Killer cell proteases can target viral immediate-early proteins to control human cytomegalovirus infection in a noncytotoxic manner
Human cytomegalovirus (HCMV) is the most frequent viral cause of congenital defects and can trigger devastating disease in immune-suppressed patients. Cytotoxic lymphocytes (CD8+ T cells and NK cells) control HCMV infection by releasing interferon-γ and five granzymes (GrA, GrB, GrH, GrK, GrM), whic...
Gespeichert in:
Veröffentlicht in: | PLoS pathogens 2020-04, Vol.16 (4), p.e1008426 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | e1008426 |
container_title | PLoS pathogens |
container_volume | 16 |
creator | Shan, Liling Li, Shuang Meeldijk, Jan Blijenberg, Bernadet Hendriks, Astrid van Boxtel, Karlijn J W M van den Berg, Sara P H Groves, Ian J Potts, Martin Svrlanska, Adriana Stamminger, Thomas Wills, Mark R Bovenschen, Niels |
description | Human cytomegalovirus (HCMV) is the most frequent viral cause of congenital defects and can trigger devastating disease in immune-suppressed patients. Cytotoxic lymphocytes (CD8+ T cells and NK cells) control HCMV infection by releasing interferon-γ and five granzymes (GrA, GrB, GrH, GrK, GrM), which are believed to kill infected host cells through cleavage of intracellular death substrates. However, it has recently been demonstrated that the in vivo killing capacity of cytotoxic T cells is limited and multiple T cell hits are required to kill a single virus-infected cell. This raises the question whether cytotoxic lymphocytes can use granzymes to control HCMV infection in a noncytotoxic manner. Here, we demonstrate that (primary) cytotoxic lymphocytes can block HCMV dissemination independent of host cell death, and interferon-α/β/γ. Prior to killing, cytotoxic lymphocytes induce the degradation of viral immediate-early (IE) proteins IE1 and IE2 in HCMV-infected cells. Intriguingly, both IE1 and/or IE2 are directly proteolyzed by all human granzymes, with GrB and GrM being most efficient. GrB and GrM cleave IE1 after Asp398 and Leu414, respectively, likely resulting in IE1 aberrant cellular localization, IE1 instability, and functional impairment of IE1 to interfere with the JAK-STAT signaling pathway. Furthermore, GrB and GrM cleave IE2 after Asp184 and Leu173, respectively, resulting in IE2 aberrant cellular localization and functional abolishment of IE2 to transactivate the HCMV UL112 early promoter. Taken together, our data indicate that cytotoxic lymphocytes can also employ noncytotoxic ways to control HCMV infection, which may be explained by granzyme-mediated targeting of indispensable viral proteins during lytic infection. |
doi_str_mv | 10.1371/journal.ppat.1008426 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2403776206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A622509559</galeid><doaj_id>oai_doaj_org_article_6ff67a32b4e94200a6663aca68de5f72</doaj_id><sourcerecordid>A622509559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-375db1bc1be1c8c14ccf157912c6f64a2248bbf6c5293713f6c0a291e2eca8593</originalsourceid><addsrcrecordid>eNqVkktv1DAUhSMEoqXwDxBY6qqLGfxI7GSDVFUURlQg8VhbN56bqUdOPNhO1Vnzx_F00qojwQJ54Sv7O8f28S2K14zOmVDs3dqPYQA332wgzRmldcnlk-KYVZWYKaHKp4_qo-JFjGtKSyaYfF4cCc5rXgtxXPz-bJ3DQAw6RzbBJ4SIkRgYSIKwwkRubABHbN_j0kLCGUJw2z1qh0iSJ8YPKXhHrsc-y8w2-R5X4HxWjpHYoUOTrB9yRYAMftgRyd9aQzI_YHhZPOvARXw1zSfFz8sPPy4-za6-flxcnF_NjJQszYSqli1rDWuRmdqw0piOVaph3MhOlsB5WbdtJ03FmxyQyBUF3jDkaKCuGnFSvN37bpyPesoval5SoZTkVGZisSeWHtZ6E2wPYas9WH234MNKQ0jWONSy66QCwdsSm5JTClJKAQZkvcSqUzx7vZ9OG9ucncEcErgD08OdwV7rlb_Riqmm4bvrnk4Gwf8aMaZ_XHmicuKoc9g-m5neRqPPJecVbaq7p8__QuWxxN7m_8PO5vUDwdmBYPfHeJtWMMaoF9-__Qf75ZAt96wJPsaA3UMgjOpdX98_Uu_6Wk99nWVvHof5ILpvZPEHaXb29w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2403776206</pqid></control><display><type>article</type><title>Killer cell proteases can target viral immediate-early proteins to control human cytomegalovirus infection in a noncytotoxic manner</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Shan, Liling ; Li, Shuang ; Meeldijk, Jan ; Blijenberg, Bernadet ; Hendriks, Astrid ; van Boxtel, Karlijn J W M ; van den Berg, Sara P H ; Groves, Ian J ; Potts, Martin ; Svrlanska, Adriana ; Stamminger, Thomas ; Wills, Mark R ; Bovenschen, Niels</creator><contributor>Snyder, Christopher M.</contributor><creatorcontrib>Shan, Liling ; Li, Shuang ; Meeldijk, Jan ; Blijenberg, Bernadet ; Hendriks, Astrid ; van Boxtel, Karlijn J W M ; van den Berg, Sara P H ; Groves, Ian J ; Potts, Martin ; Svrlanska, Adriana ; Stamminger, Thomas ; Wills, Mark R ; Bovenschen, Niels ; Snyder, Christopher M.</creatorcontrib><description>Human cytomegalovirus (HCMV) is the most frequent viral cause of congenital defects and can trigger devastating disease in immune-suppressed patients. Cytotoxic lymphocytes (CD8+ T cells and NK cells) control HCMV infection by releasing interferon-γ and five granzymes (GrA, GrB, GrH, GrK, GrM), which are believed to kill infected host cells through cleavage of intracellular death substrates. However, it has recently been demonstrated that the in vivo killing capacity of cytotoxic T cells is limited and multiple T cell hits are required to kill a single virus-infected cell. This raises the question whether cytotoxic lymphocytes can use granzymes to control HCMV infection in a noncytotoxic manner. Here, we demonstrate that (primary) cytotoxic lymphocytes can block HCMV dissemination independent of host cell death, and interferon-α/β/γ. Prior to killing, cytotoxic lymphocytes induce the degradation of viral immediate-early (IE) proteins IE1 and IE2 in HCMV-infected cells. Intriguingly, both IE1 and/or IE2 are directly proteolyzed by all human granzymes, with GrB and GrM being most efficient. GrB and GrM cleave IE1 after Asp398 and Leu414, respectively, likely resulting in IE1 aberrant cellular localization, IE1 instability, and functional impairment of IE1 to interfere with the JAK-STAT signaling pathway. Furthermore, GrB and GrM cleave IE2 after Asp184 and Leu173, respectively, resulting in IE2 aberrant cellular localization and functional abolishment of IE2 to transactivate the HCMV UL112 early promoter. Taken together, our data indicate that cytotoxic lymphocytes can also employ noncytotoxic ways to control HCMV infection, which may be explained by granzyme-mediated targeting of indispensable viral proteins during lytic infection.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1008426</identifier><identifier>PMID: 32282833</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino Acid Motifs ; Antigens ; Biological response modifiers ; Biology and Life Sciences ; Birth defects ; CD8 antigen ; Cell death ; Congenital defects ; Cytomegalovirus ; Cytomegalovirus - genetics ; Cytomegalovirus - metabolism ; Cytomegalovirus infections ; Cytomegalovirus Infections - enzymology ; Cytomegalovirus Infections - virology ; Cytotoxicity ; Diseases ; Drug resistance ; Endopeptidase ; Fibroblasts ; Flow cytometry ; Funding ; Genetic disorders ; Granzymes - genetics ; Granzymes - metabolism ; Health aspects ; Host-Pathogen Interactions ; Humans ; IE1 protein ; IE2 protein ; Immediate-early proteins ; Immediate-Early Proteins - genetics ; Immediate-Early Proteins - metabolism ; Immunology ; Infection ; Infections ; Interferon ; Killer cells ; Killer Cells, Natural - enzymology ; Localization ; Lymphocytes ; Lymphocytes T ; Medicine ; Medicine and Health Sciences ; Pathology ; Proteases ; Proteins ; Proteolysis ; Research and Analysis Methods ; Signal transduction ; Substrates ; T cells ; T-Lymphocytes, Cytotoxic - enzymology ; Trans-Activators - genetics ; Trans-Activators - metabolism ; Viral infections ; Viral proteins ; Virology ; Viruses ; α-Interferon ; γ-Interferon</subject><ispartof>PLoS pathogens, 2020-04, Vol.16 (4), p.e1008426</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Shan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Shan et al 2020 Shan et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-375db1bc1be1c8c14ccf157912c6f64a2248bbf6c5293713f6c0a291e2eca8593</citedby><cites>FETCH-LOGICAL-c661t-375db1bc1be1c8c14ccf157912c6f64a2248bbf6c5293713f6c0a291e2eca8593</cites><orcidid>0000-0001-6062-9909 ; 0000-0001-8882-6701 ; 0000-0002-8526-4456 ; 0000-0001-8548-5729 ; 0000-0001-8897-443X ; 0000-0002-6738-0066 ; 0000-0001-9878-3119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7179929/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7179929/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32282833$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Snyder, Christopher M.</contributor><creatorcontrib>Shan, Liling</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Meeldijk, Jan</creatorcontrib><creatorcontrib>Blijenberg, Bernadet</creatorcontrib><creatorcontrib>Hendriks, Astrid</creatorcontrib><creatorcontrib>van Boxtel, Karlijn J W M</creatorcontrib><creatorcontrib>van den Berg, Sara P H</creatorcontrib><creatorcontrib>Groves, Ian J</creatorcontrib><creatorcontrib>Potts, Martin</creatorcontrib><creatorcontrib>Svrlanska, Adriana</creatorcontrib><creatorcontrib>Stamminger, Thomas</creatorcontrib><creatorcontrib>Wills, Mark R</creatorcontrib><creatorcontrib>Bovenschen, Niels</creatorcontrib><title>Killer cell proteases can target viral immediate-early proteins to control human cytomegalovirus infection in a noncytotoxic manner</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Human cytomegalovirus (HCMV) is the most frequent viral cause of congenital defects and can trigger devastating disease in immune-suppressed patients. Cytotoxic lymphocytes (CD8+ T cells and NK cells) control HCMV infection by releasing interferon-γ and five granzymes (GrA, GrB, GrH, GrK, GrM), which are believed to kill infected host cells through cleavage of intracellular death substrates. However, it has recently been demonstrated that the in vivo killing capacity of cytotoxic T cells is limited and multiple T cell hits are required to kill a single virus-infected cell. This raises the question whether cytotoxic lymphocytes can use granzymes to control HCMV infection in a noncytotoxic manner. Here, we demonstrate that (primary) cytotoxic lymphocytes can block HCMV dissemination independent of host cell death, and interferon-α/β/γ. Prior to killing, cytotoxic lymphocytes induce the degradation of viral immediate-early (IE) proteins IE1 and IE2 in HCMV-infected cells. Intriguingly, both IE1 and/or IE2 are directly proteolyzed by all human granzymes, with GrB and GrM being most efficient. GrB and GrM cleave IE1 after Asp398 and Leu414, respectively, likely resulting in IE1 aberrant cellular localization, IE1 instability, and functional impairment of IE1 to interfere with the JAK-STAT signaling pathway. Furthermore, GrB and GrM cleave IE2 after Asp184 and Leu173, respectively, resulting in IE2 aberrant cellular localization and functional abolishment of IE2 to transactivate the HCMV UL112 early promoter. Taken together, our data indicate that cytotoxic lymphocytes can also employ noncytotoxic ways to control HCMV infection, which may be explained by granzyme-mediated targeting of indispensable viral proteins during lytic infection.</description><subject>Amino Acid Motifs</subject><subject>Antigens</subject><subject>Biological response modifiers</subject><subject>Biology and Life Sciences</subject><subject>Birth defects</subject><subject>CD8 antigen</subject><subject>Cell death</subject><subject>Congenital defects</subject><subject>Cytomegalovirus</subject><subject>Cytomegalovirus - genetics</subject><subject>Cytomegalovirus - metabolism</subject><subject>Cytomegalovirus infections</subject><subject>Cytomegalovirus Infections - enzymology</subject><subject>Cytomegalovirus Infections - virology</subject><subject>Cytotoxicity</subject><subject>Diseases</subject><subject>Drug resistance</subject><subject>Endopeptidase</subject><subject>Fibroblasts</subject><subject>Flow cytometry</subject><subject>Funding</subject><subject>Genetic disorders</subject><subject>Granzymes - genetics</subject><subject>Granzymes - metabolism</subject><subject>Health aspects</subject><subject>Host-Pathogen Interactions</subject><subject>Humans</subject><subject>IE1 protein</subject><subject>IE2 protein</subject><subject>Immediate-early proteins</subject><subject>Immediate-Early Proteins - genetics</subject><subject>Immediate-Early Proteins - metabolism</subject><subject>Immunology</subject><subject>Infection</subject><subject>Infections</subject><subject>Interferon</subject><subject>Killer cells</subject><subject>Killer Cells, Natural - enzymology</subject><subject>Localization</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Pathology</subject><subject>Proteases</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>Research and Analysis Methods</subject><subject>Signal transduction</subject><subject>Substrates</subject><subject>T cells</subject><subject>T-Lymphocytes, Cytotoxic - enzymology</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>Viral infections</subject><subject>Viral proteins</subject><subject>Virology</subject><subject>Viruses</subject><subject>α-Interferon</subject><subject>γ-Interferon</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkktv1DAUhSMEoqXwDxBY6qqLGfxI7GSDVFUURlQg8VhbN56bqUdOPNhO1Vnzx_F00qojwQJ54Sv7O8f28S2K14zOmVDs3dqPYQA332wgzRmldcnlk-KYVZWYKaHKp4_qo-JFjGtKSyaYfF4cCc5rXgtxXPz-bJ3DQAw6RzbBJ4SIkRgYSIKwwkRubABHbN_j0kLCGUJw2z1qh0iSJ8YPKXhHrsc-y8w2-R5X4HxWjpHYoUOTrB9yRYAMftgRyd9aQzI_YHhZPOvARXw1zSfFz8sPPy4-za6-flxcnF_NjJQszYSqli1rDWuRmdqw0piOVaph3MhOlsB5WbdtJ03FmxyQyBUF3jDkaKCuGnFSvN37bpyPesoval5SoZTkVGZisSeWHtZ6E2wPYas9WH234MNKQ0jWONSy66QCwdsSm5JTClJKAQZkvcSqUzx7vZ9OG9ucncEcErgD08OdwV7rlb_Riqmm4bvrnk4Gwf8aMaZ_XHmicuKoc9g-m5neRqPPJecVbaq7p8__QuWxxN7m_8PO5vUDwdmBYPfHeJtWMMaoF9-__Qf75ZAt96wJPsaA3UMgjOpdX98_Uu_6Wk99nWVvHof5ILpvZPEHaXb29w</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Shan, Liling</creator><creator>Li, Shuang</creator><creator>Meeldijk, Jan</creator><creator>Blijenberg, Bernadet</creator><creator>Hendriks, Astrid</creator><creator>van Boxtel, Karlijn J W M</creator><creator>van den Berg, Sara P H</creator><creator>Groves, Ian J</creator><creator>Potts, Martin</creator><creator>Svrlanska, Adriana</creator><creator>Stamminger, Thomas</creator><creator>Wills, Mark R</creator><creator>Bovenschen, Niels</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6062-9909</orcidid><orcidid>https://orcid.org/0000-0001-8882-6701</orcidid><orcidid>https://orcid.org/0000-0002-8526-4456</orcidid><orcidid>https://orcid.org/0000-0001-8548-5729</orcidid><orcidid>https://orcid.org/0000-0001-8897-443X</orcidid><orcidid>https://orcid.org/0000-0002-6738-0066</orcidid><orcidid>https://orcid.org/0000-0001-9878-3119</orcidid></search><sort><creationdate>20200401</creationdate><title>Killer cell proteases can target viral immediate-early proteins to control human cytomegalovirus infection in a noncytotoxic manner</title><author>Shan, Liling ; Li, Shuang ; Meeldijk, Jan ; Blijenberg, Bernadet ; Hendriks, Astrid ; van Boxtel, Karlijn J W M ; van den Berg, Sara P H ; Groves, Ian J ; Potts, Martin ; Svrlanska, Adriana ; Stamminger, Thomas ; Wills, Mark R ; Bovenschen, Niels</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-375db1bc1be1c8c14ccf157912c6f64a2248bbf6c5293713f6c0a291e2eca8593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amino Acid Motifs</topic><topic>Antigens</topic><topic>Biological response modifiers</topic><topic>Biology and Life Sciences</topic><topic>Birth defects</topic><topic>CD8 antigen</topic><topic>Cell death</topic><topic>Congenital defects</topic><topic>Cytomegalovirus</topic><topic>Cytomegalovirus - genetics</topic><topic>Cytomegalovirus - metabolism</topic><topic>Cytomegalovirus infections</topic><topic>Cytomegalovirus Infections - enzymology</topic><topic>Cytomegalovirus Infections - virology</topic><topic>Cytotoxicity</topic><topic>Diseases</topic><topic>Drug resistance</topic><topic>Endopeptidase</topic><topic>Fibroblasts</topic><topic>Flow cytometry</topic><topic>Funding</topic><topic>Genetic disorders</topic><topic>Granzymes - genetics</topic><topic>Granzymes - metabolism</topic><topic>Health aspects</topic><topic>Host-Pathogen Interactions</topic><topic>Humans</topic><topic>IE1 protein</topic><topic>IE2 protein</topic><topic>Immediate-early proteins</topic><topic>Immediate-Early Proteins - genetics</topic><topic>Immediate-Early Proteins - metabolism</topic><topic>Immunology</topic><topic>Infection</topic><topic>Infections</topic><topic>Interferon</topic><topic>Killer cells</topic><topic>Killer Cells, Natural - enzymology</topic><topic>Localization</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Pathology</topic><topic>Proteases</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>Research and Analysis Methods</topic><topic>Signal transduction</topic><topic>Substrates</topic><topic>T cells</topic><topic>T-Lymphocytes, Cytotoxic - enzymology</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>Viral infections</topic><topic>Viral proteins</topic><topic>Virology</topic><topic>Viruses</topic><topic>α-Interferon</topic><topic>γ-Interferon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shan, Liling</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Meeldijk, Jan</creatorcontrib><creatorcontrib>Blijenberg, Bernadet</creatorcontrib><creatorcontrib>Hendriks, Astrid</creatorcontrib><creatorcontrib>van Boxtel, Karlijn J W M</creatorcontrib><creatorcontrib>van den Berg, Sara P H</creatorcontrib><creatorcontrib>Groves, Ian J</creatorcontrib><creatorcontrib>Potts, Martin</creatorcontrib><creatorcontrib>Svrlanska, Adriana</creatorcontrib><creatorcontrib>Stamminger, Thomas</creatorcontrib><creatorcontrib>Wills, Mark R</creatorcontrib><creatorcontrib>Bovenschen, Niels</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shan, Liling</au><au>Li, Shuang</au><au>Meeldijk, Jan</au><au>Blijenberg, Bernadet</au><au>Hendriks, Astrid</au><au>van Boxtel, Karlijn J W M</au><au>van den Berg, Sara P H</au><au>Groves, Ian J</au><au>Potts, Martin</au><au>Svrlanska, Adriana</au><au>Stamminger, Thomas</au><au>Wills, Mark R</au><au>Bovenschen, Niels</au><au>Snyder, Christopher M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Killer cell proteases can target viral immediate-early proteins to control human cytomegalovirus infection in a noncytotoxic manner</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>16</volume><issue>4</issue><spage>e1008426</spage><pages>e1008426-</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Human cytomegalovirus (HCMV) is the most frequent viral cause of congenital defects and can trigger devastating disease in immune-suppressed patients. Cytotoxic lymphocytes (CD8+ T cells and NK cells) control HCMV infection by releasing interferon-γ and five granzymes (GrA, GrB, GrH, GrK, GrM), which are believed to kill infected host cells through cleavage of intracellular death substrates. However, it has recently been demonstrated that the in vivo killing capacity of cytotoxic T cells is limited and multiple T cell hits are required to kill a single virus-infected cell. This raises the question whether cytotoxic lymphocytes can use granzymes to control HCMV infection in a noncytotoxic manner. Here, we demonstrate that (primary) cytotoxic lymphocytes can block HCMV dissemination independent of host cell death, and interferon-α/β/γ. Prior to killing, cytotoxic lymphocytes induce the degradation of viral immediate-early (IE) proteins IE1 and IE2 in HCMV-infected cells. Intriguingly, both IE1 and/or IE2 are directly proteolyzed by all human granzymes, with GrB and GrM being most efficient. GrB and GrM cleave IE1 after Asp398 and Leu414, respectively, likely resulting in IE1 aberrant cellular localization, IE1 instability, and functional impairment of IE1 to interfere with the JAK-STAT signaling pathway. Furthermore, GrB and GrM cleave IE2 after Asp184 and Leu173, respectively, resulting in IE2 aberrant cellular localization and functional abolishment of IE2 to transactivate the HCMV UL112 early promoter. Taken together, our data indicate that cytotoxic lymphocytes can also employ noncytotoxic ways to control HCMV infection, which may be explained by granzyme-mediated targeting of indispensable viral proteins during lytic infection.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32282833</pmid><doi>10.1371/journal.ppat.1008426</doi><orcidid>https://orcid.org/0000-0001-6062-9909</orcidid><orcidid>https://orcid.org/0000-0001-8882-6701</orcidid><orcidid>https://orcid.org/0000-0002-8526-4456</orcidid><orcidid>https://orcid.org/0000-0001-8548-5729</orcidid><orcidid>https://orcid.org/0000-0001-8897-443X</orcidid><orcidid>https://orcid.org/0000-0002-6738-0066</orcidid><orcidid>https://orcid.org/0000-0001-9878-3119</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7374 |
ispartof | PLoS pathogens, 2020-04, Vol.16 (4), p.e1008426 |
issn | 1553-7374 1553-7366 1553-7374 |
language | eng |
recordid | cdi_plos_journals_2403776206 |
source | MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central Open Access; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Amino Acid Motifs Antigens Biological response modifiers Biology and Life Sciences Birth defects CD8 antigen Cell death Congenital defects Cytomegalovirus Cytomegalovirus - genetics Cytomegalovirus - metabolism Cytomegalovirus infections Cytomegalovirus Infections - enzymology Cytomegalovirus Infections - virology Cytotoxicity Diseases Drug resistance Endopeptidase Fibroblasts Flow cytometry Funding Genetic disorders Granzymes - genetics Granzymes - metabolism Health aspects Host-Pathogen Interactions Humans IE1 protein IE2 protein Immediate-early proteins Immediate-Early Proteins - genetics Immediate-Early Proteins - metabolism Immunology Infection Infections Interferon Killer cells Killer Cells, Natural - enzymology Localization Lymphocytes Lymphocytes T Medicine Medicine and Health Sciences Pathology Proteases Proteins Proteolysis Research and Analysis Methods Signal transduction Substrates T cells T-Lymphocytes, Cytotoxic - enzymology Trans-Activators - genetics Trans-Activators - metabolism Viral infections Viral proteins Virology Viruses α-Interferon γ-Interferon |
title | Killer cell proteases can target viral immediate-early proteins to control human cytomegalovirus infection in a noncytotoxic manner |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A25%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Killer%20cell%20proteases%20can%20target%20viral%20immediate-early%20proteins%20to%20control%20human%20cytomegalovirus%20infection%20in%20a%20noncytotoxic%20manner&rft.jtitle=PLoS%20pathogens&rft.au=Shan,%20Liling&rft.date=2020-04-01&rft.volume=16&rft.issue=4&rft.spage=e1008426&rft.pages=e1008426-&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1008426&rft_dat=%3Cgale_plos_%3EA622509559%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2403776206&rft_id=info:pmid/32282833&rft_galeid=A622509559&rft_doaj_id=oai_doaj_org_article_6ff67a32b4e94200a6663aca68de5f72&rfr_iscdi=true |