Deep reinforcement learning for the control of microbial co-cultures in bioreactors

Multi-species microbial communities are widespread in natural ecosystems. When employed for biomanufacturing, engineered synthetic communities have shown increased productivity in comparison with monocultures and allow for the reduction of metabolic load by compartmentalising bioprocesses between mu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2020-04, Vol.16 (4), p.e1007783-e1007783
Hauptverfasser: Treloar, Neythen J, Fedorec, Alex J H, Ingalls, Brian, Barnes, Chris P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1007783
container_issue 4
container_start_page e1007783
container_title PLoS computational biology
container_volume 16
creator Treloar, Neythen J
Fedorec, Alex J H
Ingalls, Brian
Barnes, Chris P
description Multi-species microbial communities are widespread in natural ecosystems. When employed for biomanufacturing, engineered synthetic communities have shown increased productivity in comparison with monocultures and allow for the reduction of metabolic load by compartmentalising bioprocesses between multiple sub-populations. Despite these benefits, co-cultures are rarely used in practice because control over the constituent species of an assembled community has proven challenging. Here we demonstrate, in silico, the efficacy of an approach from artificial intelligence-reinforcement learning-for the control of co-cultures within continuous bioreactors. We confirm that feedback via a trained reinforcement learning agent can be used to maintain populations at target levels, and that model-free performance with bang-bang control can outperform a traditional proportional integral controller with continuous control, when faced with infrequent sampling. Further, we demonstrate that a satisfactory control policy can be learned in one twenty-four hour experiment by running five bioreactors in parallel. Finally, we show that reinforcement learning can directly optimise the output of a co-culture bioprocess. Overall, reinforcement learning is a promising technique for the control of microbial communities.
doi_str_mv 10.1371/journal.pcbi.1007783
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2403774366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632940592</galeid><doaj_id>oai_doaj_org_article_4e8e5a34b69645169ebcce7759b33a52</doaj_id><sourcerecordid>A632940592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c699t-b95081333a91acb10e124dbd751f2b76f6b81b87d43227d892c45bee3fd1965a3</originalsourceid><addsrcrecordid>eNqVUstu1DAUjRCIloE_QBCJTVlksOP4tUGqWh4jVSBRWFu2c5N65IkHO0Hw9zhMWnUQG-SFreNzz32doniO0RoTjt9swxQH7dd7a9waI8S5IA-KU0wpqTih4uG990nxJKUtQvkp2ePihNQ1pxyj0-L6EmBfRnBDF6KFHQxj6UHHwQ19maFyvIHShmGMwZehK3fOxmCc9hms7OTHKUIq3VAaFyJoO4aYnhaPOu0TPFvuVfHt_buvFx-rq88fNhfnV5VlUo6VkRQJTAjREmtrMAJcN61pOcVdbTjrmBHYCN42c7mtkLVtqAEgXYslo5qsipcH3b0PSS3zSKpuEOG8IYxlxubAaIPeqn10Ox1_qaCd-gOE2CsdR2c9qAYEZM3GMMkaipkEYy1wTqXJFdI6a71dsk1mB63Nk4raH4ke_wzuRvXhh-KYszovZ1WcLQIxfJ8gjWrnkgXv9QBhynUTIURNpaCZ-uov6r-7Wx9Yvc4NzBvMeW0-LeQ1hQE6l_FzRmrZICrnFl4fBcx7hZ9jr6eU1Ob6y39wPx1zmwM3eyOlCN3dVDBSs1lvy1ezWdVi1hz24v5E74Ju3Ul-AxQW5d4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2403774366</pqid></control><display><type>article</type><title>Deep reinforcement learning for the control of microbial co-cultures in bioreactors</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Treloar, Neythen J ; Fedorec, Alex J H ; Ingalls, Brian ; Barnes, Chris P</creator><contributor>You, Lingchong</contributor><creatorcontrib>Treloar, Neythen J ; Fedorec, Alex J H ; Ingalls, Brian ; Barnes, Chris P ; You, Lingchong</creatorcontrib><description>Multi-species microbial communities are widespread in natural ecosystems. When employed for biomanufacturing, engineered synthetic communities have shown increased productivity in comparison with monocultures and allow for the reduction of metabolic load by compartmentalising bioprocesses between multiple sub-populations. Despite these benefits, co-cultures are rarely used in practice because control over the constituent species of an assembled community has proven challenging. Here we demonstrate, in silico, the efficacy of an approach from artificial intelligence-reinforcement learning-for the control of co-cultures within continuous bioreactors. We confirm that feedback via a trained reinforcement learning agent can be used to maintain populations at target levels, and that model-free performance with bang-bang control can outperform a traditional proportional integral controller with continuous control, when faced with infrequent sampling. Further, we demonstrate that a satisfactory control policy can be learned in one twenty-four hour experiment by running five bioreactors in parallel. Finally, we show that reinforcement learning can directly optimise the output of a co-culture bioprocess. Overall, reinforcement learning is a promising technique for the control of microbial communities.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1007783</identifier><identifier>PMID: 32275710</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Artificial Intelligence ; Bacterial cultures ; Biology and Life Sciences ; Bioreactors ; Bioreactors - microbiology ; Carbon ; Coculture Techniques - methods ; Computer and Information Sciences ; Computer Simulation ; Control systems ; Deep learning ; Developmental biology ; Ecosystem ; Engineering and Technology ; Feedback ; Learning ; Learning - physiology ; Machine learning ; Medicine and Health Sciences ; Metabolic engineering ; Metabolism ; Methods ; Microbial activity ; Microbiota - physiology ; Microorganisms ; Monoculture ; Nutrients ; Physical Sciences ; Population ; Populations ; Proportional integral ; Reinforcement ; Reinforcement, Psychology ; Research and Analysis Methods ; Social Sciences ; Systems stability ; Technology application</subject><ispartof>PLoS computational biology, 2020-04, Vol.16 (4), p.e1007783-e1007783</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Treloar et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Treloar et al 2020 Treloar et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c699t-b95081333a91acb10e124dbd751f2b76f6b81b87d43227d892c45bee3fd1965a3</citedby><cites>FETCH-LOGICAL-c699t-b95081333a91acb10e124dbd751f2b76f6b81b87d43227d892c45bee3fd1965a3</cites><orcidid>0000-0003-0165-1705 ; 0000-0002-9180-034X ; 0000-0002-9459-1395</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7176278/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7176278/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23847,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32275710$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>You, Lingchong</contributor><creatorcontrib>Treloar, Neythen J</creatorcontrib><creatorcontrib>Fedorec, Alex J H</creatorcontrib><creatorcontrib>Ingalls, Brian</creatorcontrib><creatorcontrib>Barnes, Chris P</creatorcontrib><title>Deep reinforcement learning for the control of microbial co-cultures in bioreactors</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Multi-species microbial communities are widespread in natural ecosystems. When employed for biomanufacturing, engineered synthetic communities have shown increased productivity in comparison with monocultures and allow for the reduction of metabolic load by compartmentalising bioprocesses between multiple sub-populations. Despite these benefits, co-cultures are rarely used in practice because control over the constituent species of an assembled community has proven challenging. Here we demonstrate, in silico, the efficacy of an approach from artificial intelligence-reinforcement learning-for the control of co-cultures within continuous bioreactors. We confirm that feedback via a trained reinforcement learning agent can be used to maintain populations at target levels, and that model-free performance with bang-bang control can outperform a traditional proportional integral controller with continuous control, when faced with infrequent sampling. Further, we demonstrate that a satisfactory control policy can be learned in one twenty-four hour experiment by running five bioreactors in parallel. Finally, we show that reinforcement learning can directly optimise the output of a co-culture bioprocess. Overall, reinforcement learning is a promising technique for the control of microbial communities.</description><subject>Artificial Intelligence</subject><subject>Bacterial cultures</subject><subject>Biology and Life Sciences</subject><subject>Bioreactors</subject><subject>Bioreactors - microbiology</subject><subject>Carbon</subject><subject>Coculture Techniques - methods</subject><subject>Computer and Information Sciences</subject><subject>Computer Simulation</subject><subject>Control systems</subject><subject>Deep learning</subject><subject>Developmental biology</subject><subject>Ecosystem</subject><subject>Engineering and Technology</subject><subject>Feedback</subject><subject>Learning</subject><subject>Learning - physiology</subject><subject>Machine learning</subject><subject>Medicine and Health Sciences</subject><subject>Metabolic engineering</subject><subject>Metabolism</subject><subject>Methods</subject><subject>Microbial activity</subject><subject>Microbiota - physiology</subject><subject>Microorganisms</subject><subject>Monoculture</subject><subject>Nutrients</subject><subject>Physical Sciences</subject><subject>Population</subject><subject>Populations</subject><subject>Proportional integral</subject><subject>Reinforcement</subject><subject>Reinforcement, Psychology</subject><subject>Research and Analysis Methods</subject><subject>Social Sciences</subject><subject>Systems stability</subject><subject>Technology application</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVUstu1DAUjRCIloE_QBCJTVlksOP4tUGqWh4jVSBRWFu2c5N65IkHO0Hw9zhMWnUQG-SFreNzz32doniO0RoTjt9swxQH7dd7a9waI8S5IA-KU0wpqTih4uG990nxJKUtQvkp2ePihNQ1pxyj0-L6EmBfRnBDF6KFHQxj6UHHwQ19maFyvIHShmGMwZehK3fOxmCc9hms7OTHKUIq3VAaFyJoO4aYnhaPOu0TPFvuVfHt_buvFx-rq88fNhfnV5VlUo6VkRQJTAjREmtrMAJcN61pOcVdbTjrmBHYCN42c7mtkLVtqAEgXYslo5qsipcH3b0PSS3zSKpuEOG8IYxlxubAaIPeqn10Ox1_qaCd-gOE2CsdR2c9qAYEZM3GMMkaipkEYy1wTqXJFdI6a71dsk1mB63Nk4raH4ke_wzuRvXhh-KYszovZ1WcLQIxfJ8gjWrnkgXv9QBhynUTIURNpaCZ-uov6r-7Wx9Yvc4NzBvMeW0-LeQ1hQE6l_FzRmrZICrnFl4fBcx7hZ9jr6eU1Ob6y39wPx1zmwM3eyOlCN3dVDBSs1lvy1ezWdVi1hz24v5E74Ju3Ul-AxQW5d4</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Treloar, Neythen J</creator><creator>Fedorec, Alex J H</creator><creator>Ingalls, Brian</creator><creator>Barnes, Chris P</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0165-1705</orcidid><orcidid>https://orcid.org/0000-0002-9180-034X</orcidid><orcidid>https://orcid.org/0000-0002-9459-1395</orcidid></search><sort><creationdate>20200401</creationdate><title>Deep reinforcement learning for the control of microbial co-cultures in bioreactors</title><author>Treloar, Neythen J ; Fedorec, Alex J H ; Ingalls, Brian ; Barnes, Chris P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c699t-b95081333a91acb10e124dbd751f2b76f6b81b87d43227d892c45bee3fd1965a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Bacterial cultures</topic><topic>Biology and Life Sciences</topic><topic>Bioreactors</topic><topic>Bioreactors - microbiology</topic><topic>Carbon</topic><topic>Coculture Techniques - methods</topic><topic>Computer and Information Sciences</topic><topic>Computer Simulation</topic><topic>Control systems</topic><topic>Deep learning</topic><topic>Developmental biology</topic><topic>Ecosystem</topic><topic>Engineering and Technology</topic><topic>Feedback</topic><topic>Learning</topic><topic>Learning - physiology</topic><topic>Machine learning</topic><topic>Medicine and Health Sciences</topic><topic>Metabolic engineering</topic><topic>Metabolism</topic><topic>Methods</topic><topic>Microbial activity</topic><topic>Microbiota - physiology</topic><topic>Microorganisms</topic><topic>Monoculture</topic><topic>Nutrients</topic><topic>Physical Sciences</topic><topic>Population</topic><topic>Populations</topic><topic>Proportional integral</topic><topic>Reinforcement</topic><topic>Reinforcement, Psychology</topic><topic>Research and Analysis Methods</topic><topic>Social Sciences</topic><topic>Systems stability</topic><topic>Technology application</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Treloar, Neythen J</creatorcontrib><creatorcontrib>Fedorec, Alex J H</creatorcontrib><creatorcontrib>Ingalls, Brian</creatorcontrib><creatorcontrib>Barnes, Chris P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Treloar, Neythen J</au><au>Fedorec, Alex J H</au><au>Ingalls, Brian</au><au>Barnes, Chris P</au><au>You, Lingchong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep reinforcement learning for the control of microbial co-cultures in bioreactors</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>16</volume><issue>4</issue><spage>e1007783</spage><epage>e1007783</epage><pages>e1007783-e1007783</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Multi-species microbial communities are widespread in natural ecosystems. When employed for biomanufacturing, engineered synthetic communities have shown increased productivity in comparison with monocultures and allow for the reduction of metabolic load by compartmentalising bioprocesses between multiple sub-populations. Despite these benefits, co-cultures are rarely used in practice because control over the constituent species of an assembled community has proven challenging. Here we demonstrate, in silico, the efficacy of an approach from artificial intelligence-reinforcement learning-for the control of co-cultures within continuous bioreactors. We confirm that feedback via a trained reinforcement learning agent can be used to maintain populations at target levels, and that model-free performance with bang-bang control can outperform a traditional proportional integral controller with continuous control, when faced with infrequent sampling. Further, we demonstrate that a satisfactory control policy can be learned in one twenty-four hour experiment by running five bioreactors in parallel. Finally, we show that reinforcement learning can directly optimise the output of a co-culture bioprocess. Overall, reinforcement learning is a promising technique for the control of microbial communities.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32275710</pmid><doi>10.1371/journal.pcbi.1007783</doi><orcidid>https://orcid.org/0000-0003-0165-1705</orcidid><orcidid>https://orcid.org/0000-0002-9180-034X</orcidid><orcidid>https://orcid.org/0000-0002-9459-1395</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2020-04, Vol.16 (4), p.e1007783-e1007783
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2403774366
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS)
subjects Artificial Intelligence
Bacterial cultures
Biology and Life Sciences
Bioreactors
Bioreactors - microbiology
Carbon
Coculture Techniques - methods
Computer and Information Sciences
Computer Simulation
Control systems
Deep learning
Developmental biology
Ecosystem
Engineering and Technology
Feedback
Learning
Learning - physiology
Machine learning
Medicine and Health Sciences
Metabolic engineering
Metabolism
Methods
Microbial activity
Microbiota - physiology
Microorganisms
Monoculture
Nutrients
Physical Sciences
Population
Populations
Proportional integral
Reinforcement
Reinforcement, Psychology
Research and Analysis Methods
Social Sciences
Systems stability
Technology application
title Deep reinforcement learning for the control of microbial co-cultures in bioreactors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A45%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20reinforcement%20learning%20for%20the%20control%20of%20microbial%20co-cultures%20in%20bioreactors&rft.jtitle=PLoS%20computational%20biology&rft.au=Treloar,%20Neythen%20J&rft.date=2020-04-01&rft.volume=16&rft.issue=4&rft.spage=e1007783&rft.epage=e1007783&rft.pages=e1007783-e1007783&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1007783&rft_dat=%3Cgale_plos_%3EA632940592%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2403774366&rft_id=info:pmid/32275710&rft_galeid=A632940592&rft_doaj_id=oai_doaj_org_article_4e8e5a34b69645169ebcce7759b33a52&rfr_iscdi=true