Cofactor and glycosylation preferences for in vitro prion conversion are predominantly determined by strain conformation
Prion diseases are caused by the misfolding of a host-encoded glycoprotein, PrPC, into a pathogenic conformer, PrPSc. Infectious prions can exist as different strains, composed of unique conformations of PrPSc that generate strain-specific biological traits, including distinctive patterns of PrPSc a...
Gespeichert in:
Veröffentlicht in: | PLoS pathogens 2020-04, Vol.16 (4), p.e1008495-e1008495 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1008495 |
---|---|
container_issue | 4 |
container_start_page | e1008495 |
container_title | PLoS pathogens |
container_volume | 16 |
creator | Burke, Cassandra M Walsh, Daniel J Mark, Kenneth M K Deleault, Nathan R Nishina, Koren A Agrimi, Umberto Di Bari, Michele A Supattapone, Surachai |
description | Prion diseases are caused by the misfolding of a host-encoded glycoprotein, PrPC, into a pathogenic conformer, PrPSc. Infectious prions can exist as different strains, composed of unique conformations of PrPSc that generate strain-specific biological traits, including distinctive patterns of PrPSc accumulation throughout the brain. Prion strains from different animal species display different cofactor and PrPC glycoform preferences to propagate efficiently in vitro, but it is unknown whether these molecular preferences are specified by the amino acid sequence of PrPC substrate or by the conformation of PrPSc seed. To distinguish between these two possibilities, we used bank vole PrPC to propagate both hamster or mouse prions (which have distinct cofactor and glycosylation preferences) with a single, common substrate. We performed reconstituted sPMCA reactions using either (1) phospholipid or RNA cofactor molecules, or (2) di- or un-glycosylated bank vole PrPC substrate. We found that prion strains from either species are capable of propagating efficiently using bank vole PrPC substrates when reactions contained the same PrPC glycoform or cofactor molecule preferred by the PrPSc seed in its host species. Thus, we conclude that it is the conformation of the input PrPSc seed, not the amino acid sequence of the PrPC substrate, that primarily determines species-specific cofactor and glycosylation preferences. These results support the hypothesis that strain-specific patterns of prion neurotropism are generated by selection of differentially distributed cofactors molecules and/or PrPC glycoforms during prion replication. |
doi_str_mv | 10.1371/journal.ppat.1008495 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2403775654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A622508738</galeid><doaj_id>oai_doaj_org_article_406d5eb819124d0c8c142131103deceb</doaj_id><sourcerecordid>A622508738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c727t-c437c05d973c8c56b11950d03f9dff892509047c8682210f021a947896a9ef433</originalsourceid><addsrcrecordid>eNqVksuO0zAUhiMEYoaBN0AQiQ0sWnyN481Io4pLpRFIXNaWa58UV0lcbLcib8Oz8GQ4bWY0RbNBXvj2_b_POT5F8RyjOaYCv934Xeh1O99udZpjhGom-YPiHHNOZ4IK9vDO-qx4EuMGIYYprh4XZ5QQyTDD58Ww8I02yYdS97Zct4PxcWh1cr4vtwEaCNAbiGWTCdeXe5eC__N7G8Z74_s9hDgudYARt75zve5TO5QWEoS8A1uuhjKmoN1BkY26g_3T4lGj2wjPpvmi-P7-3bfFx9n15w_LxdX1zAgi0swwKgziVgpqasOrFcaSI4toI23T1JJwJBETpq5qQjBqEMFaMlHLSktoGKUXxcuj77b1UU1Vi4owRIXgFWeZWB4J6_VG5dw6HQbltVOHAx_WSofkTAuKocpyWNVYYsIsyhFhRnJRMaIWDKyy1-X02m7VgTXQ58zbE9PTm979UGu_VwLXXJAx3NeTQfA_dxCT6lw00La6B7_LcVOJKk4QIRl99Q96f3YTtdY5AZc_IL9rRlN1VZFcvlrQOlPze6g8LHQufxs0Lp-fCN6cCDKT4Fda612Mavn1y3-wn05ZdmRN8DHmDrytHUZqbPybJNXY-Gpq_Cx7cbfut6KbTqd_AXZHAHQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2403775654</pqid></control><display><type>article</type><title>Cofactor and glycosylation preferences for in vitro prion conversion are predominantly determined by strain conformation</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed (Medline)</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Burke, Cassandra M ; Walsh, Daniel J ; Mark, Kenneth M K ; Deleault, Nathan R ; Nishina, Koren A ; Agrimi, Umberto ; Di Bari, Michele A ; Supattapone, Surachai</creator><creatorcontrib>Burke, Cassandra M ; Walsh, Daniel J ; Mark, Kenneth M K ; Deleault, Nathan R ; Nishina, Koren A ; Agrimi, Umberto ; Di Bari, Michele A ; Supattapone, Surachai</creatorcontrib><description>Prion diseases are caused by the misfolding of a host-encoded glycoprotein, PrPC, into a pathogenic conformer, PrPSc. Infectious prions can exist as different strains, composed of unique conformations of PrPSc that generate strain-specific biological traits, including distinctive patterns of PrPSc accumulation throughout the brain. Prion strains from different animal species display different cofactor and PrPC glycoform preferences to propagate efficiently in vitro, but it is unknown whether these molecular preferences are specified by the amino acid sequence of PrPC substrate or by the conformation of PrPSc seed. To distinguish between these two possibilities, we used bank vole PrPC to propagate both hamster or mouse prions (which have distinct cofactor and glycosylation preferences) with a single, common substrate. We performed reconstituted sPMCA reactions using either (1) phospholipid or RNA cofactor molecules, or (2) di- or un-glycosylated bank vole PrPC substrate. We found that prion strains from either species are capable of propagating efficiently using bank vole PrPC substrates when reactions contained the same PrPC glycoform or cofactor molecule preferred by the PrPSc seed in its host species. Thus, we conclude that it is the conformation of the input PrPSc seed, not the amino acid sequence of the PrPC substrate, that primarily determines species-specific cofactor and glycosylation preferences. These results support the hypothesis that strain-specific patterns of prion neurotropism are generated by selection of differentially distributed cofactors molecules and/or PrPC glycoforms during prion replication.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1008495</identifier><identifier>PMID: 32294141</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino Acid Sequence ; Amino acids ; Animal species ; Animals ; Arvicolinae ; Banks (Finance) ; Biochemistry ; Biology ; Biology and Life Sciences ; Brain - pathology ; Cofactors ; Communicable Diseases - metabolism ; Conformation ; Cricetinae ; Departments ; Diseases ; Experiments ; Food safety ; Glycoproteins ; Glycosylation ; Hamsters ; Mammals ; Medical research ; Medicine ; Medicine and Health Sciences ; Mesocricetus ; Mice ; Mice, Inbred C57BL ; Molecular Conformation ; Neurotropism ; Phospholipids ; Preferences ; Prion diseases ; Prion Diseases - metabolism ; Prion protein ; Prions ; Prions (Proteins) ; Prions - metabolism ; Propagation ; PrPC Proteins - metabolism ; PrPSc Proteins - metabolism ; Public health ; Research and Analysis Methods ; Ribonucleic acid ; RNA ; Rodents ; Scientific equipment and supplies industry ; Scientific equipment industry ; Seeds ; Species ; Species Specificity ; Substrates</subject><ispartof>PLoS pathogens, 2020-04, Vol.16 (4), p.e1008495-e1008495</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Burke et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Burke et al 2020 Burke et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c727t-c437c05d973c8c56b11950d03f9dff892509047c8682210f021a947896a9ef433</citedby><cites>FETCH-LOGICAL-c727t-c437c05d973c8c56b11950d03f9dff892509047c8682210f021a947896a9ef433</cites><orcidid>0000-0002-1898-9094 ; 0000-0001-8485-6516 ; 0000-0001-9060-4550 ; 0000-0003-0943-6823 ; 0000-0003-1867-6212</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7185723/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7185723/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32294141$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Burke, Cassandra M</creatorcontrib><creatorcontrib>Walsh, Daniel J</creatorcontrib><creatorcontrib>Mark, Kenneth M K</creatorcontrib><creatorcontrib>Deleault, Nathan R</creatorcontrib><creatorcontrib>Nishina, Koren A</creatorcontrib><creatorcontrib>Agrimi, Umberto</creatorcontrib><creatorcontrib>Di Bari, Michele A</creatorcontrib><creatorcontrib>Supattapone, Surachai</creatorcontrib><title>Cofactor and glycosylation preferences for in vitro prion conversion are predominantly determined by strain conformation</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Prion diseases are caused by the misfolding of a host-encoded glycoprotein, PrPC, into a pathogenic conformer, PrPSc. Infectious prions can exist as different strains, composed of unique conformations of PrPSc that generate strain-specific biological traits, including distinctive patterns of PrPSc accumulation throughout the brain. Prion strains from different animal species display different cofactor and PrPC glycoform preferences to propagate efficiently in vitro, but it is unknown whether these molecular preferences are specified by the amino acid sequence of PrPC substrate or by the conformation of PrPSc seed. To distinguish between these two possibilities, we used bank vole PrPC to propagate both hamster or mouse prions (which have distinct cofactor and glycosylation preferences) with a single, common substrate. We performed reconstituted sPMCA reactions using either (1) phospholipid or RNA cofactor molecules, or (2) di- or un-glycosylated bank vole PrPC substrate. We found that prion strains from either species are capable of propagating efficiently using bank vole PrPC substrates when reactions contained the same PrPC glycoform or cofactor molecule preferred by the PrPSc seed in its host species. Thus, we conclude that it is the conformation of the input PrPSc seed, not the amino acid sequence of the PrPC substrate, that primarily determines species-specific cofactor and glycosylation preferences. These results support the hypothesis that strain-specific patterns of prion neurotropism are generated by selection of differentially distributed cofactors molecules and/or PrPC glycoforms during prion replication.</description><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Animal species</subject><subject>Animals</subject><subject>Arvicolinae</subject><subject>Banks (Finance)</subject><subject>Biochemistry</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Brain - pathology</subject><subject>Cofactors</subject><subject>Communicable Diseases - metabolism</subject><subject>Conformation</subject><subject>Cricetinae</subject><subject>Departments</subject><subject>Diseases</subject><subject>Experiments</subject><subject>Food safety</subject><subject>Glycoproteins</subject><subject>Glycosylation</subject><subject>Hamsters</subject><subject>Mammals</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Mesocricetus</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Molecular Conformation</subject><subject>Neurotropism</subject><subject>Phospholipids</subject><subject>Preferences</subject><subject>Prion diseases</subject><subject>Prion Diseases - metabolism</subject><subject>Prion protein</subject><subject>Prions</subject><subject>Prions (Proteins)</subject><subject>Prions - metabolism</subject><subject>Propagation</subject><subject>PrPC Proteins - metabolism</subject><subject>PrPSc Proteins - metabolism</subject><subject>Public health</subject><subject>Research and Analysis Methods</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Rodents</subject><subject>Scientific equipment and supplies industry</subject><subject>Scientific equipment industry</subject><subject>Seeds</subject><subject>Species</subject><subject>Species Specificity</subject><subject>Substrates</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVksuO0zAUhiMEYoaBN0AQiQ0sWnyN481Io4pLpRFIXNaWa58UV0lcbLcib8Oz8GQ4bWY0RbNBXvj2_b_POT5F8RyjOaYCv934Xeh1O99udZpjhGom-YPiHHNOZ4IK9vDO-qx4EuMGIYYprh4XZ5QQyTDD58Ww8I02yYdS97Zct4PxcWh1cr4vtwEaCNAbiGWTCdeXe5eC__N7G8Z74_s9hDgudYARt75zve5TO5QWEoS8A1uuhjKmoN1BkY26g_3T4lGj2wjPpvmi-P7-3bfFx9n15w_LxdX1zAgi0swwKgziVgpqasOrFcaSI4toI23T1JJwJBETpq5qQjBqEMFaMlHLSktoGKUXxcuj77b1UU1Vi4owRIXgFWeZWB4J6_VG5dw6HQbltVOHAx_WSofkTAuKocpyWNVYYsIsyhFhRnJRMaIWDKyy1-X02m7VgTXQ58zbE9PTm979UGu_VwLXXJAx3NeTQfA_dxCT6lw00La6B7_LcVOJKk4QIRl99Q96f3YTtdY5AZc_IL9rRlN1VZFcvlrQOlPze6g8LHQufxs0Lp-fCN6cCDKT4Fda612Mavn1y3-wn05ZdmRN8DHmDrytHUZqbPybJNXY-Gpq_Cx7cbfut6KbTqd_AXZHAHQ</recordid><startdate>20200415</startdate><enddate>20200415</enddate><creator>Burke, Cassandra M</creator><creator>Walsh, Daniel J</creator><creator>Mark, Kenneth M K</creator><creator>Deleault, Nathan R</creator><creator>Nishina, Koren A</creator><creator>Agrimi, Umberto</creator><creator>Di Bari, Michele A</creator><creator>Supattapone, Surachai</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1898-9094</orcidid><orcidid>https://orcid.org/0000-0001-8485-6516</orcidid><orcidid>https://orcid.org/0000-0001-9060-4550</orcidid><orcidid>https://orcid.org/0000-0003-0943-6823</orcidid><orcidid>https://orcid.org/0000-0003-1867-6212</orcidid></search><sort><creationdate>20200415</creationdate><title>Cofactor and glycosylation preferences for in vitro prion conversion are predominantly determined by strain conformation</title><author>Burke, Cassandra M ; Walsh, Daniel J ; Mark, Kenneth M K ; Deleault, Nathan R ; Nishina, Koren A ; Agrimi, Umberto ; Di Bari, Michele A ; Supattapone, Surachai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c727t-c437c05d973c8c56b11950d03f9dff892509047c8682210f021a947896a9ef433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Animal species</topic><topic>Animals</topic><topic>Arvicolinae</topic><topic>Banks (Finance)</topic><topic>Biochemistry</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Brain - pathology</topic><topic>Cofactors</topic><topic>Communicable Diseases - metabolism</topic><topic>Conformation</topic><topic>Cricetinae</topic><topic>Departments</topic><topic>Diseases</topic><topic>Experiments</topic><topic>Food safety</topic><topic>Glycoproteins</topic><topic>Glycosylation</topic><topic>Hamsters</topic><topic>Mammals</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Mesocricetus</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Molecular Conformation</topic><topic>Neurotropism</topic><topic>Phospholipids</topic><topic>Preferences</topic><topic>Prion diseases</topic><topic>Prion Diseases - metabolism</topic><topic>Prion protein</topic><topic>Prions</topic><topic>Prions (Proteins)</topic><topic>Prions - metabolism</topic><topic>Propagation</topic><topic>PrPC Proteins - metabolism</topic><topic>PrPSc Proteins - metabolism</topic><topic>Public health</topic><topic>Research and Analysis Methods</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Rodents</topic><topic>Scientific equipment and supplies industry</topic><topic>Scientific equipment industry</topic><topic>Seeds</topic><topic>Species</topic><topic>Species Specificity</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burke, Cassandra M</creatorcontrib><creatorcontrib>Walsh, Daniel J</creatorcontrib><creatorcontrib>Mark, Kenneth M K</creatorcontrib><creatorcontrib>Deleault, Nathan R</creatorcontrib><creatorcontrib>Nishina, Koren A</creatorcontrib><creatorcontrib>Agrimi, Umberto</creatorcontrib><creatorcontrib>Di Bari, Michele A</creatorcontrib><creatorcontrib>Supattapone, Surachai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burke, Cassandra M</au><au>Walsh, Daniel J</au><au>Mark, Kenneth M K</au><au>Deleault, Nathan R</au><au>Nishina, Koren A</au><au>Agrimi, Umberto</au><au>Di Bari, Michele A</au><au>Supattapone, Surachai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cofactor and glycosylation preferences for in vitro prion conversion are predominantly determined by strain conformation</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2020-04-15</date><risdate>2020</risdate><volume>16</volume><issue>4</issue><spage>e1008495</spage><epage>e1008495</epage><pages>e1008495-e1008495</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Prion diseases are caused by the misfolding of a host-encoded glycoprotein, PrPC, into a pathogenic conformer, PrPSc. Infectious prions can exist as different strains, composed of unique conformations of PrPSc that generate strain-specific biological traits, including distinctive patterns of PrPSc accumulation throughout the brain. Prion strains from different animal species display different cofactor and PrPC glycoform preferences to propagate efficiently in vitro, but it is unknown whether these molecular preferences are specified by the amino acid sequence of PrPC substrate or by the conformation of PrPSc seed. To distinguish between these two possibilities, we used bank vole PrPC to propagate both hamster or mouse prions (which have distinct cofactor and glycosylation preferences) with a single, common substrate. We performed reconstituted sPMCA reactions using either (1) phospholipid or RNA cofactor molecules, or (2) di- or un-glycosylated bank vole PrPC substrate. We found that prion strains from either species are capable of propagating efficiently using bank vole PrPC substrates when reactions contained the same PrPC glycoform or cofactor molecule preferred by the PrPSc seed in its host species. Thus, we conclude that it is the conformation of the input PrPSc seed, not the amino acid sequence of the PrPC substrate, that primarily determines species-specific cofactor and glycosylation preferences. These results support the hypothesis that strain-specific patterns of prion neurotropism are generated by selection of differentially distributed cofactors molecules and/or PrPC glycoforms during prion replication.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32294141</pmid><doi>10.1371/journal.ppat.1008495</doi><orcidid>https://orcid.org/0000-0002-1898-9094</orcidid><orcidid>https://orcid.org/0000-0001-8485-6516</orcidid><orcidid>https://orcid.org/0000-0001-9060-4550</orcidid><orcidid>https://orcid.org/0000-0003-0943-6823</orcidid><orcidid>https://orcid.org/0000-0003-1867-6212</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7374 |
ispartof | PLoS pathogens, 2020-04, Vol.16 (4), p.e1008495-e1008495 |
issn | 1553-7374 1553-7366 1553-7374 |
language | eng |
recordid | cdi_plos_journals_2403775654 |
source | Public Library of Science (PLoS) Journals Open Access; PubMed (Medline); MEDLINE; DOAJ Directory of Open Access Journals; EZB Electronic Journals Library; PubMed Central Open Access |
subjects | Amino Acid Sequence Amino acids Animal species Animals Arvicolinae Banks (Finance) Biochemistry Biology Biology and Life Sciences Brain - pathology Cofactors Communicable Diseases - metabolism Conformation Cricetinae Departments Diseases Experiments Food safety Glycoproteins Glycosylation Hamsters Mammals Medical research Medicine Medicine and Health Sciences Mesocricetus Mice Mice, Inbred C57BL Molecular Conformation Neurotropism Phospholipids Preferences Prion diseases Prion Diseases - metabolism Prion protein Prions Prions (Proteins) Prions - metabolism Propagation PrPC Proteins - metabolism PrPSc Proteins - metabolism Public health Research and Analysis Methods Ribonucleic acid RNA Rodents Scientific equipment and supplies industry Scientific equipment industry Seeds Species Species Specificity Substrates |
title | Cofactor and glycosylation preferences for in vitro prion conversion are predominantly determined by strain conformation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T23%3A49%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cofactor%20and%20glycosylation%20preferences%20for%20in%20vitro%C2%A0prion%20conversion%20are%20predominantly%20determined%20by%20strain%20conformation&rft.jtitle=PLoS%20pathogens&rft.au=Burke,%20Cassandra%20M&rft.date=2020-04-15&rft.volume=16&rft.issue=4&rft.spage=e1008495&rft.epage=e1008495&rft.pages=e1008495-e1008495&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1008495&rft_dat=%3Cgale_plos_%3EA622508738%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2403775654&rft_id=info:pmid/32294141&rft_galeid=A622508738&rft_doaj_id=oai_doaj_org_article_406d5eb819124d0c8c142131103deceb&rfr_iscdi=true |