Estimating the potential impact of behavioral public health interventions nationally while maintaining agreement with global patterns on relative risks
This paper introduces a novel method to evaluate the local impact of behavioral scenarios on disease prevalence and burden with representative individual level data while ensuring that the model is in agreement with the qualitative patterns of global relative risk (RR) estimates. The method is used...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-05, Vol.15 (5), p.e0232951-e0232951 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0232951 |
---|---|
container_issue | 5 |
container_start_page | e0232951 |
container_title | PloS one |
container_volume | 15 |
creator | Ali, Ozden Gur Ghanem, Angi Nazih Ustun, Bedirhan |
description | This paper introduces a novel method to evaluate the local impact of behavioral scenarios on disease prevalence and burden with representative individual level data while ensuring that the model is in agreement with the qualitative patterns of global relative risk (RR) estimates. The method is used to estimate the impact of behavioral scenarios on the burden of disease due to ischemic heart disease (IHD) and diabetes in the Turkish adult population.
Disease specific Hierarchical Bayes (HB) models estimate the individual disease probability as a function of behaviors, demographics, socio-economics and other controls, where constraints are specified based on the global RR estimates. The simulator combines the counterfactual disease probability estimates with disability adjusted life year (DALY)-per-prevalent-case estimates and rolls up to the targeted population level, thus reflecting the local joint distribution of exposures. The Global Burden of Disease (GBD) 2016 study meta-analysis results guide the analysis of the Turkish National Health Surveys (2008 to 2016) that contain more than 90 thousand observations.
The proposed Qualitative Informative HB models do not sacrifice predictive accuracy versus benchmarks (logistic regression and HB models with non-informative and numerical informative priors) while agreeing with the global patterns. In the Turkish adult population, Increasing Physical Activity reduces the DALYs substantially for both IHD by 8.6% (6.4% 11.2%), and Diabetes by 8.1% (5.8% 10.6%), (90% uncertainty intervals). Eliminating Smoking and Second-hand Smoke predominantly decreases the IHD burden 13.1% (10.4% 15.8%) versus Diabetes 2.8% (1.1% 4.6%). Increasing Fruit and Vegetable Consumption, on the other hand, reduces IHD DALYs by 4.1% (2.8% 5.4%) while not improving the Diabetes burden 0.1% (0% 0.1%).
While the national RR estimates are in qualitative agreement with the global patterns, the scenario impact estimates are markedly different than the attributable risk estimates from the GBD analysis and allow evaluation of practical scenarios with multiple behaviors. |
doi_str_mv | 10.1371/journal.pone.0232951 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2402403133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A623752644</galeid><doaj_id>oai_doaj_org_article_89d71e81c9014e6c832c7c020ea47ae0</doaj_id><sourcerecordid>A623752644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-c8cc01332cd626fdb33baa2cba32d63fcefa89df7301a04da8d050166def13e43</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYqPwDxBYQkJw0eKPNB83SNM0oNKkSXzdWifOSerixJ3tdOyX8Hdx2m5q0S5QEtlynvMe-_U5SfKS0RkTOfuwsoPrwczWtscZ5YKXc_YoOWWl4NOMU_H4YH6SPPN-RelcFFn2NDkRPKUsL_hp8ufCB91B0H1LwhLJ2gbsgwZDdLcGFYhtSIVL2Gjr4uJ6qIxWZIlgwpLoPqDbjLztPelhHMGYW3Kz1AZJBxGI36gNrUPsIkpudIxsja1GOQhRIcbanjg0UWCDxGn_yz9PnjRgPL7Yj5Pkx6eL7-dfppdXnxfnZ5dTlZU8TFWhFGVCcFVnPGvqSogKgKsKBK8z0ShsoCjrJheUAU1rKGo6pyzLamyYwFRMktc73bWxXu499TL6E18RlSOx2BG1hZVcu-iWu5UWtNwuWNdKcEErgzJmyhkWTJWUpZipIu4rV5RThDQHpFHr4z7bUHVYq-hHdPVI9PhPr5eytRuZc1bm81Hg3V7A2esBfZCd9gqNgR7tsN23oLwcNz5J3vyDPny6PdVCPIDuGxvzqlFUnmVc5HOepaNLsweo-NTYaRULsIn3fRzw_iggMgF_hxYG7-Xi29f_Z69-HrNvD9hdGXprhm0FHoPpDlTOeu-wuTeZUTn2z50bcuwfue-fGPbq8ILug-4aRvwFcNIZwQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2402403133</pqid></control><display><type>article</type><title>Estimating the potential impact of behavioral public health interventions nationally while maintaining agreement with global patterns on relative risks</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ali, Ozden Gur ; Ghanem, Angi Nazih ; Ustun, Bedirhan</creator><contributor>Devleesschauwer, Brecht</contributor><creatorcontrib>Ali, Ozden Gur ; Ghanem, Angi Nazih ; Ustun, Bedirhan ; Devleesschauwer, Brecht</creatorcontrib><description>This paper introduces a novel method to evaluate the local impact of behavioral scenarios on disease prevalence and burden with representative individual level data while ensuring that the model is in agreement with the qualitative patterns of global relative risk (RR) estimates. The method is used to estimate the impact of behavioral scenarios on the burden of disease due to ischemic heart disease (IHD) and diabetes in the Turkish adult population.
Disease specific Hierarchical Bayes (HB) models estimate the individual disease probability as a function of behaviors, demographics, socio-economics and other controls, where constraints are specified based on the global RR estimates. The simulator combines the counterfactual disease probability estimates with disability adjusted life year (DALY)-per-prevalent-case estimates and rolls up to the targeted population level, thus reflecting the local joint distribution of exposures. The Global Burden of Disease (GBD) 2016 study meta-analysis results guide the analysis of the Turkish National Health Surveys (2008 to 2016) that contain more than 90 thousand observations.
The proposed Qualitative Informative HB models do not sacrifice predictive accuracy versus benchmarks (logistic regression and HB models with non-informative and numerical informative priors) while agreeing with the global patterns. In the Turkish adult population, Increasing Physical Activity reduces the DALYs substantially for both IHD by 8.6% (6.4% 11.2%), and Diabetes by 8.1% (5.8% 10.6%), (90% uncertainty intervals). Eliminating Smoking and Second-hand Smoke predominantly decreases the IHD burden 13.1% (10.4% 15.8%) versus Diabetes 2.8% (1.1% 4.6%). Increasing Fruit and Vegetable Consumption, on the other hand, reduces IHD DALYs by 4.1% (2.8% 5.4%) while not improving the Diabetes burden 0.1% (0% 0.1%).
While the national RR estimates are in qualitative agreement with the global patterns, the scenario impact estimates are markedly different than the attributable risk estimates from the GBD analysis and allow evaluation of practical scenarios with multiple behaviors.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0232951</identifier><identifier>PMID: 32401782</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Age ; Bayesian analysis ; Behavior ; Benchmarking ; Benchmarks ; Biology and Life Sciences ; Cardiovascular diseases ; Computer simulation ; Coronary artery disease ; Demographic aspects ; Demographics ; Demography ; Diabetes ; Diabetes mellitus ; Disabilities ; Disease ; Diseases ; Estimates ; Exercise ; Gender ; Health behavior ; Health care ; Health risks ; Health surveys ; Heart diseases ; Ischemia ; Medical research ; Medicine and Health Sciences ; Meta-analysis ; Methods ; Model accuracy ; Myocardial ischemia ; Novels ; Passive smoking ; Physical activity ; Physical fitness ; Physical Sciences ; Public health ; Public health movements ; Qualitative analysis ; Regression analysis ; Research and Analysis Methods ; Risk assessment ; Risk factors ; Smoke ; Smoking ; Social Sciences ; Socioeconomic factors ; Statistical analysis</subject><ispartof>PloS one, 2020-05, Vol.15 (5), p.e0232951-e0232951</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Ali et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Ali et al 2020 Ali et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-c8cc01332cd626fdb33baa2cba32d63fcefa89df7301a04da8d050166def13e43</citedby><cites>FETCH-LOGICAL-c692t-c8cc01332cd626fdb33baa2cba32d63fcefa89df7301a04da8d050166def13e43</cites><orcidid>0000-0002-9409-4532</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7219750/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7219750/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32401782$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Devleesschauwer, Brecht</contributor><creatorcontrib>Ali, Ozden Gur</creatorcontrib><creatorcontrib>Ghanem, Angi Nazih</creatorcontrib><creatorcontrib>Ustun, Bedirhan</creatorcontrib><title>Estimating the potential impact of behavioral public health interventions nationally while maintaining agreement with global patterns on relative risks</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>This paper introduces a novel method to evaluate the local impact of behavioral scenarios on disease prevalence and burden with representative individual level data while ensuring that the model is in agreement with the qualitative patterns of global relative risk (RR) estimates. The method is used to estimate the impact of behavioral scenarios on the burden of disease due to ischemic heart disease (IHD) and diabetes in the Turkish adult population.
Disease specific Hierarchical Bayes (HB) models estimate the individual disease probability as a function of behaviors, demographics, socio-economics and other controls, where constraints are specified based on the global RR estimates. The simulator combines the counterfactual disease probability estimates with disability adjusted life year (DALY)-per-prevalent-case estimates and rolls up to the targeted population level, thus reflecting the local joint distribution of exposures. The Global Burden of Disease (GBD) 2016 study meta-analysis results guide the analysis of the Turkish National Health Surveys (2008 to 2016) that contain more than 90 thousand observations.
The proposed Qualitative Informative HB models do not sacrifice predictive accuracy versus benchmarks (logistic regression and HB models with non-informative and numerical informative priors) while agreeing with the global patterns. In the Turkish adult population, Increasing Physical Activity reduces the DALYs substantially for both IHD by 8.6% (6.4% 11.2%), and Diabetes by 8.1% (5.8% 10.6%), (90% uncertainty intervals). Eliminating Smoking and Second-hand Smoke predominantly decreases the IHD burden 13.1% (10.4% 15.8%) versus Diabetes 2.8% (1.1% 4.6%). Increasing Fruit and Vegetable Consumption, on the other hand, reduces IHD DALYs by 4.1% (2.8% 5.4%) while not improving the Diabetes burden 0.1% (0% 0.1%).
While the national RR estimates are in qualitative agreement with the global patterns, the scenario impact estimates are markedly different than the attributable risk estimates from the GBD analysis and allow evaluation of practical scenarios with multiple behaviors.</description><subject>Age</subject><subject>Bayesian analysis</subject><subject>Behavior</subject><subject>Benchmarking</subject><subject>Benchmarks</subject><subject>Biology and Life Sciences</subject><subject>Cardiovascular diseases</subject><subject>Computer simulation</subject><subject>Coronary artery disease</subject><subject>Demographic aspects</subject><subject>Demographics</subject><subject>Demography</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Disabilities</subject><subject>Disease</subject><subject>Diseases</subject><subject>Estimates</subject><subject>Exercise</subject><subject>Gender</subject><subject>Health behavior</subject><subject>Health care</subject><subject>Health risks</subject><subject>Health surveys</subject><subject>Heart diseases</subject><subject>Ischemia</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Meta-analysis</subject><subject>Methods</subject><subject>Model accuracy</subject><subject>Myocardial ischemia</subject><subject>Novels</subject><subject>Passive smoking</subject><subject>Physical activity</subject><subject>Physical fitness</subject><subject>Physical Sciences</subject><subject>Public health</subject><subject>Public health movements</subject><subject>Qualitative analysis</subject><subject>Regression analysis</subject><subject>Research and Analysis Methods</subject><subject>Risk assessment</subject><subject>Risk factors</subject><subject>Smoke</subject><subject>Smoking</subject><subject>Social Sciences</subject><subject>Socioeconomic factors</subject><subject>Statistical analysis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYqPwDxBYQkJw0eKPNB83SNM0oNKkSXzdWifOSerixJ3tdOyX8Hdx2m5q0S5QEtlynvMe-_U5SfKS0RkTOfuwsoPrwczWtscZ5YKXc_YoOWWl4NOMU_H4YH6SPPN-RelcFFn2NDkRPKUsL_hp8ufCB91B0H1LwhLJ2gbsgwZDdLcGFYhtSIVL2Gjr4uJ6qIxWZIlgwpLoPqDbjLztPelhHMGYW3Kz1AZJBxGI36gNrUPsIkpudIxsja1GOQhRIcbanjg0UWCDxGn_yz9PnjRgPL7Yj5Pkx6eL7-dfppdXnxfnZ5dTlZU8TFWhFGVCcFVnPGvqSogKgKsKBK8z0ShsoCjrJheUAU1rKGo6pyzLamyYwFRMktc73bWxXu499TL6E18RlSOx2BG1hZVcu-iWu5UWtNwuWNdKcEErgzJmyhkWTJWUpZipIu4rV5RThDQHpFHr4z7bUHVYq-hHdPVI9PhPr5eytRuZc1bm81Hg3V7A2esBfZCd9gqNgR7tsN23oLwcNz5J3vyDPny6PdVCPIDuGxvzqlFUnmVc5HOepaNLsweo-NTYaRULsIn3fRzw_iggMgF_hxYG7-Xi29f_Z69-HrNvD9hdGXprhm0FHoPpDlTOeu-wuTeZUTn2z50bcuwfue-fGPbq8ILug-4aRvwFcNIZwQ</recordid><startdate>20200513</startdate><enddate>20200513</enddate><creator>Ali, Ozden Gur</creator><creator>Ghanem, Angi Nazih</creator><creator>Ustun, Bedirhan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9409-4532</orcidid></search><sort><creationdate>20200513</creationdate><title>Estimating the potential impact of behavioral public health interventions nationally while maintaining agreement with global patterns on relative risks</title><author>Ali, Ozden Gur ; Ghanem, Angi Nazih ; Ustun, Bedirhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-c8cc01332cd626fdb33baa2cba32d63fcefa89df7301a04da8d050166def13e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Age</topic><topic>Bayesian analysis</topic><topic>Behavior</topic><topic>Benchmarking</topic><topic>Benchmarks</topic><topic>Biology and Life Sciences</topic><topic>Cardiovascular diseases</topic><topic>Computer simulation</topic><topic>Coronary artery disease</topic><topic>Demographic aspects</topic><topic>Demographics</topic><topic>Demography</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Disabilities</topic><topic>Disease</topic><topic>Diseases</topic><topic>Estimates</topic><topic>Exercise</topic><topic>Gender</topic><topic>Health behavior</topic><topic>Health care</topic><topic>Health risks</topic><topic>Health surveys</topic><topic>Heart diseases</topic><topic>Ischemia</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Meta-analysis</topic><topic>Methods</topic><topic>Model accuracy</topic><topic>Myocardial ischemia</topic><topic>Novels</topic><topic>Passive smoking</topic><topic>Physical activity</topic><topic>Physical fitness</topic><topic>Physical Sciences</topic><topic>Public health</topic><topic>Public health movements</topic><topic>Qualitative analysis</topic><topic>Regression analysis</topic><topic>Research and Analysis Methods</topic><topic>Risk assessment</topic><topic>Risk factors</topic><topic>Smoke</topic><topic>Smoking</topic><topic>Social Sciences</topic><topic>Socioeconomic factors</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Ozden Gur</creatorcontrib><creatorcontrib>Ghanem, Angi Nazih</creatorcontrib><creatorcontrib>Ustun, Bedirhan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Ozden Gur</au><au>Ghanem, Angi Nazih</au><au>Ustun, Bedirhan</au><au>Devleesschauwer, Brecht</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating the potential impact of behavioral public health interventions nationally while maintaining agreement with global patterns on relative risks</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-05-13</date><risdate>2020</risdate><volume>15</volume><issue>5</issue><spage>e0232951</spage><epage>e0232951</epage><pages>e0232951-e0232951</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>This paper introduces a novel method to evaluate the local impact of behavioral scenarios on disease prevalence and burden with representative individual level data while ensuring that the model is in agreement with the qualitative patterns of global relative risk (RR) estimates. The method is used to estimate the impact of behavioral scenarios on the burden of disease due to ischemic heart disease (IHD) and diabetes in the Turkish adult population.
Disease specific Hierarchical Bayes (HB) models estimate the individual disease probability as a function of behaviors, demographics, socio-economics and other controls, where constraints are specified based on the global RR estimates. The simulator combines the counterfactual disease probability estimates with disability adjusted life year (DALY)-per-prevalent-case estimates and rolls up to the targeted population level, thus reflecting the local joint distribution of exposures. The Global Burden of Disease (GBD) 2016 study meta-analysis results guide the analysis of the Turkish National Health Surveys (2008 to 2016) that contain more than 90 thousand observations.
The proposed Qualitative Informative HB models do not sacrifice predictive accuracy versus benchmarks (logistic regression and HB models with non-informative and numerical informative priors) while agreeing with the global patterns. In the Turkish adult population, Increasing Physical Activity reduces the DALYs substantially for both IHD by 8.6% (6.4% 11.2%), and Diabetes by 8.1% (5.8% 10.6%), (90% uncertainty intervals). Eliminating Smoking and Second-hand Smoke predominantly decreases the IHD burden 13.1% (10.4% 15.8%) versus Diabetes 2.8% (1.1% 4.6%). Increasing Fruit and Vegetable Consumption, on the other hand, reduces IHD DALYs by 4.1% (2.8% 5.4%) while not improving the Diabetes burden 0.1% (0% 0.1%).
While the national RR estimates are in qualitative agreement with the global patterns, the scenario impact estimates are markedly different than the attributable risk estimates from the GBD analysis and allow evaluation of practical scenarios with multiple behaviors.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32401782</pmid><doi>10.1371/journal.pone.0232951</doi><tpages>e0232951</tpages><orcidid>https://orcid.org/0000-0002-9409-4532</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-05, Vol.15 (5), p.e0232951-e0232951 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2402403133 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Age Bayesian analysis Behavior Benchmarking Benchmarks Biology and Life Sciences Cardiovascular diseases Computer simulation Coronary artery disease Demographic aspects Demographics Demography Diabetes Diabetes mellitus Disabilities Disease Diseases Estimates Exercise Gender Health behavior Health care Health risks Health surveys Heart diseases Ischemia Medical research Medicine and Health Sciences Meta-analysis Methods Model accuracy Myocardial ischemia Novels Passive smoking Physical activity Physical fitness Physical Sciences Public health Public health movements Qualitative analysis Regression analysis Research and Analysis Methods Risk assessment Risk factors Smoke Smoking Social Sciences Socioeconomic factors Statistical analysis |
title | Estimating the potential impact of behavioral public health interventions nationally while maintaining agreement with global patterns on relative risks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A41%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20the%20potential%20impact%20of%20behavioral%20public%20health%20interventions%20nationally%20while%20maintaining%20agreement%20with%20global%20patterns%20on%20relative%20risks&rft.jtitle=PloS%20one&rft.au=Ali,%20Ozden%20Gur&rft.date=2020-05-13&rft.volume=15&rft.issue=5&rft.spage=e0232951&rft.epage=e0232951&rft.pages=e0232951-e0232951&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0232951&rft_dat=%3Cgale_plos_%3EA623752644%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2402403133&rft_id=info:pmid/32401782&rft_galeid=A623752644&rft_doaj_id=oai_doaj_org_article_89d71e81c9014e6c832c7c020ea47ae0&rfr_iscdi=true |