Active Notch signaling is required for arm regeneration in a brittle star
Cell signaling pathways play key roles in coordinating cellular events in development. The Notch signaling pathway is highly conserved across all multicellular animals and is known to coordinate a multitude of diverse cellular events, including proliferation, differentiation, fate specification, and...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-05, Vol.15 (5), p.e0232981-e0232981 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0232981 |
---|---|
container_issue | 5 |
container_start_page | e0232981 |
container_title | PloS one |
container_volume | 15 |
creator | Mashanov, Vladimir Akiona, Jennifer Khoury, Maleana Ferrier, Jacob Reid, Robert Machado, Denis Jacob Zueva, Olga Janies, Daniel |
description | Cell signaling pathways play key roles in coordinating cellular events in development. The Notch signaling pathway is highly conserved across all multicellular animals and is known to coordinate a multitude of diverse cellular events, including proliferation, differentiation, fate specification, and cell death. Specific functions of the pathway are, however, highly context-dependent and are not well characterized in post-traumatic regeneration. Here, we use a small-molecule inhibitor of the pathway (DAPT) to demonstrate that Notch signaling is required for proper arm regeneration in the brittle star Ophioderma brevispina, a highly regenerative member of the phylum Echinodermata. We also employ a transcriptome-wide gene expression analysis (RNA-seq) to characterize the downstream genes controlled by the Notch pathway in the brittle star regeneration. We demonstrate that arm regeneration involves an extensive cross-talk between the Notch pathway and other cell signaling pathways. In the regrowing arm, Notch regulates the composition of the extracellular matrix, cell migration, proliferation, and apoptosis, as well as components of the innate immune response. We also show for the first time that Notch signaling regulates the activity of several transposable elements. Our data also suggests that one of the possible mechanisms through which Notch sustains its activity in the regenerating tissues is via suppression of Neuralized1. |
doi_str_mv | 10.1371/journal.pone.0232981 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2401743914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A623636727</galeid><doaj_id>oai_doaj_org_article_439fbe01c6de4f25a40850eb03d2bcb4</doaj_id><sourcerecordid>A623636727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-2adaf5bdc0cfd3c47bcdedb021aaf297cf367282370dd8b0ce57c3fa60f883313</originalsourceid><addsrcrecordid>eNqNkltr3DAQhU1padK0_6C0hkJpH3ari68vgSX0shAa6O1VjKWRV4vX2khyaP995awT1iUPxQ82o--c0YxPkrykZEl5ST9s7eB66JZ72-OSMM7qij5KTmnN2aJghD8--j5Jnnm_JSTnVVE8TU4443WRV-Q0Wa9kMDeYfrVBblJv2mhp-jY1PnV4PRiHKtXWpeB2sdBijw6CsX1q-hTSxpkQOkx9APc8eaKh8_hiep8lPz99_HHxZXF59Xl9sbpcyKJmYcFAgc4bJYnUisusbKRC1RBGATSrS6l5UbKK8ZIoVTVEYl5KrqEguqo4p_wseX3w3XfWi2kLXrCM0DLjNc0isT4QysJW7J3ZgfsjLBhxW7CuFeCCkR2KKNANEioLhZlmOWSkygk2hCvWyGb0Op-6Dc0OlcQ-OOhmpvOT3mxEa29EycbrlNHg3WTg7PWAPoid8RK7Dnq0w-29WZYxmo-TvfkHfXi6iWohDmB6bWNfOZqKVcF4Ma5vbLt8gIqPwp2RMTLaxPpM8H4miEzA36GFwXux_v7t_9mrX3P27RG7QejCxttuGEPk52B2AKWz3jvU90umRIyJv9uGGBMvpsRH2avjH3Qvuos4_wsI-PuI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2401743914</pqid></control><display><type>article</type><title>Active Notch signaling is required for arm regeneration in a brittle star</title><source>PubMed Central(OpenAccess)</source><source>Public Library of Science website</source><source>Directory of Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Mashanov, Vladimir ; Akiona, Jennifer ; Khoury, Maleana ; Ferrier, Jacob ; Reid, Robert ; Machado, Denis Jacob ; Zueva, Olga ; Janies, Daniel</creator><contributor>Reh, Thomas A</contributor><creatorcontrib>Mashanov, Vladimir ; Akiona, Jennifer ; Khoury, Maleana ; Ferrier, Jacob ; Reid, Robert ; Machado, Denis Jacob ; Zueva, Olga ; Janies, Daniel ; Reh, Thomas A</creatorcontrib><description>Cell signaling pathways play key roles in coordinating cellular events in development. The Notch signaling pathway is highly conserved across all multicellular animals and is known to coordinate a multitude of diverse cellular events, including proliferation, differentiation, fate specification, and cell death. Specific functions of the pathway are, however, highly context-dependent and are not well characterized in post-traumatic regeneration. Here, we use a small-molecule inhibitor of the pathway (DAPT) to demonstrate that Notch signaling is required for proper arm regeneration in the brittle star Ophioderma brevispina, a highly regenerative member of the phylum Echinodermata. We also employ a transcriptome-wide gene expression analysis (RNA-seq) to characterize the downstream genes controlled by the Notch pathway in the brittle star regeneration. We demonstrate that arm regeneration involves an extensive cross-talk between the Notch pathway and other cell signaling pathways. In the regrowing arm, Notch regulates the composition of the extracellular matrix, cell migration, proliferation, and apoptosis, as well as components of the innate immune response. We also show for the first time that Notch signaling regulates the activity of several transposable elements. Our data also suggests that one of the possible mechanisms through which Notch sustains its activity in the regenerating tissues is via suppression of Neuralized1.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0232981</identifier><identifier>PMID: 32396580</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Apoptosis ; Biochemistry ; Biology ; Biology and Life Sciences ; Brittle stars ; Cell cycle ; Cell death ; Cell differentiation ; Cell migration ; Cellular signal transduction ; Crosstalk ; Enzymes ; Extracellular matrix ; Fate ; Gene expression ; Genes ; Genetic aspects ; Genetic research ; Growth ; Immune response ; Innate immunity ; Ligands ; Medicine and Health Sciences ; Physiological aspects ; Regeneration ; Regeneration (Biology) ; Ribonucleic acid ; RNA ; Signal transduction ; Signaling ; Stem cells ; Time ; Transcription factors ; Transposons ; Wildlife conservation</subject><ispartof>PloS one, 2020-05, Vol.15 (5), p.e0232981-e0232981</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Mashanov et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Mashanov et al 2020 Mashanov et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-2adaf5bdc0cfd3c47bcdedb021aaf297cf367282370dd8b0ce57c3fa60f883313</citedby><cites>FETCH-LOGICAL-c692t-2adaf5bdc0cfd3c47bcdedb021aaf297cf367282370dd8b0ce57c3fa60f883313</cites><orcidid>0000-0002-6420-5940 ; 0000-0001-6875-7518 ; 0000-0002-4173-1040 ; 0000-0001-9858-4515</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7217437/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7217437/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32396580$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Reh, Thomas A</contributor><creatorcontrib>Mashanov, Vladimir</creatorcontrib><creatorcontrib>Akiona, Jennifer</creatorcontrib><creatorcontrib>Khoury, Maleana</creatorcontrib><creatorcontrib>Ferrier, Jacob</creatorcontrib><creatorcontrib>Reid, Robert</creatorcontrib><creatorcontrib>Machado, Denis Jacob</creatorcontrib><creatorcontrib>Zueva, Olga</creatorcontrib><creatorcontrib>Janies, Daniel</creatorcontrib><title>Active Notch signaling is required for arm regeneration in a brittle star</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Cell signaling pathways play key roles in coordinating cellular events in development. The Notch signaling pathway is highly conserved across all multicellular animals and is known to coordinate a multitude of diverse cellular events, including proliferation, differentiation, fate specification, and cell death. Specific functions of the pathway are, however, highly context-dependent and are not well characterized in post-traumatic regeneration. Here, we use a small-molecule inhibitor of the pathway (DAPT) to demonstrate that Notch signaling is required for proper arm regeneration in the brittle star Ophioderma brevispina, a highly regenerative member of the phylum Echinodermata. We also employ a transcriptome-wide gene expression analysis (RNA-seq) to characterize the downstream genes controlled by the Notch pathway in the brittle star regeneration. We demonstrate that arm regeneration involves an extensive cross-talk between the Notch pathway and other cell signaling pathways. In the regrowing arm, Notch regulates the composition of the extracellular matrix, cell migration, proliferation, and apoptosis, as well as components of the innate immune response. We also show for the first time that Notch signaling regulates the activity of several transposable elements. Our data also suggests that one of the possible mechanisms through which Notch sustains its activity in the regenerating tissues is via suppression of Neuralized1.</description><subject>Analysis</subject><subject>Apoptosis</subject><subject>Biochemistry</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Brittle stars</subject><subject>Cell cycle</subject><subject>Cell death</subject><subject>Cell differentiation</subject><subject>Cell migration</subject><subject>Cellular signal transduction</subject><subject>Crosstalk</subject><subject>Enzymes</subject><subject>Extracellular matrix</subject><subject>Fate</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic research</subject><subject>Growth</subject><subject>Immune response</subject><subject>Innate immunity</subject><subject>Ligands</subject><subject>Medicine and Health Sciences</subject><subject>Physiological aspects</subject><subject>Regeneration</subject><subject>Regeneration (Biology)</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>Stem cells</subject><subject>Time</subject><subject>Transcription factors</subject><subject>Transposons</subject><subject>Wildlife conservation</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkltr3DAQhU1padK0_6C0hkJpH3ari68vgSX0shAa6O1VjKWRV4vX2khyaP995awT1iUPxQ82o--c0YxPkrykZEl5ST9s7eB66JZ72-OSMM7qij5KTmnN2aJghD8--j5Jnnm_JSTnVVE8TU4443WRV-Q0Wa9kMDeYfrVBblJv2mhp-jY1PnV4PRiHKtXWpeB2sdBijw6CsX1q-hTSxpkQOkx9APc8eaKh8_hiep8lPz99_HHxZXF59Xl9sbpcyKJmYcFAgc4bJYnUisusbKRC1RBGATSrS6l5UbKK8ZIoVTVEYl5KrqEguqo4p_wseX3w3XfWi2kLXrCM0DLjNc0isT4QysJW7J3ZgfsjLBhxW7CuFeCCkR2KKNANEioLhZlmOWSkygk2hCvWyGb0Op-6Dc0OlcQ-OOhmpvOT3mxEa29EycbrlNHg3WTg7PWAPoid8RK7Dnq0w-29WZYxmo-TvfkHfXi6iWohDmB6bWNfOZqKVcF4Ma5vbLt8gIqPwp2RMTLaxPpM8H4miEzA36GFwXux_v7t_9mrX3P27RG7QejCxttuGEPk52B2AKWz3jvU90umRIyJv9uGGBMvpsRH2avjH3Qvuos4_wsI-PuI</recordid><startdate>20200512</startdate><enddate>20200512</enddate><creator>Mashanov, Vladimir</creator><creator>Akiona, Jennifer</creator><creator>Khoury, Maleana</creator><creator>Ferrier, Jacob</creator><creator>Reid, Robert</creator><creator>Machado, Denis Jacob</creator><creator>Zueva, Olga</creator><creator>Janies, Daniel</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6420-5940</orcidid><orcidid>https://orcid.org/0000-0001-6875-7518</orcidid><orcidid>https://orcid.org/0000-0002-4173-1040</orcidid><orcidid>https://orcid.org/0000-0001-9858-4515</orcidid></search><sort><creationdate>20200512</creationdate><title>Active Notch signaling is required for arm regeneration in a brittle star</title><author>Mashanov, Vladimir ; Akiona, Jennifer ; Khoury, Maleana ; Ferrier, Jacob ; Reid, Robert ; Machado, Denis Jacob ; Zueva, Olga ; Janies, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-2adaf5bdc0cfd3c47bcdedb021aaf297cf367282370dd8b0ce57c3fa60f883313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Apoptosis</topic><topic>Biochemistry</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Brittle stars</topic><topic>Cell cycle</topic><topic>Cell death</topic><topic>Cell differentiation</topic><topic>Cell migration</topic><topic>Cellular signal transduction</topic><topic>Crosstalk</topic><topic>Enzymes</topic><topic>Extracellular matrix</topic><topic>Fate</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic research</topic><topic>Growth</topic><topic>Immune response</topic><topic>Innate immunity</topic><topic>Ligands</topic><topic>Medicine and Health Sciences</topic><topic>Physiological aspects</topic><topic>Regeneration</topic><topic>Regeneration (Biology)</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>Stem cells</topic><topic>Time</topic><topic>Transcription factors</topic><topic>Transposons</topic><topic>Wildlife conservation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mashanov, Vladimir</creatorcontrib><creatorcontrib>Akiona, Jennifer</creatorcontrib><creatorcontrib>Khoury, Maleana</creatorcontrib><creatorcontrib>Ferrier, Jacob</creatorcontrib><creatorcontrib>Reid, Robert</creatorcontrib><creatorcontrib>Machado, Denis Jacob</creatorcontrib><creatorcontrib>Zueva, Olga</creatorcontrib><creatorcontrib>Janies, Daniel</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database (ProQuest)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mashanov, Vladimir</au><au>Akiona, Jennifer</au><au>Khoury, Maleana</au><au>Ferrier, Jacob</au><au>Reid, Robert</au><au>Machado, Denis Jacob</au><au>Zueva, Olga</au><au>Janies, Daniel</au><au>Reh, Thomas A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active Notch signaling is required for arm regeneration in a brittle star</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-05-12</date><risdate>2020</risdate><volume>15</volume><issue>5</issue><spage>e0232981</spage><epage>e0232981</epage><pages>e0232981-e0232981</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Cell signaling pathways play key roles in coordinating cellular events in development. The Notch signaling pathway is highly conserved across all multicellular animals and is known to coordinate a multitude of diverse cellular events, including proliferation, differentiation, fate specification, and cell death. Specific functions of the pathway are, however, highly context-dependent and are not well characterized in post-traumatic regeneration. Here, we use a small-molecule inhibitor of the pathway (DAPT) to demonstrate that Notch signaling is required for proper arm regeneration in the brittle star Ophioderma brevispina, a highly regenerative member of the phylum Echinodermata. We also employ a transcriptome-wide gene expression analysis (RNA-seq) to characterize the downstream genes controlled by the Notch pathway in the brittle star regeneration. We demonstrate that arm regeneration involves an extensive cross-talk between the Notch pathway and other cell signaling pathways. In the regrowing arm, Notch regulates the composition of the extracellular matrix, cell migration, proliferation, and apoptosis, as well as components of the innate immune response. We also show for the first time that Notch signaling regulates the activity of several transposable elements. Our data also suggests that one of the possible mechanisms through which Notch sustains its activity in the regenerating tissues is via suppression of Neuralized1.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32396580</pmid><doi>10.1371/journal.pone.0232981</doi><tpages>e0232981</tpages><orcidid>https://orcid.org/0000-0002-6420-5940</orcidid><orcidid>https://orcid.org/0000-0001-6875-7518</orcidid><orcidid>https://orcid.org/0000-0002-4173-1040</orcidid><orcidid>https://orcid.org/0000-0001-9858-4515</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-05, Vol.15 (5), p.e0232981-e0232981 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2401743914 |
source | PubMed Central(OpenAccess); Public Library of Science website; Directory of Open Access Journals; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library |
subjects | Analysis Apoptosis Biochemistry Biology Biology and Life Sciences Brittle stars Cell cycle Cell death Cell differentiation Cell migration Cellular signal transduction Crosstalk Enzymes Extracellular matrix Fate Gene expression Genes Genetic aspects Genetic research Growth Immune response Innate immunity Ligands Medicine and Health Sciences Physiological aspects Regeneration Regeneration (Biology) Ribonucleic acid RNA Signal transduction Signaling Stem cells Time Transcription factors Transposons Wildlife conservation |
title | Active Notch signaling is required for arm regeneration in a brittle star |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A40%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20Notch%20signaling%20is%20required%20for%20arm%20regeneration%20in%20a%20brittle%20star&rft.jtitle=PloS%20one&rft.au=Mashanov,%20Vladimir&rft.date=2020-05-12&rft.volume=15&rft.issue=5&rft.spage=e0232981&rft.epage=e0232981&rft.pages=e0232981-e0232981&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0232981&rft_dat=%3Cgale_plos_%3EA623636727%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2401743914&rft_id=info:pmid/32396580&rft_galeid=A623636727&rft_doaj_id=oai_doaj_org_article_439fbe01c6de4f25a40850eb03d2bcb4&rfr_iscdi=true |