Acetylcholinesterase electrochemical biosensors with graphene-transition metal carbides nanocomposites modified for detection of organophosphate pesticides
An acetylcholinesterase biosensor modified with graphene and transition metal carbides was prepared to detect organophosphorus pesticides. Cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy were used to characterize the electrochemical catalysis of the bio...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-04, Vol.15 (4), p.e0231981 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | e0231981 |
container_title | PloS one |
container_volume | 15 |
creator | Wang, Bo Li, Yiru Hu, Huaying Shu, Wenhao Yang, Lianqiao Zhang, Jianhua |
description | An acetylcholinesterase biosensor modified with graphene and transition metal carbides was prepared to detect organophosphorus pesticides. Cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy were used to characterize the electrochemical catalysis of the biosensor: acetylcholinesterase/chitosan-transition metal carbides/graphene/glassy carbon electrode. With the joint modification of graphene and transition metal carbides, the biosensor has a good performance in detecting dichlorvos with a linear relationship from 11.31 μM to 22.6 nM and the limit of detection was 14.45 nM. Under the premise of parameter optimization, the biosensor showed a good catalytic performance for acetylcholine. Compared to the biosensors without modification, it expressed a better catalytic performance due to the excellent electrical properties, biocompatibility and high specific surface area of graphene, transition metal carbides. Finally, the biosensor exhibits good stability, which can be stored at room temperature for one month without significant performance degradation, and has practical potential for sample testing. |
doi_str_mv | 10.1371/journal.pone.0231981 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2396303210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A622326472</galeid><doaj_id>oai_doaj_org_article_93f7ef02e1b948008312447623304dc2</doaj_id><sourcerecordid>A622326472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-2f4c9b2da7bee0f4e24adcbaf6a15cba2726e524aa0868342d6d29de8241ba963</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLguDFjPmatL0RhsWPgYUFv25DmpxMM7RJTTLq_hb_rKnTXWZAQXqR9pznvD15k1MUTzFaYlrh1zu_D072y9E7WCJCcVPje8U5bihZcILo_aP3s-JRjDuEVrTm_GFxRgllNeXovPi1VpBuetX53jqICYKMUEIPKgWvOhiskn3ZWh_BRR9i-cOmrtwGOXbgYJGCdNEm6105QMqkkqG1GmLppPPKD6PP6fw5eG2NBV0aH0oNKetPRd6UPmwzOnY-jp1MUI65C6smjcfFAyP7CE_m9aL48u7t58sPi6vr95vL9dVC8YakBTFMNS3RsmoBkGFAmNSqlYZLvMorqQiHVQ5KVPOaMqK5Jo2GmjDcyobTi-L5QXfsfRSzr1EQmnOIEowysTkQ2sudGIMdZLgRXlrxJ5C3IGTIXfcgGmoqMIgAbhtWI1RTTBirOKEUMa1I1noz_23fDqAVuGxifyJ6mnG2E1v_XVS4QZg2WeDFLBD8t3126x8tz9RW5q6sMz6LqcFGJdacEEo4q6Zmln-h8qOnk883y9gcPyl4dVKQmQQ_01buYxSbTx__n73-esq-PGI7kH3qou_30y2JpyA7gCr4GAOYO-cwEtNg3LohpsEQ82DksmfHrt8V3U4C_Q2XDg3W</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2396303210</pqid></control><display><type>article</type><title>Acetylcholinesterase electrochemical biosensors with graphene-transition metal carbides nanocomposites modified for detection of organophosphate pesticides</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Bo ; Li, Yiru ; Hu, Huaying ; Shu, Wenhao ; Yang, Lianqiao ; Zhang, Jianhua</creator><contributor>Zaidi, Shabi Abbas</contributor><creatorcontrib>Wang, Bo ; Li, Yiru ; Hu, Huaying ; Shu, Wenhao ; Yang, Lianqiao ; Zhang, Jianhua ; Zaidi, Shabi Abbas</creatorcontrib><description>An acetylcholinesterase biosensor modified with graphene and transition metal carbides was prepared to detect organophosphorus pesticides. Cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy were used to characterize the electrochemical catalysis of the biosensor: acetylcholinesterase/chitosan-transition metal carbides/graphene/glassy carbon electrode. With the joint modification of graphene and transition metal carbides, the biosensor has a good performance in detecting dichlorvos with a linear relationship from 11.31 μM to 22.6 nM and the limit of detection was 14.45 nM. Under the premise of parameter optimization, the biosensor showed a good catalytic performance for acetylcholine. Compared to the biosensors without modification, it expressed a better catalytic performance due to the excellent electrical properties, biocompatibility and high specific surface area of graphene, transition metal carbides. Finally, the biosensor exhibits good stability, which can be stored at room temperature for one month without significant performance degradation, and has practical potential for sample testing.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0231981</identifier><identifier>PMID: 32348360</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acetylcholine ; Acetylcholinesterase ; Acetylcholinesterase - metabolism ; Biocompatibility ; Biology and Life Sciences ; Biosensing Techniques - methods ; Biosensors ; Carbides ; Catalysis ; Chitosan ; Detection equipment ; Dichlorvos ; Education ; Electric properties ; Electrical properties ; Electrochemical impedance spectroscopy ; Electrochemical Techniques ; Electrochemistry ; Electrodes ; Engineering and Technology ; Enzymes ; Enzymes, Immobilized - chemistry ; Enzymes, Immobilized - metabolism ; Glassy carbon ; Graphene ; Graphite ; Graphite - chemistry ; Laboratories ; Limit of Detection ; Medical equipment ; Metal carbides ; Metals ; Metals (Materials) ; Methods ; Morphology ; Nanocomposites ; Nanocomposites - chemistry ; Nanomaterials ; Optimization ; Organophosphates ; Organophosphorus Compounds - analysis ; Organophosphorus pesticides ; Performance degradation ; Pesticides ; Pesticides - analysis ; Physical Sciences ; Reproducibility of Results ; Research and Analysis Methods ; Room temperature ; Sensors ; Spectroscopy ; Titanium - chemistry ; Transition Elements - chemistry ; Transition metal compounds ; Transition metals ; Voltammetry ; Work stations</subject><ispartof>PloS one, 2020-04, Vol.15 (4), p.e0231981</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Wang et al 2020 Wang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-2f4c9b2da7bee0f4e24adcbaf6a15cba2726e524aa0868342d6d29de8241ba963</citedby><cites>FETCH-LOGICAL-c692t-2f4c9b2da7bee0f4e24adcbaf6a15cba2726e524aa0868342d6d29de8241ba963</cites><orcidid>0000-0002-8359-1840</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7190139/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7190139/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32348360$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zaidi, Shabi Abbas</contributor><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Li, Yiru</creatorcontrib><creatorcontrib>Hu, Huaying</creatorcontrib><creatorcontrib>Shu, Wenhao</creatorcontrib><creatorcontrib>Yang, Lianqiao</creatorcontrib><creatorcontrib>Zhang, Jianhua</creatorcontrib><title>Acetylcholinesterase electrochemical biosensors with graphene-transition metal carbides nanocomposites modified for detection of organophosphate pesticides</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>An acetylcholinesterase biosensor modified with graphene and transition metal carbides was prepared to detect organophosphorus pesticides. Cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy were used to characterize the electrochemical catalysis of the biosensor: acetylcholinesterase/chitosan-transition metal carbides/graphene/glassy carbon electrode. With the joint modification of graphene and transition metal carbides, the biosensor has a good performance in detecting dichlorvos with a linear relationship from 11.31 μM to 22.6 nM and the limit of detection was 14.45 nM. Under the premise of parameter optimization, the biosensor showed a good catalytic performance for acetylcholine. Compared to the biosensors without modification, it expressed a better catalytic performance due to the excellent electrical properties, biocompatibility and high specific surface area of graphene, transition metal carbides. Finally, the biosensor exhibits good stability, which can be stored at room temperature for one month without significant performance degradation, and has practical potential for sample testing.</description><subject>Acetylcholine</subject><subject>Acetylcholinesterase</subject><subject>Acetylcholinesterase - metabolism</subject><subject>Biocompatibility</subject><subject>Biology and Life Sciences</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensors</subject><subject>Carbides</subject><subject>Catalysis</subject><subject>Chitosan</subject><subject>Detection equipment</subject><subject>Dichlorvos</subject><subject>Education</subject><subject>Electric properties</subject><subject>Electrical properties</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemical Techniques</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Engineering and Technology</subject><subject>Enzymes</subject><subject>Enzymes, Immobilized - chemistry</subject><subject>Enzymes, Immobilized - metabolism</subject><subject>Glassy carbon</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Graphite - chemistry</subject><subject>Laboratories</subject><subject>Limit of Detection</subject><subject>Medical equipment</subject><subject>Metal carbides</subject><subject>Metals</subject><subject>Metals (Materials)</subject><subject>Methods</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nanocomposites - chemistry</subject><subject>Nanomaterials</subject><subject>Optimization</subject><subject>Organophosphates</subject><subject>Organophosphorus Compounds - analysis</subject><subject>Organophosphorus pesticides</subject><subject>Performance degradation</subject><subject>Pesticides</subject><subject>Pesticides - analysis</subject><subject>Physical Sciences</subject><subject>Reproducibility of Results</subject><subject>Research and Analysis Methods</subject><subject>Room temperature</subject><subject>Sensors</subject><subject>Spectroscopy</subject><subject>Titanium - chemistry</subject><subject>Transition Elements - chemistry</subject><subject>Transition metal compounds</subject><subject>Transition metals</subject><subject>Voltammetry</subject><subject>Work stations</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLguDFjPmatL0RhsWPgYUFv25DmpxMM7RJTTLq_hb_rKnTXWZAQXqR9pznvD15k1MUTzFaYlrh1zu_D072y9E7WCJCcVPje8U5bihZcILo_aP3s-JRjDuEVrTm_GFxRgllNeXovPi1VpBuetX53jqICYKMUEIPKgWvOhiskn3ZWh_BRR9i-cOmrtwGOXbgYJGCdNEm6105QMqkkqG1GmLppPPKD6PP6fw5eG2NBV0aH0oNKetPRd6UPmwzOnY-jp1MUI65C6smjcfFAyP7CE_m9aL48u7t58sPi6vr95vL9dVC8YakBTFMNS3RsmoBkGFAmNSqlYZLvMorqQiHVQ5KVPOaMqK5Jo2GmjDcyobTi-L5QXfsfRSzr1EQmnOIEowysTkQ2sudGIMdZLgRXlrxJ5C3IGTIXfcgGmoqMIgAbhtWI1RTTBirOKEUMa1I1noz_23fDqAVuGxifyJ6mnG2E1v_XVS4QZg2WeDFLBD8t3126x8tz9RW5q6sMz6LqcFGJdacEEo4q6Zmln-h8qOnk883y9gcPyl4dVKQmQQ_01buYxSbTx__n73-esq-PGI7kH3qou_30y2JpyA7gCr4GAOYO-cwEtNg3LohpsEQ82DksmfHrt8V3U4C_Q2XDg3W</recordid><startdate>20200429</startdate><enddate>20200429</enddate><creator>Wang, Bo</creator><creator>Li, Yiru</creator><creator>Hu, Huaying</creator><creator>Shu, Wenhao</creator><creator>Yang, Lianqiao</creator><creator>Zhang, Jianhua</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8359-1840</orcidid></search><sort><creationdate>20200429</creationdate><title>Acetylcholinesterase electrochemical biosensors with graphene-transition metal carbides nanocomposites modified for detection of organophosphate pesticides</title><author>Wang, Bo ; Li, Yiru ; Hu, Huaying ; Shu, Wenhao ; Yang, Lianqiao ; Zhang, Jianhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-2f4c9b2da7bee0f4e24adcbaf6a15cba2726e524aa0868342d6d29de8241ba963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetylcholine</topic><topic>Acetylcholinesterase</topic><topic>Acetylcholinesterase - metabolism</topic><topic>Biocompatibility</topic><topic>Biology and Life Sciences</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensors</topic><topic>Carbides</topic><topic>Catalysis</topic><topic>Chitosan</topic><topic>Detection equipment</topic><topic>Dichlorvos</topic><topic>Education</topic><topic>Electric properties</topic><topic>Electrical properties</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemical Techniques</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Engineering and Technology</topic><topic>Enzymes</topic><topic>Enzymes, Immobilized - chemistry</topic><topic>Enzymes, Immobilized - metabolism</topic><topic>Glassy carbon</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Graphite - chemistry</topic><topic>Laboratories</topic><topic>Limit of Detection</topic><topic>Medical equipment</topic><topic>Metal carbides</topic><topic>Metals</topic><topic>Metals (Materials)</topic><topic>Methods</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nanocomposites - chemistry</topic><topic>Nanomaterials</topic><topic>Optimization</topic><topic>Organophosphates</topic><topic>Organophosphorus Compounds - analysis</topic><topic>Organophosphorus pesticides</topic><topic>Performance degradation</topic><topic>Pesticides</topic><topic>Pesticides - analysis</topic><topic>Physical Sciences</topic><topic>Reproducibility of Results</topic><topic>Research and Analysis Methods</topic><topic>Room temperature</topic><topic>Sensors</topic><topic>Spectroscopy</topic><topic>Titanium - chemistry</topic><topic>Transition Elements - chemistry</topic><topic>Transition metal compounds</topic><topic>Transition metals</topic><topic>Voltammetry</topic><topic>Work stations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Li, Yiru</creatorcontrib><creatorcontrib>Hu, Huaying</creatorcontrib><creatorcontrib>Shu, Wenhao</creatorcontrib><creatorcontrib>Yang, Lianqiao</creatorcontrib><creatorcontrib>Zhang, Jianhua</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Bo</au><au>Li, Yiru</au><au>Hu, Huaying</au><au>Shu, Wenhao</au><au>Yang, Lianqiao</au><au>Zhang, Jianhua</au><au>Zaidi, Shabi Abbas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acetylcholinesterase electrochemical biosensors with graphene-transition metal carbides nanocomposites modified for detection of organophosphate pesticides</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-04-29</date><risdate>2020</risdate><volume>15</volume><issue>4</issue><spage>e0231981</spage><pages>e0231981-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>An acetylcholinesterase biosensor modified with graphene and transition metal carbides was prepared to detect organophosphorus pesticides. Cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy were used to characterize the electrochemical catalysis of the biosensor: acetylcholinesterase/chitosan-transition metal carbides/graphene/glassy carbon electrode. With the joint modification of graphene and transition metal carbides, the biosensor has a good performance in detecting dichlorvos with a linear relationship from 11.31 μM to 22.6 nM and the limit of detection was 14.45 nM. Under the premise of parameter optimization, the biosensor showed a good catalytic performance for acetylcholine. Compared to the biosensors without modification, it expressed a better catalytic performance due to the excellent electrical properties, biocompatibility and high specific surface area of graphene, transition metal carbides. Finally, the biosensor exhibits good stability, which can be stored at room temperature for one month without significant performance degradation, and has practical potential for sample testing.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32348360</pmid><doi>10.1371/journal.pone.0231981</doi><tpages>e0231981</tpages><orcidid>https://orcid.org/0000-0002-8359-1840</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-04, Vol.15 (4), p.e0231981 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2396303210 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Acetylcholine Acetylcholinesterase Acetylcholinesterase - metabolism Biocompatibility Biology and Life Sciences Biosensing Techniques - methods Biosensors Carbides Catalysis Chitosan Detection equipment Dichlorvos Education Electric properties Electrical properties Electrochemical impedance spectroscopy Electrochemical Techniques Electrochemistry Electrodes Engineering and Technology Enzymes Enzymes, Immobilized - chemistry Enzymes, Immobilized - metabolism Glassy carbon Graphene Graphite Graphite - chemistry Laboratories Limit of Detection Medical equipment Metal carbides Metals Metals (Materials) Methods Morphology Nanocomposites Nanocomposites - chemistry Nanomaterials Optimization Organophosphates Organophosphorus Compounds - analysis Organophosphorus pesticides Performance degradation Pesticides Pesticides - analysis Physical Sciences Reproducibility of Results Research and Analysis Methods Room temperature Sensors Spectroscopy Titanium - chemistry Transition Elements - chemistry Transition metal compounds Transition metals Voltammetry Work stations |
title | Acetylcholinesterase electrochemical biosensors with graphene-transition metal carbides nanocomposites modified for detection of organophosphate pesticides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A56%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acetylcholinesterase%20electrochemical%20biosensors%20with%20graphene-transition%20metal%20carbides%20nanocomposites%20modified%20for%20detection%20of%20organophosphate%20pesticides&rft.jtitle=PloS%20one&rft.au=Wang,%20Bo&rft.date=2020-04-29&rft.volume=15&rft.issue=4&rft.spage=e0231981&rft.pages=e0231981-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0231981&rft_dat=%3Cgale_plos_%3EA622326472%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2396303210&rft_id=info:pmid/32348360&rft_galeid=A622326472&rft_doaj_id=oai_doaj_org_article_93f7ef02e1b948008312447623304dc2&rfr_iscdi=true |