Genetic algorithm-based personalized models of human cardiac action potential

We present a novel modification of genetic algorithm (GA) which determines personalized parameters of cardiomyocyte electrophysiology model based on set of experimental human action potential (AP) recorded at different heart rates. In order to find the steady state solution, the optimized algorithm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-05, Vol.15 (5), p.e0231695-e0231695
Hauptverfasser: Smirnov, Dmitrii, Pikunov, Andrey, Syunyaev, Roman, Deviatiiarov, Ruslan, Gusev, Oleg, Aras, Kedar, Gams, Anna, Koppel, Aaron, Efimov, Igor R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0231695
container_issue 5
container_start_page e0231695
container_title PloS one
container_volume 15
creator Smirnov, Dmitrii
Pikunov, Andrey
Syunyaev, Roman
Deviatiiarov, Ruslan
Gusev, Oleg
Aras, Kedar
Gams, Anna
Koppel, Aaron
Efimov, Igor R
description We present a novel modification of genetic algorithm (GA) which determines personalized parameters of cardiomyocyte electrophysiology model based on set of experimental human action potential (AP) recorded at different heart rates. In order to find the steady state solution, the optimized algorithm performs simultaneous search in the parametric and slow variables spaces. We demonstrate that several GA modifications are required for effective convergence. Firstly, we used Cauchy mutation along a random direction in the parametric space. Secondly, relatively large number of elite organisms (6-10% of the population passed on to new generation) was required for effective convergence. Test runs with synthetic AP as input data indicate that algorithm error is low for high amplitude ionic currents (1.6±1.6% for IKr, 3.2±3.5% for IK1, 3.9±3.5% for INa, 8.2±6.3% for ICaL). Experimental signal-to-noise ratio above 28 dB was required for high quality GA performance. GA was validated against optical mapping recordings of human ventricular AP and mRNA expression profile of donor hearts. In particular, GA output parameters were rescaled proportionally to mRNA levels ratio between patients. We have demonstrated that mRNA-based models predict the AP waveform dependence on heart rate with high precision. The latter also provides a novel technique of model personalization that makes it possible to map gene expression profile to cardiac function.
doi_str_mv 10.1371/journal.pone.0231695
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2401057663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A623526004</galeid><doaj_id>oai_doaj_org_article_012b3b476e7e47378cf33471d583a2bc</doaj_id><sourcerecordid>A623526004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-68c91388169db73a7569fe1e0182f2ed9b4f7eb0308114d2f40c16e9a8e160ab3</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6D0QLguhFx3y0SXojLIuuAysLft2GND3tZEibmrSi_npTp7tMZS-kF2mS532Tc_ImyVOMNphy_GbvJt8ruxlcDxtEKGZlcS85xSUlGSOI3j_6P0kehbBHqKCCsYfJCSW0JKQQp8nHS-hhNDpVtnXejLsuq1SAOh3ABxf9ze846VwNNqSuSXdTp_pUK18bFUV6NK5PBzdCPxplHycPGmUDPFnGs-Tr-3dfLj5kV9eX24vzq0yzkowZE7rEVIh45briVPGClQ1gQFiQhkBdVnnDoUIUCYzzmjQ50phBqQRghlRFz5LnB9_BuiCXTgRJcoRRwRmjkdgeiNqpvRy86ZT_JZ0y8u-C861UPtZtQSJMKlrlnAGHnFMudENpznFdCKpIpaPX2-W0qeqg1rFWr-zKdL3Tm51s3Q_JyfxSIhq8Wgy8-z5BGGVnggZrVQ9uOtxbYE7KGX3xD3p3dQvVqliA6RsXz9WzqTxnhBaEIZRHanMHFb8aOqNjbBoT11eC1ytBZEb4ObZqCkFuP3_6f_b625p9ecTuQNlxF5yd5vCENZgfQO1dCB6a2yZjJOde3nRDzqmXS-qj7NnxA92KbmJO_wA4-_s0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2401057663</pqid></control><display><type>article</type><title>Genetic algorithm-based personalized models of human cardiac action potential</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Smirnov, Dmitrii ; Pikunov, Andrey ; Syunyaev, Roman ; Deviatiiarov, Ruslan ; Gusev, Oleg ; Aras, Kedar ; Gams, Anna ; Koppel, Aaron ; Efimov, Igor R</creator><creatorcontrib>Smirnov, Dmitrii ; Pikunov, Andrey ; Syunyaev, Roman ; Deviatiiarov, Ruslan ; Gusev, Oleg ; Aras, Kedar ; Gams, Anna ; Koppel, Aaron ; Efimov, Igor R</creatorcontrib><description>We present a novel modification of genetic algorithm (GA) which determines personalized parameters of cardiomyocyte electrophysiology model based on set of experimental human action potential (AP) recorded at different heart rates. In order to find the steady state solution, the optimized algorithm performs simultaneous search in the parametric and slow variables spaces. We demonstrate that several GA modifications are required for effective convergence. Firstly, we used Cauchy mutation along a random direction in the parametric space. Secondly, relatively large number of elite organisms (6-10% of the population passed on to new generation) was required for effective convergence. Test runs with synthetic AP as input data indicate that algorithm error is low for high amplitude ionic currents (1.6±1.6% for IKr, 3.2±3.5% for IK1, 3.9±3.5% for INa, 8.2±6.3% for ICaL). Experimental signal-to-noise ratio above 28 dB was required for high quality GA performance. GA was validated against optical mapping recordings of human ventricular AP and mRNA expression profile of donor hearts. In particular, GA output parameters were rescaled proportionally to mRNA levels ratio between patients. We have demonstrated that mRNA-based models predict the AP waveform dependence on heart rate with high precision. The latter also provides a novel technique of model personalization that makes it possible to map gene expression profile to cardiac function.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0231695</identifier><identifier>PMID: 32392258</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Action potential ; Action Potentials - genetics ; Action Potentials - physiology ; Algorithms ; Biology and Life Sciences ; Cardiomyocytes ; Convergence ; Customization ; Electrophysiology ; Engineering and Technology ; Gene Expression ; Gene mapping ; Genes ; Genetic algorithms ; Heart ; Heart - physiology ; Heart conduction system ; Heart rate ; Heart Transplantation ; Heart Ventricles - metabolism ; Humans ; Mapping ; Mathematical models ; Medicine and Health Sciences ; Messenger RNA ; Methods ; Models, Biological ; Mutation ; Myocytes, Cardiac - physiology ; Noise levels ; Novels ; Organisms ; Parameter modification ; Patch-Clamp Techniques ; Physical Sciences ; Physics ; Precision medicine ; Research and Analysis Methods ; Restitution ; RNA ; RNA-Seq ; Signal to noise ratio ; Simulation ; Tissue Donors ; Ventricle ; Waveforms</subject><ispartof>PloS one, 2020-05, Vol.15 (5), p.e0231695-e0231695</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Smirnov et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Smirnov et al 2020 Smirnov et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-68c91388169db73a7569fe1e0182f2ed9b4f7eb0308114d2f40c16e9a8e160ab3</citedby><cites>FETCH-LOGICAL-c692t-68c91388169db73a7569fe1e0182f2ed9b4f7eb0308114d2f40c16e9a8e160ab3</cites><orcidid>0000-0002-6203-9758 ; 0000-0002-3052-8469 ; 0000-0003-4887-2695 ; 0000-0001-9582-0199 ; 0000-0002-9898-1462</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7213718/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7213718/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32392258$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smirnov, Dmitrii</creatorcontrib><creatorcontrib>Pikunov, Andrey</creatorcontrib><creatorcontrib>Syunyaev, Roman</creatorcontrib><creatorcontrib>Deviatiiarov, Ruslan</creatorcontrib><creatorcontrib>Gusev, Oleg</creatorcontrib><creatorcontrib>Aras, Kedar</creatorcontrib><creatorcontrib>Gams, Anna</creatorcontrib><creatorcontrib>Koppel, Aaron</creatorcontrib><creatorcontrib>Efimov, Igor R</creatorcontrib><title>Genetic algorithm-based personalized models of human cardiac action potential</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>We present a novel modification of genetic algorithm (GA) which determines personalized parameters of cardiomyocyte electrophysiology model based on set of experimental human action potential (AP) recorded at different heart rates. In order to find the steady state solution, the optimized algorithm performs simultaneous search in the parametric and slow variables spaces. We demonstrate that several GA modifications are required for effective convergence. Firstly, we used Cauchy mutation along a random direction in the parametric space. Secondly, relatively large number of elite organisms (6-10% of the population passed on to new generation) was required for effective convergence. Test runs with synthetic AP as input data indicate that algorithm error is low for high amplitude ionic currents (1.6±1.6% for IKr, 3.2±3.5% for IK1, 3.9±3.5% for INa, 8.2±6.3% for ICaL). Experimental signal-to-noise ratio above 28 dB was required for high quality GA performance. GA was validated against optical mapping recordings of human ventricular AP and mRNA expression profile of donor hearts. In particular, GA output parameters were rescaled proportionally to mRNA levels ratio between patients. We have demonstrated that mRNA-based models predict the AP waveform dependence on heart rate with high precision. The latter also provides a novel technique of model personalization that makes it possible to map gene expression profile to cardiac function.</description><subject>Action potential</subject><subject>Action Potentials - genetics</subject><subject>Action Potentials - physiology</subject><subject>Algorithms</subject><subject>Biology and Life Sciences</subject><subject>Cardiomyocytes</subject><subject>Convergence</subject><subject>Customization</subject><subject>Electrophysiology</subject><subject>Engineering and Technology</subject><subject>Gene Expression</subject><subject>Gene mapping</subject><subject>Genes</subject><subject>Genetic algorithms</subject><subject>Heart</subject><subject>Heart - physiology</subject><subject>Heart conduction system</subject><subject>Heart rate</subject><subject>Heart Transplantation</subject><subject>Heart Ventricles - metabolism</subject><subject>Humans</subject><subject>Mapping</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Messenger RNA</subject><subject>Methods</subject><subject>Models, Biological</subject><subject>Mutation</subject><subject>Myocytes, Cardiac - physiology</subject><subject>Noise levels</subject><subject>Novels</subject><subject>Organisms</subject><subject>Parameter modification</subject><subject>Patch-Clamp Techniques</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Precision medicine</subject><subject>Research and Analysis Methods</subject><subject>Restitution</subject><subject>RNA</subject><subject>RNA-Seq</subject><subject>Signal to noise ratio</subject><subject>Simulation</subject><subject>Tissue Donors</subject><subject>Ventricle</subject><subject>Waveforms</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6D0QLguhFx3y0SXojLIuuAysLft2GND3tZEibmrSi_npTp7tMZS-kF2mS532Tc_ImyVOMNphy_GbvJt8ruxlcDxtEKGZlcS85xSUlGSOI3j_6P0kehbBHqKCCsYfJCSW0JKQQp8nHS-hhNDpVtnXejLsuq1SAOh3ABxf9ze846VwNNqSuSXdTp_pUK18bFUV6NK5PBzdCPxplHycPGmUDPFnGs-Tr-3dfLj5kV9eX24vzq0yzkowZE7rEVIh45briVPGClQ1gQFiQhkBdVnnDoUIUCYzzmjQ50phBqQRghlRFz5LnB9_BuiCXTgRJcoRRwRmjkdgeiNqpvRy86ZT_JZ0y8u-C861UPtZtQSJMKlrlnAGHnFMudENpznFdCKpIpaPX2-W0qeqg1rFWr-zKdL3Tm51s3Q_JyfxSIhq8Wgy8-z5BGGVnggZrVQ9uOtxbYE7KGX3xD3p3dQvVqliA6RsXz9WzqTxnhBaEIZRHanMHFb8aOqNjbBoT11eC1ytBZEb4ObZqCkFuP3_6f_b625p9ecTuQNlxF5yd5vCENZgfQO1dCB6a2yZjJOde3nRDzqmXS-qj7NnxA92KbmJO_wA4-_s0</recordid><startdate>20200511</startdate><enddate>20200511</enddate><creator>Smirnov, Dmitrii</creator><creator>Pikunov, Andrey</creator><creator>Syunyaev, Roman</creator><creator>Deviatiiarov, Ruslan</creator><creator>Gusev, Oleg</creator><creator>Aras, Kedar</creator><creator>Gams, Anna</creator><creator>Koppel, Aaron</creator><creator>Efimov, Igor R</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6203-9758</orcidid><orcidid>https://orcid.org/0000-0002-3052-8469</orcidid><orcidid>https://orcid.org/0000-0003-4887-2695</orcidid><orcidid>https://orcid.org/0000-0001-9582-0199</orcidid><orcidid>https://orcid.org/0000-0002-9898-1462</orcidid></search><sort><creationdate>20200511</creationdate><title>Genetic algorithm-based personalized models of human cardiac action potential</title><author>Smirnov, Dmitrii ; Pikunov, Andrey ; Syunyaev, Roman ; Deviatiiarov, Ruslan ; Gusev, Oleg ; Aras, Kedar ; Gams, Anna ; Koppel, Aaron ; Efimov, Igor R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-68c91388169db73a7569fe1e0182f2ed9b4f7eb0308114d2f40c16e9a8e160ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Action potential</topic><topic>Action Potentials - genetics</topic><topic>Action Potentials - physiology</topic><topic>Algorithms</topic><topic>Biology and Life Sciences</topic><topic>Cardiomyocytes</topic><topic>Convergence</topic><topic>Customization</topic><topic>Electrophysiology</topic><topic>Engineering and Technology</topic><topic>Gene Expression</topic><topic>Gene mapping</topic><topic>Genes</topic><topic>Genetic algorithms</topic><topic>Heart</topic><topic>Heart - physiology</topic><topic>Heart conduction system</topic><topic>Heart rate</topic><topic>Heart Transplantation</topic><topic>Heart Ventricles - metabolism</topic><topic>Humans</topic><topic>Mapping</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Messenger RNA</topic><topic>Methods</topic><topic>Models, Biological</topic><topic>Mutation</topic><topic>Myocytes, Cardiac - physiology</topic><topic>Noise levels</topic><topic>Novels</topic><topic>Organisms</topic><topic>Parameter modification</topic><topic>Patch-Clamp Techniques</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Precision medicine</topic><topic>Research and Analysis Methods</topic><topic>Restitution</topic><topic>RNA</topic><topic>RNA-Seq</topic><topic>Signal to noise ratio</topic><topic>Simulation</topic><topic>Tissue Donors</topic><topic>Ventricle</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smirnov, Dmitrii</creatorcontrib><creatorcontrib>Pikunov, Andrey</creatorcontrib><creatorcontrib>Syunyaev, Roman</creatorcontrib><creatorcontrib>Deviatiiarov, Ruslan</creatorcontrib><creatorcontrib>Gusev, Oleg</creatorcontrib><creatorcontrib>Aras, Kedar</creatorcontrib><creatorcontrib>Gams, Anna</creatorcontrib><creatorcontrib>Koppel, Aaron</creatorcontrib><creatorcontrib>Efimov, Igor R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smirnov, Dmitrii</au><au>Pikunov, Andrey</au><au>Syunyaev, Roman</au><au>Deviatiiarov, Ruslan</au><au>Gusev, Oleg</au><au>Aras, Kedar</au><au>Gams, Anna</au><au>Koppel, Aaron</au><au>Efimov, Igor R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic algorithm-based personalized models of human cardiac action potential</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-05-11</date><risdate>2020</risdate><volume>15</volume><issue>5</issue><spage>e0231695</spage><epage>e0231695</epage><pages>e0231695-e0231695</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>We present a novel modification of genetic algorithm (GA) which determines personalized parameters of cardiomyocyte electrophysiology model based on set of experimental human action potential (AP) recorded at different heart rates. In order to find the steady state solution, the optimized algorithm performs simultaneous search in the parametric and slow variables spaces. We demonstrate that several GA modifications are required for effective convergence. Firstly, we used Cauchy mutation along a random direction in the parametric space. Secondly, relatively large number of elite organisms (6-10% of the population passed on to new generation) was required for effective convergence. Test runs with synthetic AP as input data indicate that algorithm error is low for high amplitude ionic currents (1.6±1.6% for IKr, 3.2±3.5% for IK1, 3.9±3.5% for INa, 8.2±6.3% for ICaL). Experimental signal-to-noise ratio above 28 dB was required for high quality GA performance. GA was validated against optical mapping recordings of human ventricular AP and mRNA expression profile of donor hearts. In particular, GA output parameters were rescaled proportionally to mRNA levels ratio between patients. We have demonstrated that mRNA-based models predict the AP waveform dependence on heart rate with high precision. The latter also provides a novel technique of model personalization that makes it possible to map gene expression profile to cardiac function.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32392258</pmid><doi>10.1371/journal.pone.0231695</doi><tpages>e0231695</tpages><orcidid>https://orcid.org/0000-0002-6203-9758</orcidid><orcidid>https://orcid.org/0000-0002-3052-8469</orcidid><orcidid>https://orcid.org/0000-0003-4887-2695</orcidid><orcidid>https://orcid.org/0000-0001-9582-0199</orcidid><orcidid>https://orcid.org/0000-0002-9898-1462</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-05, Vol.15 (5), p.e0231695-e0231695
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2401057663
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Action potential
Action Potentials - genetics
Action Potentials - physiology
Algorithms
Biology and Life Sciences
Cardiomyocytes
Convergence
Customization
Electrophysiology
Engineering and Technology
Gene Expression
Gene mapping
Genes
Genetic algorithms
Heart
Heart - physiology
Heart conduction system
Heart rate
Heart Transplantation
Heart Ventricles - metabolism
Humans
Mapping
Mathematical models
Medicine and Health Sciences
Messenger RNA
Methods
Models, Biological
Mutation
Myocytes, Cardiac - physiology
Noise levels
Novels
Organisms
Parameter modification
Patch-Clamp Techniques
Physical Sciences
Physics
Precision medicine
Research and Analysis Methods
Restitution
RNA
RNA-Seq
Signal to noise ratio
Simulation
Tissue Donors
Ventricle
Waveforms
title Genetic algorithm-based personalized models of human cardiac action potential
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T00%3A45%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20algorithm-based%20personalized%20models%20of%20human%20cardiac%20action%20potential&rft.jtitle=PloS%20one&rft.au=Smirnov,%20Dmitrii&rft.date=2020-05-11&rft.volume=15&rft.issue=5&rft.spage=e0231695&rft.epage=e0231695&rft.pages=e0231695-e0231695&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0231695&rft_dat=%3Cgale_plos_%3EA623526004%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2401057663&rft_id=info:pmid/32392258&rft_galeid=A623526004&rft_doaj_id=oai_doaj_org_article_012b3b476e7e47378cf33471d583a2bc&rfr_iscdi=true