topic><topic>Viral proteins</topic><topic>Virology</topic><topic>Viruses</topic><topic>α-Interferon</topic><topic>γ-Interferon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shan, Liling</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Meeldijk, Jan</creatorcontrib><creatorcontrib>Blijenberg, Bernadet</creatorcontrib><creatorcontrib>Hendriks, Astrid</creatorcontrib><creatorcontrib>van Boxtel, Karlijn J W M</creatorcontrib><creatorcontrib>van den Berg, Sara P H</creatorcontrib><creatorcontrib>Groves, Ian J</creatorcontrib><creatorcontrib>Potts, Martin</creatorcontrib><creatorcontrib>Svrlanska, Adriana</creatorcontrib><creatorcontrib>Stamminger, Thomas</creatorcontrib><creatorcontrib>Wills, Mark R</creatorcontrib><creatorcontrib>Bovenschen, Niels</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shan, Liling</au><au>Li, Shuang</au><au>Meeldijk, Jan</au><au>Blijenberg, Bernadet</au><au>Hendriks, Astrid</au><au>van Boxtel, Karlijn J W M</au><au>van den Berg, Sara P H</au><au>Groves, Ian J</au><au>Potts, Martin</au><au>Svrlanska, Adriana</au><au>Stamminger, Thomas</au><au>Wills, Mark R</au><au>Bovenschen, Niels</au><au>Snyder, Christopher M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Killer cell proteases can target viral immediate-early proteins to control human cytomegalovirus infection in a noncytotoxic manner</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>16</volume><issue>4</issue><spage>e1008426</spage><pages>e1008426-</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Human cytomegalovirus (HCMV) is the most frequent viral cause of congenital defects and can trigger devastating disease in immune-suppressed patients. Cytotoxic lymphocytes (CD8+ T cells and NK cells) control HCMV infection by releasing interferon-γ and five granzymes (GrA, GrB, GrH, GrK, GrM), which are believed to kill infected host cells through cleavage of intracellular death substrates. However, it has recently been demonstrated that the in vivo killing capacity of cytotoxic T cells is limited and multiple T cell hits are required to kill a single virus-infected cell. This raises the question whether cytotoxic lymphocytes can use granzymes to control HCMV infection in a noncytotoxic manner. Here, we demonstrate that (primary) cytotoxic lymphocytes can block HCMV dissemination independent of host cell death, and interferon-α/β/γ. Prior to killing, cytotoxic lymphocytes induce the degradation of viral immediate-early (IE) proteins IE1 and IE2 in HCMV-infected cells. Intriguingly, both IE1 and/or IE2 are directly proteolyzed by all human granzymes, with GrB and GrM being most efficient. GrB and GrM cleave IE1 after Asp398 and Leu414, respectively, likely resulting in IE1 aberrant cellular localization, IE1 instability, and functional impairment of IE1 to interfere with the JAK-STAT signaling pathway. Furthermore, GrB and GrM cleave IE2 after Asp184 and Leu173, respectively, resulting in IE2 aberrant cellular localization and functional abolishment of IE2 to transactivate the HCMV UL112 early promoter. Taken together, our data indicate that cytotoxic lymphocytes can also employ noncytotoxic ways to control HCMV infection, which may be explained by granzyme-mediated targeting of indispensable viral proteins during lytic infection.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32282833</pmid><doi>10.1371/journal.ppat.1008426</doi><orcidid>https://orcid.org/0000-0001-6062-9909</orcidid><orcidid>https://orcid.org/0000-0001-8882-6701</orcidid><orcidid>https://orcid.org/0000-0002-8526-4456</orcidid><orcidid>https://orcid.org/0000-0001-8548-5729</orcidid><orcidid>https://orcid.org/0000-0001-8897-443X</orcidid><orcidid>https://orcid.org/0000-0002-6738-0066</orcidid><orcidid>https://orcid.org/0000-0001-9878-3119</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7374
ispartof PLoS pathogens, 2020-04, Vol.16 (4), p.e1008426
issn 1553-7374
1553-7366
1553-7374
language eng
recordid cdi_plos_journals_2403776206
source MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central Open Access; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Amino Acid Motifs
Antigens
Biological response modifiers
Biology and Life Sciences
Birth defects
CD8 antigen
Cell death
Congenital defects
Cytomegalovirus
Cytomegalovirus - genetics
Cytomegalovirus - metabolism
Cytomegalovirus infections
Cytomegalovirus Infections - enzymology
Cytomegalovirus Infections - virology
Cytotoxicity
Diseases
Drug resistance
Endopeptidase
Fibroblasts
Flow cytometry
Funding
Genetic disorders
Granzymes - genetics
Granzymes - metabolism
Health aspects
Host-Pathogen Interactions
Humans
IE1 protein
IE2 protein
Immediate-early proteins
Immediate-Early Proteins - genetics
Immediate-Early Proteins - metabolism
Immunology
Infection
Infections
Interferon
Killer cells
Killer Cells, Natural - enzymology
Localization
Lymphocytes
Lymphocytes T
Medicine
Medicine and Health Sciences
Pathology
Proteases
Proteins
Proteolysis
Research and Analysis Methods
Signal transduction
Substrates
T cells
T-Lymphocytes, Cytotoxic - enzymology
Trans-Activators - genetics
Trans-Activators - metabolism
Viral infections
Viral proteins
Virology
Viruses
α-Interferon
γ-Interferon
title Killer cell proteases can target viral immediate-early proteins to control human cytomegalovirus infection in a noncytotoxic manner
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A25%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Killer%20cell%20proteases%20can%20target%20viral%20immediate-early%20proteins%20to%20control%20human%20cytomegalovirus%20infection%20in%20a%20noncytotoxic%20manner&rft.jtitle=PLoS%20pathogens&rft.au=Shan,%20Liling&rft.date=2020-04-01&rft.volume=16&rft.issue=4&rft.spage=e1008426&rft.pages=e1008426-&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1008426&rft_dat=%3Cgale_plos_%3EA622509559%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2403776206&rft_id=info:pmid/32282833&rft_galeid=A622509559&rft_doaj_id=oai_doaj_org_article_6ff67a32b4e94200a6663aca68de5f72&rfr_iscdi=true