Deep reinforcement learning for the control of microbial co-cultures in bioreactors
Multi-species microbial communities are widespread in natural ecosystems. When employed for biomanufacturing, engineered synthetic communities have shown increased productivity in comparison with monocultures and allow for the reduction of metabolic load by compartmentalising bioprocesses between mu...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2020-04, Vol.16 (4), p.e1007783-e1007783 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1007783 |
---|---|
container_issue | 4 |
container_start_page | e1007783 |
container_title | PLoS computational biology |
container_volume | 16 |
creator | Treloar, Neythen J Fedorec, Alex J H Ingalls, Brian Barnes, Chris P |
description | Multi-species microbial communities are widespread in natural ecosystems. When employed for biomanufacturing, engineered synthetic communities have shown increased productivity in comparison with monocultures and allow for the reduction of metabolic load by compartmentalising bioprocesses between multiple sub-populations. Despite these benefits, co-cultures are rarely used in practice because control over the constituent species of an assembled community has proven challenging. Here we demonstrate, in silico, the efficacy of an approach from artificial intelligence-reinforcement learning-for the control of co-cultures within continuous bioreactors. We confirm that feedback via a trained reinforcement learning agent can be used to maintain populations at target levels, and that model-free performance with bang-bang control can outperform a traditional proportional integral controller with continuous control, when faced with infrequent sampling. Further, we demonstrate that a satisfactory control policy can be learned in one twenty-four hour experiment by running five bioreactors in parallel. Finally, we show that reinforcement learning can directly optimise the output of a co-culture bioprocess. Overall, reinforcement learning is a promising technique for the control of microbial communities. |
doi_str_mv | 10.1371/journal.pcbi.1007783 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2403774366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632940592</galeid><doaj_id>oai_doaj_org_article_4e8e5a34b69645169ebcce7759b33a52</doaj_id><sourcerecordid>A632940592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c699t-b95081333a91acb10e124dbd751f2b76f6b81b87d43227d892c45bee3fd1965a3</originalsourceid><addsrcrecordid>eNqVUstu1DAUjRCIloE_QBCJTVlksOP4tUGqWh4jVSBRWFu2c5N65IkHO0Hw9zhMWnUQG-SFreNzz32doniO0RoTjt9swxQH7dd7a9waI8S5IA-KU0wpqTih4uG990nxJKUtQvkp2ePihNQ1pxyj0-L6EmBfRnBDF6KFHQxj6UHHwQ19maFyvIHShmGMwZehK3fOxmCc9hms7OTHKUIq3VAaFyJoO4aYnhaPOu0TPFvuVfHt_buvFx-rq88fNhfnV5VlUo6VkRQJTAjREmtrMAJcN61pOcVdbTjrmBHYCN42c7mtkLVtqAEgXYslo5qsipcH3b0PSS3zSKpuEOG8IYxlxubAaIPeqn10Ox1_qaCd-gOE2CsdR2c9qAYEZM3GMMkaipkEYy1wTqXJFdI6a71dsk1mB63Nk4raH4ke_wzuRvXhh-KYszovZ1WcLQIxfJ8gjWrnkgXv9QBhynUTIURNpaCZ-uov6r-7Wx9Yvc4NzBvMeW0-LeQ1hQE6l_FzRmrZICrnFl4fBcx7hZ9jr6eU1Ob6y39wPx1zmwM3eyOlCN3dVDBSs1lvy1ezWdVi1hz24v5E74Ju3Ul-AxQW5d4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2403774366</pqid></control><display><type>article</type><title>Deep reinforcement learning for the control of microbial co-cultures in bioreactors</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Treloar, Neythen J ; Fedorec, Alex J H ; Ingalls, Brian ; Barnes, Chris P</creator><contributor>You, Lingchong</contributor><creatorcontrib>Treloar, Neythen J ; Fedorec, Alex J H ; Ingalls, Brian ; Barnes, Chris P ; You, Lingchong</creatorcontrib><description>Multi-species microbial communities are widespread in natural ecosystems. When employed for biomanufacturing, engineered synthetic communities have shown increased productivity in comparison with monocultures and allow for the reduction of metabolic load by compartmentalising bioprocesses between multiple sub-populations. Despite these benefits, co-cultures are rarely used in practice because control over the constituent species of an assembled community has proven challenging. Here we demonstrate, in silico, the efficacy of an approach from artificial intelligence-reinforcement learning-for the control of co-cultures within continuous bioreactors. We confirm that feedback via a trained reinforcement learning agent can be used to maintain populations at target levels, and that model-free performance with bang-bang control can outperform a traditional proportional integral controller with continuous control, when faced with infrequent sampling. Further, we demonstrate that a satisfactory control policy can be learned in one twenty-four hour experiment by running five bioreactors in parallel. Finally, we show that reinforcement learning can directly optimise the output of a co-culture bioprocess. Overall, reinforcement learning is a promising technique for the control of microbial communities.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1007783</identifier><identifier>PMID: 32275710</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Artificial Intelligence ; Bacterial cultures ; Biology and Life Sciences ; Bioreactors ; Bioreactors - microbiology ; Carbon ; Coculture Techniques - methods ; Computer and Information Sciences ; Computer Simulation ; Control systems ; Deep learning ; Developmental biology ; Ecosystem ; Engineering and Technology ; Feedback ; Learning ; Learning - physiology ; Machine learning ; Medicine and Health Sciences ; Metabolic engineering ; Metabolism ; Methods ; Microbial activity ; Microbiota - physiology ; Microorganisms ; Monoculture ; Nutrients ; Physical Sciences ; Population ; Populations ; Proportional integral ; Reinforcement ; Reinforcement, Psychology ; Research and Analysis Methods ; Social Sciences ; Systems stability ; Technology application</subject><ispartof>PLoS computational biology, 2020-04, Vol.16 (4), p.e1007783-e1007783</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Treloar et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Treloar et al 2020 Treloar et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c699t-b95081333a91acb10e124dbd751f2b76f6b81b87d43227d892c45bee3fd1965a3</citedby><cites>FETCH-LOGICAL-c699t-b95081333a91acb10e124dbd751f2b76f6b81b87d43227d892c45bee3fd1965a3</cites><orcidid>0000-0003-0165-1705 ; 0000-0002-9180-034X ; 0000-0002-9459-1395</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7176278/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7176278/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23847,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32275710$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>You, Lingchong</contributor><creatorcontrib>Treloar, Neythen J</creatorcontrib><creatorcontrib>Fedorec, Alex J H</creatorcontrib><creatorcontrib>Ingalls, Brian</creatorcontrib><creatorcontrib>Barnes, Chris P</creatorcontrib><title>Deep reinforcement learning for the control of microbial co-cultures in bioreactors</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Multi-species microbial communities are widespread in natural ecosystems. When employed for biomanufacturing, engineered synthetic communities have shown increased productivity in comparison with monocultures and allow for the reduction of metabolic load by compartmentalising bioprocesses between multiple sub-populations. Despite these benefits, co-cultures are rarely used in practice because control over the constituent species of an assembled community has proven challenging. Here we demonstrate, in silico, the efficacy of an approach from artificial intelligence-reinforcement learning-for the control of co-cultures within continuous bioreactors. We confirm that feedback via a trained reinforcement learning agent can be used to maintain populations at target levels, and that model-free performance with bang-bang control can outperform a traditional proportional integral controller with continuous control, when faced with infrequent sampling. Further, we demonstrate that a satisfactory control policy can be learned in one twenty-four hour experiment by running five bioreactors in parallel. Finally, we show that reinforcement learning can directly optimise the output of a co-culture bioprocess. Overall, reinforcement learning is a promising technique for the control of microbial communities.</description><subject>Artificial Intelligence</subject><subject>Bacterial cultures</subject><subject>Biology and Life Sciences</subject><subject>Bioreactors</subject><subject>Bioreactors - microbiology</subject><subject>Carbon</subject><subject>Coculture Techniques - methods</subject><subject>Computer and Information Sciences</subject><subject>Computer Simulation</subject><subject>Control systems</subject><subject>Deep learning</subject><subject>Developmental biology</subject><subject>Ecosystem</subject><subject>Engineering and Technology</subject><subject>Feedback</subject><subject>Learning</subject><subject>Learning - physiology</subject><subject>Machine learning</subject><subject>Medicine and Health Sciences</subject><subject>Metabolic engineering</subject><subject>Metabolism</subject><subject>Methods</subject><subject>Microbial activity</subject><subject>Microbiota - physiology</subject><subject>Microorganisms</subject><subject>Monoculture</subject><subject>Nutrients</subject><subject>Physical Sciences</subject><subject>Population</subject><subject>Populations</subject><subject>Proportional integral</subject><subject>Reinforcement</subject><subject>Reinforcement, Psychology</subject><subject>Research and Analysis Methods</subject><subject>Social Sciences</subject><subject>Systems stability</subject><subject>Technology application</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVUstu1DAUjRCIloE_QBCJTVlksOP4tUGqWh4jVSBRWFu2c5N65IkHO0Hw9zhMWnUQG-SFreNzz32doniO0RoTjt9swxQH7dd7a9waI8S5IA-KU0wpqTih4uG990nxJKUtQvkp2ePihNQ1pxyj0-L6EmBfRnBDF6KFHQxj6UHHwQ19maFyvIHShmGMwZehK3fOxmCc9hms7OTHKUIq3VAaFyJoO4aYnhaPOu0TPFvuVfHt_buvFx-rq88fNhfnV5VlUo6VkRQJTAjREmtrMAJcN61pOcVdbTjrmBHYCN42c7mtkLVtqAEgXYslo5qsipcH3b0PSS3zSKpuEOG8IYxlxubAaIPeqn10Ox1_qaCd-gOE2CsdR2c9qAYEZM3GMMkaipkEYy1wTqXJFdI6a71dsk1mB63Nk4raH4ke_wzuRvXhh-KYszovZ1WcLQIxfJ8gjWrnkgXv9QBhynUTIURNpaCZ-uov6r-7Wx9Yvc4NzBvMeW0-LeQ1hQE6l_FzRmrZICrnFl4fBcx7hZ9jr6eU1Ob6y39wPx1zmwM3eyOlCN3dVDBSs1lvy1ezWdVi1hz24v5E74Ju3Ul-AxQW5d4</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Treloar, Neythen J</creator><creator>Fedorec, Alex J H</creator><creator>Ingalls, Brian</creator><creator>Barnes, Chris P</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0165-1705</orcidid><orcidid>https://orcid.org/0000-0002-9180-034X</orcidid><orcidid>https://orcid.org/0000-0002-9459-1395</orcidid></search><sort><creationdate>20200401</creationdate><title>Deep reinforcement learning for the control of microbial co-cultures in bioreactors</title><author>Treloar, Neythen J ; Fedorec, Alex J H ; Ingalls, Brian ; Barnes, Chris P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c699t-b95081333a91acb10e124dbd751f2b76f6b81b87d43227d892c45bee3fd1965a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Bacterial cultures</topic><topic>Biology and Life Sciences</topic><topic>Bioreactors</topic><topic>Bioreactors - microbiology</topic><topic>Carbon</topic><topic>Coculture Techniques - methods</topic><topic>Computer and Information Sciences</topic><topic>Computer Simulation</topic><topic>Control systems</topic><topic>Deep learning</topic><topic>Developmental biology</topic><topic>Ecosystem</topic><topic>Engineering and Technology</topic><topic>Feedback</topic><topic>Learning</topic><topic>Learning - physiology</topic><topic>Machine learning</topic><topic>Medicine and Health Sciences</topic><topic>Metabolic engineering</topic><topic>Metabolism</topic><topic>Methods</topic><topic>Microbial activity</topic><topic>Microbiota - physiology</topic><topic>Microorganisms</topic><topic>Monoculture</topic><topic>Nutrients</topic><topic>Physical Sciences</topic><topic>Population</topic><topic>Populations</topic><topic>Proportional integral</topic><topic>Reinforcement</topic><topic>Reinforcement, Psychology</topic><topic>Research and Analysis Methods</topic><topic>Social Sciences</topic><topic>Systems stability</topic><topic>Technology application</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Treloar, Neythen J</creatorcontrib><creatorcontrib>Fedorec, Alex J H</creatorcontrib><creatorcontrib>Ingalls, Brian</creatorcontrib><creatorcontrib>Barnes, Chris P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Treloar, Neythen J</au><au>Fedorec, Alex J H</au><au>Ingalls, Brian</au><au>Barnes, Chris P</au><au>You, Lingchong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep reinforcement learning for the control of microbial co-cultures in bioreactors</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>16</volume><issue>4</issue><spage>e1007783</spage><epage>e1007783</epage><pages>e1007783-e1007783</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Multi-species microbial communities are widespread in natural ecosystems. When employed for biomanufacturing, engineered synthetic communities have shown increased productivity in comparison with monocultures and allow for the reduction of metabolic load by compartmentalising bioprocesses between multiple sub-populations. Despite these benefits, co-cultures are rarely used in practice because control over the constituent species of an assembled community has proven challenging. Here we demonstrate, in silico, the efficacy of an approach from artificial intelligence-reinforcement learning-for the control of co-cultures within continuous bioreactors. We confirm that feedback via a trained reinforcement learning agent can be used to maintain populations at target levels, and that model-free performance with bang-bang control can outperform a traditional proportional integral controller with continuous control, when faced with infrequent sampling. Further, we demonstrate that a satisfactory control policy can be learned in one twenty-four hour experiment by running five bioreactors in parallel. Finally, we show that reinforcement learning can directly optimise the output of a co-culture bioprocess. Overall, reinforcement learning is a promising technique for the control of microbial communities.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32275710</pmid><doi>10.1371/journal.pcbi.1007783</doi><orcidid>https://orcid.org/0000-0003-0165-1705</orcidid><orcidid>https://orcid.org/0000-0002-9180-034X</orcidid><orcidid>https://orcid.org/0000-0002-9459-1395</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2020-04, Vol.16 (4), p.e1007783-e1007783 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2403774366 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS) |
subjects | Artificial Intelligence Bacterial cultures Biology and Life Sciences Bioreactors Bioreactors - microbiology Carbon Coculture Techniques - methods Computer and Information Sciences Computer Simulation Control systems Deep learning Developmental biology Ecosystem Engineering and Technology Feedback Learning Learning - physiology Machine learning Medicine and Health Sciences Metabolic engineering Metabolism Methods Microbial activity Microbiota - physiology Microorganisms Monoculture Nutrients Physical Sciences Population Populations Proportional integral Reinforcement Reinforcement, Psychology Research and Analysis Methods Social Sciences Systems stability Technology application |
title | Deep reinforcement learning for the control of microbial co-cultures in bioreactors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A45%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20reinforcement%20learning%20for%20the%20control%20of%20microbial%20co-cultures%20in%20bioreactors&rft.jtitle=PLoS%20computational%20biology&rft.au=Treloar,%20Neythen%20J&rft.date=2020-04-01&rft.volume=16&rft.issue=4&rft.spage=e1007783&rft.epage=e1007783&rft.pages=e1007783-e1007783&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1007783&rft_dat=%3Cgale_plos_%3EA632940592%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2403774366&rft_id=info:pmid/32275710&rft_galeid=A632940592&rft_doaj_id=oai_doaj_org_article_4e8e5a34b69645169ebcce7759b33a52&rfr_iscdi=true |