An improved 7K SNP array, the C7AIR, provides a wealth of validated SNP markers for rice breeding and genetics studies
Single nucleotide polymorphisms (SNPs) are highly abundant, amendable to high-throughput genotyping, and useful for a number of breeding and genetics applications in crops. SNP frequencies vary depending on the species and populations under study, and therefore target SNPs need to be carefully selec...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-05, Vol.15 (5), p.e0232479-e0232479 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0232479 |
---|---|
container_issue | 5 |
container_start_page | e0232479 |
container_title | PloS one |
container_volume | 15 |
creator | Morales, Karina Y Singh, Namrata Perez, Francisco Agosto Ignacio, John Carlos Thapa, Ranjita Arbelaez, Juan D Tabien, Rodante E Famoso, Adam Wang, Diane R Septiningsih, Endang M Shi, Yuxin Kretzschmar, Tobias McCouch, Susan R Thomson, Michael J |
description | Single nucleotide polymorphisms (SNPs) are highly abundant, amendable to high-throughput genotyping, and useful for a number of breeding and genetics applications in crops. SNP frequencies vary depending on the species and populations under study, and therefore target SNPs need to be carefully selected to be informative for each application. While multiple SNP genotyping systems are available for rice (Oryza sativa L. and its relatives), they vary in their informativeness, cost, marker density, speed, flexibility, and data quality. In this study, we report the development and performance of the Cornell-IR LD Rice Array (C7AIR), a second-generation SNP array containing 7,098 markers that improves upon the previously released C6AIR. The C7AIR is designed to detect genome-wide polymorphisms within and between subpopulations of O. sativa, as well as O. glaberrima, O. rufipogon and O. nivara. The C7AIR combines top-performing SNPs from several previous rice arrays, including 4,007 SNPs from the C6AIR, 2,056 SNPs from the High Density Rice Array (HDRA), 910 SNPs from the 384-SNP GoldenGate sets, 189 SNPs from the 44K array selected to add information content for elite U.S. tropical japonica rice varieties, and 8 trait-specific SNPs. To demonstrate its utility, we carried out a genome-wide association analysis for plant height, employing the C7AIR across a diversity panel of 189 rice accessions and identified 20 QTLs contributing to plant height. The C7AIR SNP chip has so far been used for genotyping >10,000 rice samples. It successfully differentiates the five subpopulations of Oryza sativa, identifies introgressions from wild and exotic relatives, and is useful for quantitative trait loci (QTL) and association mapping in diverse materials. Moreover, data from the C7AIR provides valuable information that can be used to select informative and reliable SNP markers for conversion to lower-cost genotyping platforms for genomic selection and other downstream applications in breeding. |
doi_str_mv | 10.1371/journal.pone.0232479 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2403018973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A623857396</galeid><doaj_id>oai_doaj_org_article_ae3bcb761fbf4288839230937916cb7d</doaj_id><sourcerecordid>A623857396</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-2e23ec4e81fb85cb96f0bf625bfba774d77262f6cecda79a7bfff89aa334b6353</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYmPwDxBYmoRAWktiJ3Z8g1RVfFRMDG3AreXYx6lHGhc7Kezf47bZ1KBdIF84On7e1-ec-CTJ8yydZoRlb69d71vZTNeuhWmKCc4Zf5AcZ5zgCcUpeXjwfZQ8CeE6TQtSUvo4OYpwygjlx8lm1iK7Wnu3AY3YZ3T15SuS3subM9QtAc3ZbHF5hrbnVkNAEv0G2XRL5AzayMZq2UXdVrSS_if4gIzzyFsFqPIA2rY1kq1GNbTQWRVQ6HptITxNHhnZBHg27CfJ9w_vv80_Tc4vPi7ms_OJYkXZTTBgAiqHMjNVWaiKU5NWhuKiMpVkLNeMYYoNVaC0ZFyyyhhTcikJyStKCnKSvNz7rhsXxNCyIGL5JM1KzkgkFntCO3kt1t7GQm6Ek1bsAs7XQvqYegNCAqlUxWhMxuS4LEvCMUk5YTyjMa6j17vhtr5agVbQdl42I9PxSWuXonYbwTDOc55Hg9eDgXe_egidWNmgoGlkC67f5R0X5aSM6Ok_6P3VDVQtYwG2NS7eq7amYkYxKQtGOI3U9B4qLg0rq-L7MjbGR4I3I0FkOvjT1bIPQSyuLv-fvfgxZl8dsMvdUwuu6Tvr2jAG8z2ovAvBg7lrcpaK7XjcdkNsx0MM4xFlLw5_0J3odh7IXxfrCcQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2403018973</pqid></control><display><type>article</type><title>An improved 7K SNP array, the C7AIR, provides a wealth of validated SNP markers for rice breeding and genetics studies</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Morales, Karina Y ; Singh, Namrata ; Perez, Francisco Agosto ; Ignacio, John Carlos ; Thapa, Ranjita ; Arbelaez, Juan D ; Tabien, Rodante E ; Famoso, Adam ; Wang, Diane R ; Septiningsih, Endang M ; Shi, Yuxin ; Kretzschmar, Tobias ; McCouch, Susan R ; Thomson, Michael J</creator><contributor>Sundaram, Raman Meenakshi</contributor><creatorcontrib>Morales, Karina Y ; Singh, Namrata ; Perez, Francisco Agosto ; Ignacio, John Carlos ; Thapa, Ranjita ; Arbelaez, Juan D ; Tabien, Rodante E ; Famoso, Adam ; Wang, Diane R ; Septiningsih, Endang M ; Shi, Yuxin ; Kretzschmar, Tobias ; McCouch, Susan R ; Thomson, Michael J ; Sundaram, Raman Meenakshi</creatorcontrib><description>Single nucleotide polymorphisms (SNPs) are highly abundant, amendable to high-throughput genotyping, and useful for a number of breeding and genetics applications in crops. SNP frequencies vary depending on the species and populations under study, and therefore target SNPs need to be carefully selected to be informative for each application. While multiple SNP genotyping systems are available for rice (Oryza sativa L. and its relatives), they vary in their informativeness, cost, marker density, speed, flexibility, and data quality. In this study, we report the development and performance of the Cornell-IR LD Rice Array (C7AIR), a second-generation SNP array containing 7,098 markers that improves upon the previously released C6AIR. The C7AIR is designed to detect genome-wide polymorphisms within and between subpopulations of O. sativa, as well as O. glaberrima, O. rufipogon and O. nivara. The C7AIR combines top-performing SNPs from several previous rice arrays, including 4,007 SNPs from the C6AIR, 2,056 SNPs from the High Density Rice Array (HDRA), 910 SNPs from the 384-SNP GoldenGate sets, 189 SNPs from the 44K array selected to add information content for elite U.S. tropical japonica rice varieties, and 8 trait-specific SNPs. To demonstrate its utility, we carried out a genome-wide association analysis for plant height, employing the C7AIR across a diversity panel of 189 rice accessions and identified 20 QTLs contributing to plant height. The C7AIR SNP chip has so far been used for genotyping >10,000 rice samples. It successfully differentiates the five subpopulations of Oryza sativa, identifies introgressions from wild and exotic relatives, and is useful for quantitative trait loci (QTL) and association mapping in diverse materials. Moreover, data from the C7AIR provides valuable information that can be used to select informative and reliable SNP markers for conversion to lower-cost genotyping platforms for genomic selection and other downstream applications in breeding.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0232479</identifier><identifier>PMID: 32407369</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agricultural economics ; Agricultural research ; Arrays ; Association analysis ; Biology and Life Sciences ; Breeding ; Bumpers, Dale ; Chromosomes ; Crop science ; Density ; Deoxyribonucleic acid ; DNA ; DNA microarrays ; Gene mapping ; Genes ; Genetic aspects ; Genetic polymorphisms ; Genetic research ; Genetics ; Genomes ; Genomics ; Genotyping ; Information management ; Mapping ; Markers ; Medicine and Health Sciences ; Nucleotides ; Oryza sativa ; Plant breeding ; Plant sciences ; Population studies ; Quantitative genetics ; Quantitative trait loci ; Research and Analysis Methods ; Rice ; Rice farming ; Single nucleotide polymorphisms ; Single-nucleotide polymorphism ; Subpopulations</subject><ispartof>PloS one, 2020-05, Vol.15 (5), p.e0232479-e0232479</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Morales et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Morales et al 2020 Morales et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-2e23ec4e81fb85cb96f0bf625bfba774d77262f6cecda79a7bfff89aa334b6353</citedby><cites>FETCH-LOGICAL-c758t-2e23ec4e81fb85cb96f0bf625bfba774d77262f6cecda79a7bfff89aa334b6353</cites><orcidid>0000-0001-8899-0894 ; 0000-0003-1868-6867 ; 0000-0001-8573-4123</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7224494/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7224494/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32407369$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Sundaram, Raman Meenakshi</contributor><creatorcontrib>Morales, Karina Y</creatorcontrib><creatorcontrib>Singh, Namrata</creatorcontrib><creatorcontrib>Perez, Francisco Agosto</creatorcontrib><creatorcontrib>Ignacio, John Carlos</creatorcontrib><creatorcontrib>Thapa, Ranjita</creatorcontrib><creatorcontrib>Arbelaez, Juan D</creatorcontrib><creatorcontrib>Tabien, Rodante E</creatorcontrib><creatorcontrib>Famoso, Adam</creatorcontrib><creatorcontrib>Wang, Diane R</creatorcontrib><creatorcontrib>Septiningsih, Endang M</creatorcontrib><creatorcontrib>Shi, Yuxin</creatorcontrib><creatorcontrib>Kretzschmar, Tobias</creatorcontrib><creatorcontrib>McCouch, Susan R</creatorcontrib><creatorcontrib>Thomson, Michael J</creatorcontrib><title>An improved 7K SNP array, the C7AIR, provides a wealth of validated SNP markers for rice breeding and genetics studies</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Single nucleotide polymorphisms (SNPs) are highly abundant, amendable to high-throughput genotyping, and useful for a number of breeding and genetics applications in crops. SNP frequencies vary depending on the species and populations under study, and therefore target SNPs need to be carefully selected to be informative for each application. While multiple SNP genotyping systems are available for rice (Oryza sativa L. and its relatives), they vary in their informativeness, cost, marker density, speed, flexibility, and data quality. In this study, we report the development and performance of the Cornell-IR LD Rice Array (C7AIR), a second-generation SNP array containing 7,098 markers that improves upon the previously released C6AIR. The C7AIR is designed to detect genome-wide polymorphisms within and between subpopulations of O. sativa, as well as O. glaberrima, O. rufipogon and O. nivara. The C7AIR combines top-performing SNPs from several previous rice arrays, including 4,007 SNPs from the C6AIR, 2,056 SNPs from the High Density Rice Array (HDRA), 910 SNPs from the 384-SNP GoldenGate sets, 189 SNPs from the 44K array selected to add information content for elite U.S. tropical japonica rice varieties, and 8 trait-specific SNPs. To demonstrate its utility, we carried out a genome-wide association analysis for plant height, employing the C7AIR across a diversity panel of 189 rice accessions and identified 20 QTLs contributing to plant height. The C7AIR SNP chip has so far been used for genotyping >10,000 rice samples. It successfully differentiates the five subpopulations of Oryza sativa, identifies introgressions from wild and exotic relatives, and is useful for quantitative trait loci (QTL) and association mapping in diverse materials. Moreover, data from the C7AIR provides valuable information that can be used to select informative and reliable SNP markers for conversion to lower-cost genotyping platforms for genomic selection and other downstream applications in breeding.</description><subject>Agricultural economics</subject><subject>Agricultural research</subject><subject>Arrays</subject><subject>Association analysis</subject><subject>Biology and Life Sciences</subject><subject>Breeding</subject><subject>Bumpers, Dale</subject><subject>Chromosomes</subject><subject>Crop science</subject><subject>Density</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA microarrays</subject><subject>Gene mapping</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic polymorphisms</subject><subject>Genetic research</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotyping</subject><subject>Information management</subject><subject>Mapping</subject><subject>Markers</subject><subject>Medicine and Health Sciences</subject><subject>Nucleotides</subject><subject>Oryza sativa</subject><subject>Plant breeding</subject><subject>Plant sciences</subject><subject>Population studies</subject><subject>Quantitative genetics</subject><subject>Quantitative trait loci</subject><subject>Research and Analysis Methods</subject><subject>Rice</subject><subject>Rice farming</subject><subject>Single nucleotide polymorphisms</subject><subject>Single-nucleotide polymorphism</subject><subject>Subpopulations</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYmPwDxBYmoRAWktiJ3Z8g1RVfFRMDG3AreXYx6lHGhc7Kezf47bZ1KBdIF84On7e1-ec-CTJ8yydZoRlb69d71vZTNeuhWmKCc4Zf5AcZ5zgCcUpeXjwfZQ8CeE6TQtSUvo4OYpwygjlx8lm1iK7Wnu3AY3YZ3T15SuS3subM9QtAc3ZbHF5hrbnVkNAEv0G2XRL5AzayMZq2UXdVrSS_if4gIzzyFsFqPIA2rY1kq1GNbTQWRVQ6HptITxNHhnZBHg27CfJ9w_vv80_Tc4vPi7ms_OJYkXZTTBgAiqHMjNVWaiKU5NWhuKiMpVkLNeMYYoNVaC0ZFyyyhhTcikJyStKCnKSvNz7rhsXxNCyIGL5JM1KzkgkFntCO3kt1t7GQm6Ek1bsAs7XQvqYegNCAqlUxWhMxuS4LEvCMUk5YTyjMa6j17vhtr5agVbQdl42I9PxSWuXonYbwTDOc55Hg9eDgXe_egidWNmgoGlkC67f5R0X5aSM6Ok_6P3VDVQtYwG2NS7eq7amYkYxKQtGOI3U9B4qLg0rq-L7MjbGR4I3I0FkOvjT1bIPQSyuLv-fvfgxZl8dsMvdUwuu6Tvr2jAG8z2ovAvBg7lrcpaK7XjcdkNsx0MM4xFlLw5_0J3odh7IXxfrCcQ</recordid><startdate>20200514</startdate><enddate>20200514</enddate><creator>Morales, Karina Y</creator><creator>Singh, Namrata</creator><creator>Perez, Francisco Agosto</creator><creator>Ignacio, John Carlos</creator><creator>Thapa, Ranjita</creator><creator>Arbelaez, Juan D</creator><creator>Tabien, Rodante E</creator><creator>Famoso, Adam</creator><creator>Wang, Diane R</creator><creator>Septiningsih, Endang M</creator><creator>Shi, Yuxin</creator><creator>Kretzschmar, Tobias</creator><creator>McCouch, Susan R</creator><creator>Thomson, Michael J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8899-0894</orcidid><orcidid>https://orcid.org/0000-0003-1868-6867</orcidid><orcidid>https://orcid.org/0000-0001-8573-4123</orcidid></search><sort><creationdate>20200514</creationdate><title>An improved 7K SNP array, the C7AIR, provides a wealth of validated SNP markers for rice breeding and genetics studies</title><author>Morales, Karina Y ; Singh, Namrata ; Perez, Francisco Agosto ; Ignacio, John Carlos ; Thapa, Ranjita ; Arbelaez, Juan D ; Tabien, Rodante E ; Famoso, Adam ; Wang, Diane R ; Septiningsih, Endang M ; Shi, Yuxin ; Kretzschmar, Tobias ; McCouch, Susan R ; Thomson, Michael J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-2e23ec4e81fb85cb96f0bf625bfba774d77262f6cecda79a7bfff89aa334b6353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agricultural economics</topic><topic>Agricultural research</topic><topic>Arrays</topic><topic>Association analysis</topic><topic>Biology and Life Sciences</topic><topic>Breeding</topic><topic>Bumpers, Dale</topic><topic>Chromosomes</topic><topic>Crop science</topic><topic>Density</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA microarrays</topic><topic>Gene mapping</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic polymorphisms</topic><topic>Genetic research</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotyping</topic><topic>Information management</topic><topic>Mapping</topic><topic>Markers</topic><topic>Medicine and Health Sciences</topic><topic>Nucleotides</topic><topic>Oryza sativa</topic><topic>Plant breeding</topic><topic>Plant sciences</topic><topic>Population studies</topic><topic>Quantitative genetics</topic><topic>Quantitative trait loci</topic><topic>Research and Analysis Methods</topic><topic>Rice</topic><topic>Rice farming</topic><topic>Single nucleotide polymorphisms</topic><topic>Single-nucleotide polymorphism</topic><topic>Subpopulations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morales, Karina Y</creatorcontrib><creatorcontrib>Singh, Namrata</creatorcontrib><creatorcontrib>Perez, Francisco Agosto</creatorcontrib><creatorcontrib>Ignacio, John Carlos</creatorcontrib><creatorcontrib>Thapa, Ranjita</creatorcontrib><creatorcontrib>Arbelaez, Juan D</creatorcontrib><creatorcontrib>Tabien, Rodante E</creatorcontrib><creatorcontrib>Famoso, Adam</creatorcontrib><creatorcontrib>Wang, Diane R</creatorcontrib><creatorcontrib>Septiningsih, Endang M</creatorcontrib><creatorcontrib>Shi, Yuxin</creatorcontrib><creatorcontrib>Kretzschmar, Tobias</creatorcontrib><creatorcontrib>McCouch, Susan R</creatorcontrib><creatorcontrib>Thomson, Michael J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morales, Karina Y</au><au>Singh, Namrata</au><au>Perez, Francisco Agosto</au><au>Ignacio, John Carlos</au><au>Thapa, Ranjita</au><au>Arbelaez, Juan D</au><au>Tabien, Rodante E</au><au>Famoso, Adam</au><au>Wang, Diane R</au><au>Septiningsih, Endang M</au><au>Shi, Yuxin</au><au>Kretzschmar, Tobias</au><au>McCouch, Susan R</au><au>Thomson, Michael J</au><au>Sundaram, Raman Meenakshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved 7K SNP array, the C7AIR, provides a wealth of validated SNP markers for rice breeding and genetics studies</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-05-14</date><risdate>2020</risdate><volume>15</volume><issue>5</issue><spage>e0232479</spage><epage>e0232479</epage><pages>e0232479-e0232479</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Single nucleotide polymorphisms (SNPs) are highly abundant, amendable to high-throughput genotyping, and useful for a number of breeding and genetics applications in crops. SNP frequencies vary depending on the species and populations under study, and therefore target SNPs need to be carefully selected to be informative for each application. While multiple SNP genotyping systems are available for rice (Oryza sativa L. and its relatives), they vary in their informativeness, cost, marker density, speed, flexibility, and data quality. In this study, we report the development and performance of the Cornell-IR LD Rice Array (C7AIR), a second-generation SNP array containing 7,098 markers that improves upon the previously released C6AIR. The C7AIR is designed to detect genome-wide polymorphisms within and between subpopulations of O. sativa, as well as O. glaberrima, O. rufipogon and O. nivara. The C7AIR combines top-performing SNPs from several previous rice arrays, including 4,007 SNPs from the C6AIR, 2,056 SNPs from the High Density Rice Array (HDRA), 910 SNPs from the 384-SNP GoldenGate sets, 189 SNPs from the 44K array selected to add information content for elite U.S. tropical japonica rice varieties, and 8 trait-specific SNPs. To demonstrate its utility, we carried out a genome-wide association analysis for plant height, employing the C7AIR across a diversity panel of 189 rice accessions and identified 20 QTLs contributing to plant height. The C7AIR SNP chip has so far been used for genotyping >10,000 rice samples. It successfully differentiates the five subpopulations of Oryza sativa, identifies introgressions from wild and exotic relatives, and is useful for quantitative trait loci (QTL) and association mapping in diverse materials. Moreover, data from the C7AIR provides valuable information that can be used to select informative and reliable SNP markers for conversion to lower-cost genotyping platforms for genomic selection and other downstream applications in breeding.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32407369</pmid><doi>10.1371/journal.pone.0232479</doi><tpages>e0232479</tpages><orcidid>https://orcid.org/0000-0001-8899-0894</orcidid><orcidid>https://orcid.org/0000-0003-1868-6867</orcidid><orcidid>https://orcid.org/0000-0001-8573-4123</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-05, Vol.15 (5), p.e0232479-e0232479 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2403018973 |
source | DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Agricultural economics Agricultural research Arrays Association analysis Biology and Life Sciences Breeding Bumpers, Dale Chromosomes Crop science Density Deoxyribonucleic acid DNA DNA microarrays Gene mapping Genes Genetic aspects Genetic polymorphisms Genetic research Genetics Genomes Genomics Genotyping Information management Mapping Markers Medicine and Health Sciences Nucleotides Oryza sativa Plant breeding Plant sciences Population studies Quantitative genetics Quantitative trait loci Research and Analysis Methods Rice Rice farming Single nucleotide polymorphisms Single-nucleotide polymorphism Subpopulations |
title | An improved 7K SNP array, the C7AIR, provides a wealth of validated SNP markers for rice breeding and genetics studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A54%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%207K%20SNP%20array,%20the%20C7AIR,%20provides%20a%20wealth%20of%20validated%20SNP%20markers%20for%20rice%20breeding%20and%20genetics%20studies&rft.jtitle=PloS%20one&rft.au=Morales,%20Karina%20Y&rft.date=2020-05-14&rft.volume=15&rft.issue=5&rft.spage=e0232479&rft.epage=e0232479&rft.pages=e0232479-e0232479&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0232479&rft_dat=%3Cgale_plos_%3EA623857396%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2403018973&rft_id=info:pmid/32407369&rft_galeid=A623857396&rft_doaj_id=oai_doaj_org_article_ae3bcb761fbf4288839230937916cb7d&rfr_iscdi=true |