Acetylcholinesterase electrochemical biosensors with graphene-transition metal carbides nanocomposites modified for detection of organophosphate pesticides

An acetylcholinesterase biosensor modified with graphene and transition metal carbides was prepared to detect organophosphorus pesticides. Cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy were used to characterize the electrochemical catalysis of the bio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-04, Vol.15 (4), p.e0231981
Hauptverfasser: Wang, Bo, Li, Yiru, Hu, Huaying, Shu, Wenhao, Yang, Lianqiao, Zhang, Jianhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page e0231981
container_title PloS one
container_volume 15
creator Wang, Bo
Li, Yiru
Hu, Huaying
Shu, Wenhao
Yang, Lianqiao
Zhang, Jianhua
description An acetylcholinesterase biosensor modified with graphene and transition metal carbides was prepared to detect organophosphorus pesticides. Cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy were used to characterize the electrochemical catalysis of the biosensor: acetylcholinesterase/chitosan-transition metal carbides/graphene/glassy carbon electrode. With the joint modification of graphene and transition metal carbides, the biosensor has a good performance in detecting dichlorvos with a linear relationship from 11.31 μM to 22.6 nM and the limit of detection was 14.45 nM. Under the premise of parameter optimization, the biosensor showed a good catalytic performance for acetylcholine. Compared to the biosensors without modification, it expressed a better catalytic performance due to the excellent electrical properties, biocompatibility and high specific surface area of graphene, transition metal carbides. Finally, the biosensor exhibits good stability, which can be stored at room temperature for one month without significant performance degradation, and has practical potential for sample testing.
doi_str_mv 10.1371/journal.pone.0231981
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2396303210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A622326472</galeid><doaj_id>oai_doaj_org_article_93f7ef02e1b948008312447623304dc2</doaj_id><sourcerecordid>A622326472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-2f4c9b2da7bee0f4e24adcbaf6a15cba2726e524aa0868342d6d29de8241ba963</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLguDFjPmatL0RhsWPgYUFv25DmpxMM7RJTTLq_hb_rKnTXWZAQXqR9pznvD15k1MUTzFaYlrh1zu_D072y9E7WCJCcVPje8U5bihZcILo_aP3s-JRjDuEVrTm_GFxRgllNeXovPi1VpBuetX53jqICYKMUEIPKgWvOhiskn3ZWh_BRR9i-cOmrtwGOXbgYJGCdNEm6105QMqkkqG1GmLppPPKD6PP6fw5eG2NBV0aH0oNKetPRd6UPmwzOnY-jp1MUI65C6smjcfFAyP7CE_m9aL48u7t58sPi6vr95vL9dVC8YakBTFMNS3RsmoBkGFAmNSqlYZLvMorqQiHVQ5KVPOaMqK5Jo2GmjDcyobTi-L5QXfsfRSzr1EQmnOIEowysTkQ2sudGIMdZLgRXlrxJ5C3IGTIXfcgGmoqMIgAbhtWI1RTTBirOKEUMa1I1noz_23fDqAVuGxifyJ6mnG2E1v_XVS4QZg2WeDFLBD8t3126x8tz9RW5q6sMz6LqcFGJdacEEo4q6Zmln-h8qOnk883y9gcPyl4dVKQmQQ_01buYxSbTx__n73-esq-PGI7kH3qou_30y2JpyA7gCr4GAOYO-cwEtNg3LohpsEQ82DksmfHrt8V3U4C_Q2XDg3W</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2396303210</pqid></control><display><type>article</type><title>Acetylcholinesterase electrochemical biosensors with graphene-transition metal carbides nanocomposites modified for detection of organophosphate pesticides</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Bo ; Li, Yiru ; Hu, Huaying ; Shu, Wenhao ; Yang, Lianqiao ; Zhang, Jianhua</creator><contributor>Zaidi, Shabi Abbas</contributor><creatorcontrib>Wang, Bo ; Li, Yiru ; Hu, Huaying ; Shu, Wenhao ; Yang, Lianqiao ; Zhang, Jianhua ; Zaidi, Shabi Abbas</creatorcontrib><description>An acetylcholinesterase biosensor modified with graphene and transition metal carbides was prepared to detect organophosphorus pesticides. Cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy were used to characterize the electrochemical catalysis of the biosensor: acetylcholinesterase/chitosan-transition metal carbides/graphene/glassy carbon electrode. With the joint modification of graphene and transition metal carbides, the biosensor has a good performance in detecting dichlorvos with a linear relationship from 11.31 μM to 22.6 nM and the limit of detection was 14.45 nM. Under the premise of parameter optimization, the biosensor showed a good catalytic performance for acetylcholine. Compared to the biosensors without modification, it expressed a better catalytic performance due to the excellent electrical properties, biocompatibility and high specific surface area of graphene, transition metal carbides. Finally, the biosensor exhibits good stability, which can be stored at room temperature for one month without significant performance degradation, and has practical potential for sample testing.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0231981</identifier><identifier>PMID: 32348360</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acetylcholine ; Acetylcholinesterase ; Acetylcholinesterase - metabolism ; Biocompatibility ; Biology and Life Sciences ; Biosensing Techniques - methods ; Biosensors ; Carbides ; Catalysis ; Chitosan ; Detection equipment ; Dichlorvos ; Education ; Electric properties ; Electrical properties ; Electrochemical impedance spectroscopy ; Electrochemical Techniques ; Electrochemistry ; Electrodes ; Engineering and Technology ; Enzymes ; Enzymes, Immobilized - chemistry ; Enzymes, Immobilized - metabolism ; Glassy carbon ; Graphene ; Graphite ; Graphite - chemistry ; Laboratories ; Limit of Detection ; Medical equipment ; Metal carbides ; Metals ; Metals (Materials) ; Methods ; Morphology ; Nanocomposites ; Nanocomposites - chemistry ; Nanomaterials ; Optimization ; Organophosphates ; Organophosphorus Compounds - analysis ; Organophosphorus pesticides ; Performance degradation ; Pesticides ; Pesticides - analysis ; Physical Sciences ; Reproducibility of Results ; Research and Analysis Methods ; Room temperature ; Sensors ; Spectroscopy ; Titanium - chemistry ; Transition Elements - chemistry ; Transition metal compounds ; Transition metals ; Voltammetry ; Work stations</subject><ispartof>PloS one, 2020-04, Vol.15 (4), p.e0231981</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Wang et al 2020 Wang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-2f4c9b2da7bee0f4e24adcbaf6a15cba2726e524aa0868342d6d29de8241ba963</citedby><cites>FETCH-LOGICAL-c692t-2f4c9b2da7bee0f4e24adcbaf6a15cba2726e524aa0868342d6d29de8241ba963</cites><orcidid>0000-0002-8359-1840</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7190139/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7190139/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32348360$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zaidi, Shabi Abbas</contributor><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Li, Yiru</creatorcontrib><creatorcontrib>Hu, Huaying</creatorcontrib><creatorcontrib>Shu, Wenhao</creatorcontrib><creatorcontrib>Yang, Lianqiao</creatorcontrib><creatorcontrib>Zhang, Jianhua</creatorcontrib><title>Acetylcholinesterase electrochemical biosensors with graphene-transition metal carbides nanocomposites modified for detection of organophosphate pesticides</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>An acetylcholinesterase biosensor modified with graphene and transition metal carbides was prepared to detect organophosphorus pesticides. Cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy were used to characterize the electrochemical catalysis of the biosensor: acetylcholinesterase/chitosan-transition metal carbides/graphene/glassy carbon electrode. With the joint modification of graphene and transition metal carbides, the biosensor has a good performance in detecting dichlorvos with a linear relationship from 11.31 μM to 22.6 nM and the limit of detection was 14.45 nM. Under the premise of parameter optimization, the biosensor showed a good catalytic performance for acetylcholine. Compared to the biosensors without modification, it expressed a better catalytic performance due to the excellent electrical properties, biocompatibility and high specific surface area of graphene, transition metal carbides. Finally, the biosensor exhibits good stability, which can be stored at room temperature for one month without significant performance degradation, and has practical potential for sample testing.</description><subject>Acetylcholine</subject><subject>Acetylcholinesterase</subject><subject>Acetylcholinesterase - metabolism</subject><subject>Biocompatibility</subject><subject>Biology and Life Sciences</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensors</subject><subject>Carbides</subject><subject>Catalysis</subject><subject>Chitosan</subject><subject>Detection equipment</subject><subject>Dichlorvos</subject><subject>Education</subject><subject>Electric properties</subject><subject>Electrical properties</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemical Techniques</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Engineering and Technology</subject><subject>Enzymes</subject><subject>Enzymes, Immobilized - chemistry</subject><subject>Enzymes, Immobilized - metabolism</subject><subject>Glassy carbon</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Graphite - chemistry</subject><subject>Laboratories</subject><subject>Limit of Detection</subject><subject>Medical equipment</subject><subject>Metal carbides</subject><subject>Metals</subject><subject>Metals (Materials)</subject><subject>Methods</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nanocomposites - chemistry</subject><subject>Nanomaterials</subject><subject>Optimization</subject><subject>Organophosphates</subject><subject>Organophosphorus Compounds - analysis</subject><subject>Organophosphorus pesticides</subject><subject>Performance degradation</subject><subject>Pesticides</subject><subject>Pesticides - analysis</subject><subject>Physical Sciences</subject><subject>Reproducibility of Results</subject><subject>Research and Analysis Methods</subject><subject>Room temperature</subject><subject>Sensors</subject><subject>Spectroscopy</subject><subject>Titanium - chemistry</subject><subject>Transition Elements - chemistry</subject><subject>Transition metal compounds</subject><subject>Transition metals</subject><subject>Voltammetry</subject><subject>Work stations</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLguDFjPmatL0RhsWPgYUFv25DmpxMM7RJTTLq_hb_rKnTXWZAQXqR9pznvD15k1MUTzFaYlrh1zu_D072y9E7WCJCcVPje8U5bihZcILo_aP3s-JRjDuEVrTm_GFxRgllNeXovPi1VpBuetX53jqICYKMUEIPKgWvOhiskn3ZWh_BRR9i-cOmrtwGOXbgYJGCdNEm6105QMqkkqG1GmLppPPKD6PP6fw5eG2NBV0aH0oNKetPRd6UPmwzOnY-jp1MUI65C6smjcfFAyP7CE_m9aL48u7t58sPi6vr95vL9dVC8YakBTFMNS3RsmoBkGFAmNSqlYZLvMorqQiHVQ5KVPOaMqK5Jo2GmjDcyobTi-L5QXfsfRSzr1EQmnOIEowysTkQ2sudGIMdZLgRXlrxJ5C3IGTIXfcgGmoqMIgAbhtWI1RTTBirOKEUMa1I1noz_23fDqAVuGxifyJ6mnG2E1v_XVS4QZg2WeDFLBD8t3126x8tz9RW5q6sMz6LqcFGJdacEEo4q6Zmln-h8qOnk883y9gcPyl4dVKQmQQ_01buYxSbTx__n73-esq-PGI7kH3qou_30y2JpyA7gCr4GAOYO-cwEtNg3LohpsEQ82DksmfHrt8V3U4C_Q2XDg3W</recordid><startdate>20200429</startdate><enddate>20200429</enddate><creator>Wang, Bo</creator><creator>Li, Yiru</creator><creator>Hu, Huaying</creator><creator>Shu, Wenhao</creator><creator>Yang, Lianqiao</creator><creator>Zhang, Jianhua</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8359-1840</orcidid></search><sort><creationdate>20200429</creationdate><title>Acetylcholinesterase electrochemical biosensors with graphene-transition metal carbides nanocomposites modified for detection of organophosphate pesticides</title><author>Wang, Bo ; Li, Yiru ; Hu, Huaying ; Shu, Wenhao ; Yang, Lianqiao ; Zhang, Jianhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-2f4c9b2da7bee0f4e24adcbaf6a15cba2726e524aa0868342d6d29de8241ba963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetylcholine</topic><topic>Acetylcholinesterase</topic><topic>Acetylcholinesterase - metabolism</topic><topic>Biocompatibility</topic><topic>Biology and Life Sciences</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensors</topic><topic>Carbides</topic><topic>Catalysis</topic><topic>Chitosan</topic><topic>Detection equipment</topic><topic>Dichlorvos</topic><topic>Education</topic><topic>Electric properties</topic><topic>Electrical properties</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemical Techniques</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Engineering and Technology</topic><topic>Enzymes</topic><topic>Enzymes, Immobilized - chemistry</topic><topic>Enzymes, Immobilized - metabolism</topic><topic>Glassy carbon</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Graphite - chemistry</topic><topic>Laboratories</topic><topic>Limit of Detection</topic><topic>Medical equipment</topic><topic>Metal carbides</topic><topic>Metals</topic><topic>Metals (Materials)</topic><topic>Methods</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nanocomposites - chemistry</topic><topic>Nanomaterials</topic><topic>Optimization</topic><topic>Organophosphates</topic><topic>Organophosphorus Compounds - analysis</topic><topic>Organophosphorus pesticides</topic><topic>Performance degradation</topic><topic>Pesticides</topic><topic>Pesticides - analysis</topic><topic>Physical Sciences</topic><topic>Reproducibility of Results</topic><topic>Research and Analysis Methods</topic><topic>Room temperature</topic><topic>Sensors</topic><topic>Spectroscopy</topic><topic>Titanium - chemistry</topic><topic>Transition Elements - chemistry</topic><topic>Transition metal compounds</topic><topic>Transition metals</topic><topic>Voltammetry</topic><topic>Work stations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Li, Yiru</creatorcontrib><creatorcontrib>Hu, Huaying</creatorcontrib><creatorcontrib>Shu, Wenhao</creatorcontrib><creatorcontrib>Yang, Lianqiao</creatorcontrib><creatorcontrib>Zhang, Jianhua</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Bo</au><au>Li, Yiru</au><au>Hu, Huaying</au><au>Shu, Wenhao</au><au>Yang, Lianqiao</au><au>Zhang, Jianhua</au><au>Zaidi, Shabi Abbas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acetylcholinesterase electrochemical biosensors with graphene-transition metal carbides nanocomposites modified for detection of organophosphate pesticides</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-04-29</date><risdate>2020</risdate><volume>15</volume><issue>4</issue><spage>e0231981</spage><pages>e0231981-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>An acetylcholinesterase biosensor modified with graphene and transition metal carbides was prepared to detect organophosphorus pesticides. Cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy were used to characterize the electrochemical catalysis of the biosensor: acetylcholinesterase/chitosan-transition metal carbides/graphene/glassy carbon electrode. With the joint modification of graphene and transition metal carbides, the biosensor has a good performance in detecting dichlorvos with a linear relationship from 11.31 μM to 22.6 nM and the limit of detection was 14.45 nM. Under the premise of parameter optimization, the biosensor showed a good catalytic performance for acetylcholine. Compared to the biosensors without modification, it expressed a better catalytic performance due to the excellent electrical properties, biocompatibility and high specific surface area of graphene, transition metal carbides. Finally, the biosensor exhibits good stability, which can be stored at room temperature for one month without significant performance degradation, and has practical potential for sample testing.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32348360</pmid><doi>10.1371/journal.pone.0231981</doi><tpages>e0231981</tpages><orcidid>https://orcid.org/0000-0002-8359-1840</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-04, Vol.15 (4), p.e0231981
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2396303210
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry
subjects Acetylcholine
Acetylcholinesterase
Acetylcholinesterase - metabolism
Biocompatibility
Biology and Life Sciences
Biosensing Techniques - methods
Biosensors
Carbides
Catalysis
Chitosan
Detection equipment
Dichlorvos
Education
Electric properties
Electrical properties
Electrochemical impedance spectroscopy
Electrochemical Techniques
Electrochemistry
Electrodes
Engineering and Technology
Enzymes
Enzymes, Immobilized - chemistry
Enzymes, Immobilized - metabolism
Glassy carbon
Graphene
Graphite
Graphite - chemistry
Laboratories
Limit of Detection
Medical equipment
Metal carbides
Metals
Metals (Materials)
Methods
Morphology
Nanocomposites
Nanocomposites - chemistry
Nanomaterials
Optimization
Organophosphates
Organophosphorus Compounds - analysis
Organophosphorus pesticides
Performance degradation
Pesticides
Pesticides - analysis
Physical Sciences
Reproducibility of Results
Research and Analysis Methods
Room temperature
Sensors
Spectroscopy
Titanium - chemistry
Transition Elements - chemistry
Transition metal compounds
Transition metals
Voltammetry
Work stations
title Acetylcholinesterase electrochemical biosensors with graphene-transition metal carbides nanocomposites modified for detection of organophosphate pesticides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A56%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acetylcholinesterase%20electrochemical%20biosensors%20with%20graphene-transition%20metal%20carbides%20nanocomposites%20modified%20for%20detection%20of%20organophosphate%20pesticides&rft.jtitle=PloS%20one&rft.au=Wang,%20Bo&rft.date=2020-04-29&rft.volume=15&rft.issue=4&rft.spage=e0231981&rft.pages=e0231981-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0231981&rft_dat=%3Cgale_plos_%3EA622326472%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2396303210&rft_id=info:pmid/32348360&rft_galeid=A622326472&rft_doaj_id=oai_doaj_org_article_93f7ef02e1b948008312447623304dc2&rfr_iscdi=true