Theoretical investigation of a genetic switch for metabolic adaptation
Membrane transporters carry key metabolites across the cell membrane and, from a resource standpoint, are hypothesized to be produced when necessary. The expression of membrane transporters in metabolic pathways is often upregulated by the transporter substrate. In E. coli, such systems include for...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-05, Vol.15 (5), p.e0226453-e0226453 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0226453 |
---|---|
container_issue | 5 |
container_start_page | e0226453 |
container_title | PloS one |
container_volume | 15 |
creator | Laxhuber, Kathrin S Morrison, Muir J Chure, Griffin Belliveau, Nathan M Strandkvist, Charlotte Naughton, Kyle L Phillips, Rob |
description | Membrane transporters carry key metabolites across the cell membrane and, from a resource standpoint, are hypothesized to be produced when necessary. The expression of membrane transporters in metabolic pathways is often upregulated by the transporter substrate. In E. coli, such systems include for example the lacY, araFGH, and xylFGH genes, which encode for lactose, arabinose, and xylose transporters, respectively. As a case study of a minimal system, we build a generalizable physical model of the xapABR genetic circuit, which features a regulatory feedback loop via membrane transport (positive feedback) and enzymatic degradation (negative feedback) of an inducer. Dynamical systems analysis and stochastic simulations show that the membrane transport makes the model system bistable in certain parameter regimes. Thus, it serves as a genetic "on-off" switch, enabling the cell to only produce a set of metabolic enzymes when the corresponding metabolite is present in large amounts. We find that the negative feedback from the degradation enzyme does not significantly disturb the positive feedback from the membrane transporter. We investigate hysteresis in the switching and discuss the role of cooperativity and multiple binding sites in the model circuit. Fundamentally, this work explores how a stable genetic switch for a set of enzymes is obtained from transcriptional auto-activation of a membrane transporter through its substrate. |
doi_str_mv | 10.1371/journal.pone.0226453 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2399838734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A623043463</galeid><doaj_id>oai_doaj_org_article_5333eb7e46904c15b7d46fd347b82502</doaj_id><sourcerecordid>A623043463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-46a6c21977fa54203882f35773fd178df3b35456242c5230536b8b41aa4c8c513</originalsourceid><addsrcrecordid>eNqNks1u1DAUhSNERUvhDRBEQkKwmCH29U-yQaoqCiNVqgSFreU4TsYjTzzYToG3x-mk1aTqAmXhyP7u8b3HJ8teoWKJgKOPGzf4XtrlzvV6WWDMCIUn2QmqAC8YLuDpwf9x9jyETVFQKBl7lh0DBl6VmJ5kF9dr7byORkmbm_5Gh2g6GY3rc9fmMu90Px7m4beJap23zudbHWXtbNqUjdzFW_hFdtRKG_TLaT3Nflx8vj7_uri8-rI6P7tcKFbhuCBMMoVRxXkrKUmNlSVugXIObYN42bRQAyWUYYIVxZD6ZXVZEyQlUaWiCE6zN3vdnXVBTBYEgaGqSig5kESs9kTj5EbsvNlK_1c4acTthvOdkD5NZLWgAKBrrgmrCqIQrXlDWNsA4XXypsBJ69N021BvdaN0H720M9H5SW_WonM3guPUesGTwPtJwLtfQ_JWbE1Q2lrZazekvkl6E4oKPk729gH6-HQT1ck0gOlbl-5Vo6g4Y8kwAoRBopaPUOlr9NaolJfWpP1ZwYdZQWKi_hM7OYQgVt-__T979XPOvjtg11rauA7ODmNkwhwke1B5F4LX7b3JqBBj3O_cEGPcxRT3VPb68IHui-7yDf8AAF33oA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2399838734</pqid></control><display><type>article</type><title>Theoretical investigation of a genetic switch for metabolic adaptation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Laxhuber, Kathrin S ; Morrison, Muir J ; Chure, Griffin ; Belliveau, Nathan M ; Strandkvist, Charlotte ; Naughton, Kyle L ; Phillips, Rob</creator><contributor>Espinoza-Fonseca, L. Michel</contributor><creatorcontrib>Laxhuber, Kathrin S ; Morrison, Muir J ; Chure, Griffin ; Belliveau, Nathan M ; Strandkvist, Charlotte ; Naughton, Kyle L ; Phillips, Rob ; Espinoza-Fonseca, L. Michel</creatorcontrib><description>Membrane transporters carry key metabolites across the cell membrane and, from a resource standpoint, are hypothesized to be produced when necessary. The expression of membrane transporters in metabolic pathways is often upregulated by the transporter substrate. In E. coli, such systems include for example the lacY, araFGH, and xylFGH genes, which encode for lactose, arabinose, and xylose transporters, respectively. As a case study of a minimal system, we build a generalizable physical model of the xapABR genetic circuit, which features a regulatory feedback loop via membrane transport (positive feedback) and enzymatic degradation (negative feedback) of an inducer. Dynamical systems analysis and stochastic simulations show that the membrane transport makes the model system bistable in certain parameter regimes. Thus, it serves as a genetic "on-off" switch, enabling the cell to only produce a set of metabolic enzymes when the corresponding metabolite is present in large amounts. We find that the negative feedback from the degradation enzyme does not significantly disturb the positive feedback from the membrane transporter. We investigate hysteresis in the switching and discuss the role of cooperativity and multiple binding sites in the model circuit. Fundamentally, this work explores how a stable genetic switch for a set of enzymes is obtained from transcriptional auto-activation of a membrane transporter through its substrate.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0226453</identifier><identifier>PMID: 32379825</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptation ; Adaptation, Physiological - genetics ; Arabinose ; Binding Sites ; Bioengineering ; Biological Transport - genetics ; Biology ; Biology and Life Sciences ; Cell membranes ; Circuits ; Computer simulation ; Degradation ; E coli ; Engineering and Technology ; Enzymes ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Feedback ; Feedback loops ; Feedback, Physiological ; Gene expression ; Gene Expression Regulation, Bacterial ; Gene Regulatory Networks ; Genes ; Genes, Switch ; Genetic aspects ; Genetic regulation ; Genetic research ; Lactose ; Membrane proteins ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - metabolism ; Membranes ; Metabolic pathways ; Metabolic regulation ; Metabolism ; Metabolites ; Models, Biological ; Monosaccharides ; Negative feedback ; Pentosyltransferases - genetics ; Pentosyltransferases - metabolism ; Physics ; Physiological aspects ; Positive feedback ; Promoter Regions, Genetic ; Proteins ; Ribonucleosides - metabolism ; RNA, Messenger - metabolism ; Stochastic Processes ; Stochasticity ; Substrates ; Systems analysis ; Trans-Activators - genetics ; Trans-Activators - metabolism ; Transcription (Genetics) ; Transcription activation ; Transcription factors ; Transcription, Genetic ; Transport ; Transport proteins ; Xanthines</subject><ispartof>PloS one, 2020-05, Vol.15 (5), p.e0226453-e0226453</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Laxhuber et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Laxhuber et al 2020 Laxhuber et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-46a6c21977fa54203882f35773fd178df3b35456242c5230536b8b41aa4c8c513</citedby><cites>FETCH-LOGICAL-c692t-46a6c21977fa54203882f35773fd178df3b35456242c5230536b8b41aa4c8c513</cites><orcidid>0000-0002-8104-3525 ; 0000-0002-0768-7234</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7205307/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7205307/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32379825$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Espinoza-Fonseca, L. Michel</contributor><creatorcontrib>Laxhuber, Kathrin S</creatorcontrib><creatorcontrib>Morrison, Muir J</creatorcontrib><creatorcontrib>Chure, Griffin</creatorcontrib><creatorcontrib>Belliveau, Nathan M</creatorcontrib><creatorcontrib>Strandkvist, Charlotte</creatorcontrib><creatorcontrib>Naughton, Kyle L</creatorcontrib><creatorcontrib>Phillips, Rob</creatorcontrib><title>Theoretical investigation of a genetic switch for metabolic adaptation</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Membrane transporters carry key metabolites across the cell membrane and, from a resource standpoint, are hypothesized to be produced when necessary. The expression of membrane transporters in metabolic pathways is often upregulated by the transporter substrate. In E. coli, such systems include for example the lacY, araFGH, and xylFGH genes, which encode for lactose, arabinose, and xylose transporters, respectively. As a case study of a minimal system, we build a generalizable physical model of the xapABR genetic circuit, which features a regulatory feedback loop via membrane transport (positive feedback) and enzymatic degradation (negative feedback) of an inducer. Dynamical systems analysis and stochastic simulations show that the membrane transport makes the model system bistable in certain parameter regimes. Thus, it serves as a genetic "on-off" switch, enabling the cell to only produce a set of metabolic enzymes when the corresponding metabolite is present in large amounts. We find that the negative feedback from the degradation enzyme does not significantly disturb the positive feedback from the membrane transporter. We investigate hysteresis in the switching and discuss the role of cooperativity and multiple binding sites in the model circuit. Fundamentally, this work explores how a stable genetic switch for a set of enzymes is obtained from transcriptional auto-activation of a membrane transporter through its substrate.</description><subject>Adaptation</subject><subject>Adaptation, Physiological - genetics</subject><subject>Arabinose</subject><subject>Binding Sites</subject><subject>Bioengineering</subject><subject>Biological Transport - genetics</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Cell membranes</subject><subject>Circuits</subject><subject>Computer simulation</subject><subject>Degradation</subject><subject>E coli</subject><subject>Engineering and Technology</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Feedback</subject><subject>Feedback loops</subject><subject>Feedback, Physiological</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Gene Regulatory Networks</subject><subject>Genes</subject><subject>Genes, Switch</subject><subject>Genetic aspects</subject><subject>Genetic regulation</subject><subject>Genetic research</subject><subject>Lactose</subject><subject>Membrane proteins</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Membranes</subject><subject>Metabolic pathways</subject><subject>Metabolic regulation</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Models, Biological</subject><subject>Monosaccharides</subject><subject>Negative feedback</subject><subject>Pentosyltransferases - genetics</subject><subject>Pentosyltransferases - metabolism</subject><subject>Physics</subject><subject>Physiological aspects</subject><subject>Positive feedback</subject><subject>Promoter Regions, Genetic</subject><subject>Proteins</subject><subject>Ribonucleosides - metabolism</subject><subject>RNA, Messenger - metabolism</subject><subject>Stochastic Processes</subject><subject>Stochasticity</subject><subject>Substrates</subject><subject>Systems analysis</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription (Genetics)</subject><subject>Transcription activation</subject><subject>Transcription factors</subject><subject>Transcription, Genetic</subject><subject>Transport</subject><subject>Transport proteins</subject><subject>Xanthines</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNks1u1DAUhSNERUvhDRBEQkKwmCH29U-yQaoqCiNVqgSFreU4TsYjTzzYToG3x-mk1aTqAmXhyP7u8b3HJ8teoWKJgKOPGzf4XtrlzvV6WWDMCIUn2QmqAC8YLuDpwf9x9jyETVFQKBl7lh0DBl6VmJ5kF9dr7byORkmbm_5Gh2g6GY3rc9fmMu90Px7m4beJap23zudbHWXtbNqUjdzFW_hFdtRKG_TLaT3Nflx8vj7_uri8-rI6P7tcKFbhuCBMMoVRxXkrKUmNlSVugXIObYN42bRQAyWUYYIVxZD6ZXVZEyQlUaWiCE6zN3vdnXVBTBYEgaGqSig5kESs9kTj5EbsvNlK_1c4acTthvOdkD5NZLWgAKBrrgmrCqIQrXlDWNsA4XXypsBJ69N021BvdaN0H720M9H5SW_WonM3guPUesGTwPtJwLtfQ_JWbE1Q2lrZazekvkl6E4oKPk729gH6-HQT1ck0gOlbl-5Vo6g4Y8kwAoRBopaPUOlr9NaolJfWpP1ZwYdZQWKi_hM7OYQgVt-__T979XPOvjtg11rauA7ODmNkwhwke1B5F4LX7b3JqBBj3O_cEGPcxRT3VPb68IHui-7yDf8AAF33oA</recordid><startdate>20200507</startdate><enddate>20200507</enddate><creator>Laxhuber, Kathrin S</creator><creator>Morrison, Muir J</creator><creator>Chure, Griffin</creator><creator>Belliveau, Nathan M</creator><creator>Strandkvist, Charlotte</creator><creator>Naughton, Kyle L</creator><creator>Phillips, Rob</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8104-3525</orcidid><orcidid>https://orcid.org/0000-0002-0768-7234</orcidid></search><sort><creationdate>20200507</creationdate><title>Theoretical investigation of a genetic switch for metabolic adaptation</title><author>Laxhuber, Kathrin S ; Morrison, Muir J ; Chure, Griffin ; Belliveau, Nathan M ; Strandkvist, Charlotte ; Naughton, Kyle L ; Phillips, Rob</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-46a6c21977fa54203882f35773fd178df3b35456242c5230536b8b41aa4c8c513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation</topic><topic>Adaptation, Physiological - genetics</topic><topic>Arabinose</topic><topic>Binding Sites</topic><topic>Bioengineering</topic><topic>Biological Transport - genetics</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Cell membranes</topic><topic>Circuits</topic><topic>Computer simulation</topic><topic>Degradation</topic><topic>E coli</topic><topic>Engineering and Technology</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Feedback</topic><topic>Feedback loops</topic><topic>Feedback, Physiological</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Gene Regulatory Networks</topic><topic>Genes</topic><topic>Genes, Switch</topic><topic>Genetic aspects</topic><topic>Genetic regulation</topic><topic>Genetic research</topic><topic>Lactose</topic><topic>Membrane proteins</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Membranes</topic><topic>Metabolic pathways</topic><topic>Metabolic regulation</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Models, Biological</topic><topic>Monosaccharides</topic><topic>Negative feedback</topic><topic>Pentosyltransferases - genetics</topic><topic>Pentosyltransferases - metabolism</topic><topic>Physics</topic><topic>Physiological aspects</topic><topic>Positive feedback</topic><topic>Promoter Regions, Genetic</topic><topic>Proteins</topic><topic>Ribonucleosides - metabolism</topic><topic>RNA, Messenger - metabolism</topic><topic>Stochastic Processes</topic><topic>Stochasticity</topic><topic>Substrates</topic><topic>Systems analysis</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription (Genetics)</topic><topic>Transcription activation</topic><topic>Transcription factors</topic><topic>Transcription, Genetic</topic><topic>Transport</topic><topic>Transport proteins</topic><topic>Xanthines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laxhuber, Kathrin S</creatorcontrib><creatorcontrib>Morrison, Muir J</creatorcontrib><creatorcontrib>Chure, Griffin</creatorcontrib><creatorcontrib>Belliveau, Nathan M</creatorcontrib><creatorcontrib>Strandkvist, Charlotte</creatorcontrib><creatorcontrib>Naughton, Kyle L</creatorcontrib><creatorcontrib>Phillips, Rob</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laxhuber, Kathrin S</au><au>Morrison, Muir J</au><au>Chure, Griffin</au><au>Belliveau, Nathan M</au><au>Strandkvist, Charlotte</au><au>Naughton, Kyle L</au><au>Phillips, Rob</au><au>Espinoza-Fonseca, L. Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical investigation of a genetic switch for metabolic adaptation</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-05-07</date><risdate>2020</risdate><volume>15</volume><issue>5</issue><spage>e0226453</spage><epage>e0226453</epage><pages>e0226453-e0226453</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Membrane transporters carry key metabolites across the cell membrane and, from a resource standpoint, are hypothesized to be produced when necessary. The expression of membrane transporters in metabolic pathways is often upregulated by the transporter substrate. In E. coli, such systems include for example the lacY, araFGH, and xylFGH genes, which encode for lactose, arabinose, and xylose transporters, respectively. As a case study of a minimal system, we build a generalizable physical model of the xapABR genetic circuit, which features a regulatory feedback loop via membrane transport (positive feedback) and enzymatic degradation (negative feedback) of an inducer. Dynamical systems analysis and stochastic simulations show that the membrane transport makes the model system bistable in certain parameter regimes. Thus, it serves as a genetic "on-off" switch, enabling the cell to only produce a set of metabolic enzymes when the corresponding metabolite is present in large amounts. We find that the negative feedback from the degradation enzyme does not significantly disturb the positive feedback from the membrane transporter. We investigate hysteresis in the switching and discuss the role of cooperativity and multiple binding sites in the model circuit. Fundamentally, this work explores how a stable genetic switch for a set of enzymes is obtained from transcriptional auto-activation of a membrane transporter through its substrate.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32379825</pmid><doi>10.1371/journal.pone.0226453</doi><tpages>e0226453</tpages><orcidid>https://orcid.org/0000-0002-8104-3525</orcidid><orcidid>https://orcid.org/0000-0002-0768-7234</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-05, Vol.15 (5), p.e0226453-e0226453 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2399838734 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adaptation Adaptation, Physiological - genetics Arabinose Binding Sites Bioengineering Biological Transport - genetics Biology Biology and Life Sciences Cell membranes Circuits Computer simulation Degradation E coli Engineering and Technology Enzymes Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Feedback Feedback loops Feedback, Physiological Gene expression Gene Expression Regulation, Bacterial Gene Regulatory Networks Genes Genes, Switch Genetic aspects Genetic regulation Genetic research Lactose Membrane proteins Membrane Transport Proteins - genetics Membrane Transport Proteins - metabolism Membranes Metabolic pathways Metabolic regulation Metabolism Metabolites Models, Biological Monosaccharides Negative feedback Pentosyltransferases - genetics Pentosyltransferases - metabolism Physics Physiological aspects Positive feedback Promoter Regions, Genetic Proteins Ribonucleosides - metabolism RNA, Messenger - metabolism Stochastic Processes Stochasticity Substrates Systems analysis Trans-Activators - genetics Trans-Activators - metabolism Transcription (Genetics) Transcription activation Transcription factors Transcription, Genetic Transport Transport proteins Xanthines |
title | Theoretical investigation of a genetic switch for metabolic adaptation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A53%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20investigation%20of%20a%20genetic%20switch%20for%20metabolic%20adaptation&rft.jtitle=PloS%20one&rft.au=Laxhuber,%20Kathrin%20S&rft.date=2020-05-07&rft.volume=15&rft.issue=5&rft.spage=e0226453&rft.epage=e0226453&rft.pages=e0226453-e0226453&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0226453&rft_dat=%3Cgale_plos_%3EA623043463%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2399838734&rft_id=info:pmid/32379825&rft_galeid=A623043463&rft_doaj_id=oai_doaj_org_article_5333eb7e46904c15b7d46fd347b82502&rfr_iscdi=true |