Isolation and characterization of Bacillus subtilis strain 1-L-29, an endophytic bacteria from Camellia oleifera with antimicrobial activity and efficient plant-root colonization

Endophytic bacteria, which are common in plant tissues, may help to control plant pathogens and enhance plant growth. Camellia oleifera, an oil-producing plant, is widely grown in warm, subtropical, hilly regions in China. However, C. oleifera is strongly negatively affected by C. oleifera anthracno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-04, Vol.15 (4), p.e0232096-e0232096
Hauptverfasser: Xu, Jin-Xin, Li, Zi-Yang, Lv, Xing, Yan, Hua, Zhou, Guo-Ying, Cao, Ling-Xue, Yang, Qin, He, Yuan-Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0232096
container_issue 4
container_start_page e0232096
container_title PloS one
container_volume 15
creator Xu, Jin-Xin
Li, Zi-Yang
Lv, Xing
Yan, Hua
Zhou, Guo-Ying
Cao, Ling-Xue
Yang, Qin
He, Yuan-Hao
description Endophytic bacteria, which are common in plant tissues, may help to control plant pathogens and enhance plant growth. Camellia oleifera, an oil-producing plant, is widely grown in warm, subtropical, hilly regions in China. However, C. oleifera is strongly negatively affected by C. oleifera anthracnose, which is caused by Colletetrichum fructicola. To find a suitable biocontrol agent for C. oleifera anthracnose, 41 endophytes were isolated from the stems, leaves, and roots of C. oleifera. Bacterial cultures were identified based on analyses of 16S rDNA sequences; most strains belonged to the genus Bacillus. The antagonistic effects of these strains on C. fructicola were tested in vitro. In total, 16 strains inhibited C. fructicola growth, with B. subtilis strain 1-L-29 being the most efficient. Strain 1-L-29 demonstrated antagonistic activity against C. siamense, C. asianum, Fusarium proliferatum, Agaricodochium camellia, and Pseudomonas syringae. In addition, this strain produced indole acetic acid, solubilized phosphate, grew on N-free media, and produced siderophores. To facilitate further microecological studies of this strain, a rifampicin-resistant, green fluorescent protein (GFP)-labeled strain, 1-L-29gfpr, was created using protoplast transformation. This plasmid had good segregational stability. Strain 1-L-29gfpr was re-introduced into C. oleifera and successfully colonized root, stem, and leaf tissues. This strain remained at a stable concentration in the root more than 20 d after inoculation. Fluorescence microscopic analysis showed that strain 1-L-29gfpr thoroughly colonized the root surfaces of C. fructicola as well as the root vascular tissues of Arabidopsis thaliana.
doi_str_mv 10.1371/journal.pone.0232096
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2395249127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A622117160</galeid><doaj_id>oai_doaj_org_article_5f517ea270c74888bedd82de0fb9433e</doaj_id><sourcerecordid>A622117160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c743t-25f5d4701e78d8cefd9d6345f3c8cf2d7b2204c6f93ccd6e0613fb273c9fd353</originalsourceid><addsrcrecordid>eNqNk1uLEzEUxwdR3LX6DUQDgig4NZe5vghr8VIoLOjia8jk0mZJJ90ks1o_lp_Q0-3s0so-yDxM5szvf_LPyTlZ9pzgKWE1eX_ph9ALN934Xk8xZRS31YPslLSM5hXF7OHB-iR7EuMlxiVrqupxdsIoYy0l-DT7M4_eiWR9j0SvkFyJIGTSwf7eB71BH4W0zg0RxaFL1llYpCBsj0i-yGn7DoRI98pvVttkJer2eoFM8Gs0E2vtHHx5p63RQaCfNq1AkuzayuA7KxwChb22aXtjQRtjpdV9QhsHWB68T0h65_vR09PskREu6mfje5JdfP50MfuaL86_zGdni1zWBUs5LU2pihoTXTeqkdqoVlWsKA2TjTRU1R2luJCVaZmUqtK4Isx0tGayNYqVbJK93KfdOB_5WO3IKWtLWrQEwEk23xPKi0u-CXYtwpZ7YflNwIclFwFK4jQHL6TWgtYYzDVN02mlGqo0Nl1bMKYh14dxt6FbayXh_EG4o6THf3q74kt_zWvSlBXemXkzJgj-atAx8bWNEmoveu2Hve-Ktm3ZAPrqH_T-043UUsABbG887Ct3SflZRSkhNakwUNN7KHiUhvuF1jQW4keCt0cCYJL-lZZiiJHPv3_7f_b8xzH7-oBdaeHSClp72HVMPAaLPQjdF2PQ5q7IBPPdZN1Wg-8mi4-TBbIXhxd0J7odJfYX_Iwh-Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395249127</pqid></control><display><type>article</type><title>Isolation and characterization of Bacillus subtilis strain 1-L-29, an endophytic bacteria from Camellia oleifera with antimicrobial activity and efficient plant-root colonization</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Xu, Jin-Xin ; Li, Zi-Yang ; Lv, Xing ; Yan, Hua ; Zhou, Guo-Ying ; Cao, Ling-Xue ; Yang, Qin ; He, Yuan-Hao</creator><contributor>Morais, Paula V</contributor><creatorcontrib>Xu, Jin-Xin ; Li, Zi-Yang ; Lv, Xing ; Yan, Hua ; Zhou, Guo-Ying ; Cao, Ling-Xue ; Yang, Qin ; He, Yuan-Hao ; Morais, Paula V</creatorcontrib><description>Endophytic bacteria, which are common in plant tissues, may help to control plant pathogens and enhance plant growth. Camellia oleifera, an oil-producing plant, is widely grown in warm, subtropical, hilly regions in China. However, C. oleifera is strongly negatively affected by C. oleifera anthracnose, which is caused by Colletetrichum fructicola. To find a suitable biocontrol agent for C. oleifera anthracnose, 41 endophytes were isolated from the stems, leaves, and roots of C. oleifera. Bacterial cultures were identified based on analyses of 16S rDNA sequences; most strains belonged to the genus Bacillus. The antagonistic effects of these strains on C. fructicola were tested in vitro. In total, 16 strains inhibited C. fructicola growth, with B. subtilis strain 1-L-29 being the most efficient. Strain 1-L-29 demonstrated antagonistic activity against C. siamense, C. asianum, Fusarium proliferatum, Agaricodochium camellia, and Pseudomonas syringae. In addition, this strain produced indole acetic acid, solubilized phosphate, grew on N-free media, and produced siderophores. To facilitate further microecological studies of this strain, a rifampicin-resistant, green fluorescent protein (GFP)-labeled strain, 1-L-29gfpr, was created using protoplast transformation. This plasmid had good segregational stability. Strain 1-L-29gfpr was re-introduced into C. oleifera and successfully colonized root, stem, and leaf tissues. This strain remained at a stable concentration in the root more than 20 d after inoculation. Fluorescence microscopic analysis showed that strain 1-L-29gfpr thoroughly colonized the root surfaces of C. fructicola as well as the root vascular tissues of Arabidopsis thaliana.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0232096</identifier><identifier>PMID: 32339210</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acetic acid ; Analysis ; Anthracnose ; Antimicrobial activity ; Arabidopsis ; Arabidopsis thaliana ; Bacteria ; Biological control ; Biological pest control ; Biology and Life Sciences ; Camellia oleifera ; Characterization ; Colonization ; Deoxyribonucleic acid ; DNA ; Education ; Endophytes ; Fluorescence ; Fluorescence microscopy ; Forestry ; Genetic transformation ; Glycerol ; Grasslands ; Green fluorescent protein ; Indoleacetic acid ; Inoculation ; Isolation ; Laboratories ; Leaves ; Li, Yang ; Medicine and Health Sciences ; Methods ; Microorganisms ; Microscopic analysis ; Microscopy ; Organic acids ; Pathogenic microorganisms ; Pathogens ; Pesticides ; Phosphates ; Plant growth ; Plant roots ; Plant tissues ; Research and Analysis Methods ; Rifampin ; rRNA 16S ; Siderophores ; Stems ; Strain analysis ; Strains (organisms) ; Vascular tissue</subject><ispartof>PloS one, 2020-04, Vol.15 (4), p.e0232096-e0232096</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Xu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Xu et al 2020 Xu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c743t-25f5d4701e78d8cefd9d6345f3c8cf2d7b2204c6f93ccd6e0613fb273c9fd353</citedby><cites>FETCH-LOGICAL-c743t-25f5d4701e78d8cefd9d6345f3c8cf2d7b2204c6f93ccd6e0613fb273c9fd353</cites><orcidid>0000-0001-9055-1794</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7185607/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7185607/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32339210$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Morais, Paula V</contributor><creatorcontrib>Xu, Jin-Xin</creatorcontrib><creatorcontrib>Li, Zi-Yang</creatorcontrib><creatorcontrib>Lv, Xing</creatorcontrib><creatorcontrib>Yan, Hua</creatorcontrib><creatorcontrib>Zhou, Guo-Ying</creatorcontrib><creatorcontrib>Cao, Ling-Xue</creatorcontrib><creatorcontrib>Yang, Qin</creatorcontrib><creatorcontrib>He, Yuan-Hao</creatorcontrib><title>Isolation and characterization of Bacillus subtilis strain 1-L-29, an endophytic bacteria from Camellia oleifera with antimicrobial activity and efficient plant-root colonization</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Endophytic bacteria, which are common in plant tissues, may help to control plant pathogens and enhance plant growth. Camellia oleifera, an oil-producing plant, is widely grown in warm, subtropical, hilly regions in China. However, C. oleifera is strongly negatively affected by C. oleifera anthracnose, which is caused by Colletetrichum fructicola. To find a suitable biocontrol agent for C. oleifera anthracnose, 41 endophytes were isolated from the stems, leaves, and roots of C. oleifera. Bacterial cultures were identified based on analyses of 16S rDNA sequences; most strains belonged to the genus Bacillus. The antagonistic effects of these strains on C. fructicola were tested in vitro. In total, 16 strains inhibited C. fructicola growth, with B. subtilis strain 1-L-29 being the most efficient. Strain 1-L-29 demonstrated antagonistic activity against C. siamense, C. asianum, Fusarium proliferatum, Agaricodochium camellia, and Pseudomonas syringae. In addition, this strain produced indole acetic acid, solubilized phosphate, grew on N-free media, and produced siderophores. To facilitate further microecological studies of this strain, a rifampicin-resistant, green fluorescent protein (GFP)-labeled strain, 1-L-29gfpr, was created using protoplast transformation. This plasmid had good segregational stability. Strain 1-L-29gfpr was re-introduced into C. oleifera and successfully colonized root, stem, and leaf tissues. This strain remained at a stable concentration in the root more than 20 d after inoculation. Fluorescence microscopic analysis showed that strain 1-L-29gfpr thoroughly colonized the root surfaces of C. fructicola as well as the root vascular tissues of Arabidopsis thaliana.</description><subject>Acetic acid</subject><subject>Analysis</subject><subject>Anthracnose</subject><subject>Antimicrobial activity</subject><subject>Arabidopsis</subject><subject>Arabidopsis thaliana</subject><subject>Bacteria</subject><subject>Biological control</subject><subject>Biological pest control</subject><subject>Biology and Life Sciences</subject><subject>Camellia oleifera</subject><subject>Characterization</subject><subject>Colonization</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Education</subject><subject>Endophytes</subject><subject>Fluorescence</subject><subject>Fluorescence microscopy</subject><subject>Forestry</subject><subject>Genetic transformation</subject><subject>Glycerol</subject><subject>Grasslands</subject><subject>Green fluorescent protein</subject><subject>Indoleacetic acid</subject><subject>Inoculation</subject><subject>Isolation</subject><subject>Laboratories</subject><subject>Leaves</subject><subject>Li, Yang</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Microorganisms</subject><subject>Microscopic analysis</subject><subject>Microscopy</subject><subject>Organic acids</subject><subject>Pathogenic microorganisms</subject><subject>Pathogens</subject><subject>Pesticides</subject><subject>Phosphates</subject><subject>Plant growth</subject><subject>Plant roots</subject><subject>Plant tissues</subject><subject>Research and Analysis Methods</subject><subject>Rifampin</subject><subject>rRNA 16S</subject><subject>Siderophores</subject><subject>Stems</subject><subject>Strain analysis</subject><subject>Strains (organisms)</subject><subject>Vascular tissue</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uLEzEUxwdR3LX6DUQDgig4NZe5vghr8VIoLOjia8jk0mZJJ90ks1o_lp_Q0-3s0so-yDxM5szvf_LPyTlZ9pzgKWE1eX_ph9ALN934Xk8xZRS31YPslLSM5hXF7OHB-iR7EuMlxiVrqupxdsIoYy0l-DT7M4_eiWR9j0SvkFyJIGTSwf7eB71BH4W0zg0RxaFL1llYpCBsj0i-yGn7DoRI98pvVttkJer2eoFM8Gs0E2vtHHx5p63RQaCfNq1AkuzayuA7KxwChb22aXtjQRtjpdV9QhsHWB68T0h65_vR09PskREu6mfje5JdfP50MfuaL86_zGdni1zWBUs5LU2pihoTXTeqkdqoVlWsKA2TjTRU1R2luJCVaZmUqtK4Isx0tGayNYqVbJK93KfdOB_5WO3IKWtLWrQEwEk23xPKi0u-CXYtwpZ7YflNwIclFwFK4jQHL6TWgtYYzDVN02mlGqo0Nl1bMKYh14dxt6FbayXh_EG4o6THf3q74kt_zWvSlBXemXkzJgj-atAx8bWNEmoveu2Hve-Ktm3ZAPrqH_T-043UUsABbG887Ct3SflZRSkhNakwUNN7KHiUhvuF1jQW4keCt0cCYJL-lZZiiJHPv3_7f_b8xzH7-oBdaeHSClp72HVMPAaLPQjdF2PQ5q7IBPPdZN1Wg-8mi4-TBbIXhxd0J7odJfYX_Iwh-Q</recordid><startdate>20200427</startdate><enddate>20200427</enddate><creator>Xu, Jin-Xin</creator><creator>Li, Zi-Yang</creator><creator>Lv, Xing</creator><creator>Yan, Hua</creator><creator>Zhou, Guo-Ying</creator><creator>Cao, Ling-Xue</creator><creator>Yang, Qin</creator><creator>He, Yuan-Hao</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9055-1794</orcidid></search><sort><creationdate>20200427</creationdate><title>Isolation and characterization of Bacillus subtilis strain 1-L-29, an endophytic bacteria from Camellia oleifera with antimicrobial activity and efficient plant-root colonization</title><author>Xu, Jin-Xin ; Li, Zi-Yang ; Lv, Xing ; Yan, Hua ; Zhou, Guo-Ying ; Cao, Ling-Xue ; Yang, Qin ; He, Yuan-Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c743t-25f5d4701e78d8cefd9d6345f3c8cf2d7b2204c6f93ccd6e0613fb273c9fd353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetic acid</topic><topic>Analysis</topic><topic>Anthracnose</topic><topic>Antimicrobial activity</topic><topic>Arabidopsis</topic><topic>Arabidopsis thaliana</topic><topic>Bacteria</topic><topic>Biological control</topic><topic>Biological pest control</topic><topic>Biology and Life Sciences</topic><topic>Camellia oleifera</topic><topic>Characterization</topic><topic>Colonization</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Education</topic><topic>Endophytes</topic><topic>Fluorescence</topic><topic>Fluorescence microscopy</topic><topic>Forestry</topic><topic>Genetic transformation</topic><topic>Glycerol</topic><topic>Grasslands</topic><topic>Green fluorescent protein</topic><topic>Indoleacetic acid</topic><topic>Inoculation</topic><topic>Isolation</topic><topic>Laboratories</topic><topic>Leaves</topic><topic>Li, Yang</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Microorganisms</topic><topic>Microscopic analysis</topic><topic>Microscopy</topic><topic>Organic acids</topic><topic>Pathogenic microorganisms</topic><topic>Pathogens</topic><topic>Pesticides</topic><topic>Phosphates</topic><topic>Plant growth</topic><topic>Plant roots</topic><topic>Plant tissues</topic><topic>Research and Analysis Methods</topic><topic>Rifampin</topic><topic>rRNA 16S</topic><topic>Siderophores</topic><topic>Stems</topic><topic>Strain analysis</topic><topic>Strains (organisms)</topic><topic>Vascular tissue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jin-Xin</creatorcontrib><creatorcontrib>Li, Zi-Yang</creatorcontrib><creatorcontrib>Lv, Xing</creatorcontrib><creatorcontrib>Yan, Hua</creatorcontrib><creatorcontrib>Zhou, Guo-Ying</creatorcontrib><creatorcontrib>Cao, Ling-Xue</creatorcontrib><creatorcontrib>Yang, Qin</creatorcontrib><creatorcontrib>He, Yuan-Hao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jin-Xin</au><au>Li, Zi-Yang</au><au>Lv, Xing</au><au>Yan, Hua</au><au>Zhou, Guo-Ying</au><au>Cao, Ling-Xue</au><au>Yang, Qin</au><au>He, Yuan-Hao</au><au>Morais, Paula V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isolation and characterization of Bacillus subtilis strain 1-L-29, an endophytic bacteria from Camellia oleifera with antimicrobial activity and efficient plant-root colonization</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-04-27</date><risdate>2020</risdate><volume>15</volume><issue>4</issue><spage>e0232096</spage><epage>e0232096</epage><pages>e0232096-e0232096</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Endophytic bacteria, which are common in plant tissues, may help to control plant pathogens and enhance plant growth. Camellia oleifera, an oil-producing plant, is widely grown in warm, subtropical, hilly regions in China. However, C. oleifera is strongly negatively affected by C. oleifera anthracnose, which is caused by Colletetrichum fructicola. To find a suitable biocontrol agent for C. oleifera anthracnose, 41 endophytes were isolated from the stems, leaves, and roots of C. oleifera. Bacterial cultures were identified based on analyses of 16S rDNA sequences; most strains belonged to the genus Bacillus. The antagonistic effects of these strains on C. fructicola were tested in vitro. In total, 16 strains inhibited C. fructicola growth, with B. subtilis strain 1-L-29 being the most efficient. Strain 1-L-29 demonstrated antagonistic activity against C. siamense, C. asianum, Fusarium proliferatum, Agaricodochium camellia, and Pseudomonas syringae. In addition, this strain produced indole acetic acid, solubilized phosphate, grew on N-free media, and produced siderophores. To facilitate further microecological studies of this strain, a rifampicin-resistant, green fluorescent protein (GFP)-labeled strain, 1-L-29gfpr, was created using protoplast transformation. This plasmid had good segregational stability. Strain 1-L-29gfpr was re-introduced into C. oleifera and successfully colonized root, stem, and leaf tissues. This strain remained at a stable concentration in the root more than 20 d after inoculation. Fluorescence microscopic analysis showed that strain 1-L-29gfpr thoroughly colonized the root surfaces of C. fructicola as well as the root vascular tissues of Arabidopsis thaliana.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32339210</pmid><doi>10.1371/journal.pone.0232096</doi><tpages>e0232096</tpages><orcidid>https://orcid.org/0000-0001-9055-1794</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-04, Vol.15 (4), p.e0232096-e0232096
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2395249127
source DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Acetic acid
Analysis
Anthracnose
Antimicrobial activity
Arabidopsis
Arabidopsis thaliana
Bacteria
Biological control
Biological pest control
Biology and Life Sciences
Camellia oleifera
Characterization
Colonization
Deoxyribonucleic acid
DNA
Education
Endophytes
Fluorescence
Fluorescence microscopy
Forestry
Genetic transformation
Glycerol
Grasslands
Green fluorescent protein
Indoleacetic acid
Inoculation
Isolation
Laboratories
Leaves
Li, Yang
Medicine and Health Sciences
Methods
Microorganisms
Microscopic analysis
Microscopy
Organic acids
Pathogenic microorganisms
Pathogens
Pesticides
Phosphates
Plant growth
Plant roots
Plant tissues
Research and Analysis Methods
Rifampin
rRNA 16S
Siderophores
Stems
Strain analysis
Strains (organisms)
Vascular tissue
title Isolation and characterization of Bacillus subtilis strain 1-L-29, an endophytic bacteria from Camellia oleifera with antimicrobial activity and efficient plant-root colonization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T15%3A02%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isolation%20and%20characterization%20of%20Bacillus%20subtilis%20strain%201-L-29,%20an%20endophytic%20bacteria%20from%20Camellia%20oleifera%20with%20antimicrobial%20activity%20and%20efficient%20plant-root%20colonization&rft.jtitle=PloS%20one&rft.au=Xu,%20Jin-Xin&rft.date=2020-04-27&rft.volume=15&rft.issue=4&rft.spage=e0232096&rft.epage=e0232096&rft.pages=e0232096-e0232096&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0232096&rft_dat=%3Cgale_plos_%3EA622117160%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2395249127&rft_id=info:pmid/32339210&rft_galeid=A622117160&rft_doaj_id=oai_doaj_org_article_5f517ea270c74888bedd82de0fb9433e&rfr_iscdi=true