CsIVP functions in vasculature development and downy mildew resistance in cucumber

Domesticated crops with high yield and quality are frequently susceptible to pathogen attack, whereas enhancement of disease resistance generally compromises crop yield. The underlying mechanisms of how plant development and disease resistance are coordinately programed remain elusive. Here, we show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS biology 2020-03, Vol.18 (3), p.e3000671-e3000671
Hauptverfasser: Yan, Shuangshuang, Ning, Kang, Wang, Zhongyi, Liu, Xiaofeng, Zhong, Yanting, Ding, Lian, Zi, Hailing, Cheng, Zhihua, Li, Xuexian, Shan, Hongyan, Lv, Qingyang, Luo, Laixin, Liu, Renyi, Yan, Liying, Zhou, Zhaoyang, Lucas, William John, Zhang, Xiaolan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e3000671
container_issue 3
container_start_page e3000671
container_title PLoS biology
container_volume 18
creator Yan, Shuangshuang
Ning, Kang
Wang, Zhongyi
Liu, Xiaofeng
Zhong, Yanting
Ding, Lian
Zi, Hailing
Cheng, Zhihua
Li, Xuexian
Shan, Hongyan
Lv, Qingyang
Luo, Laixin
Liu, Renyi
Yan, Liying
Zhou, Zhaoyang
Lucas, William John
Zhang, Xiaolan
description Domesticated crops with high yield and quality are frequently susceptible to pathogen attack, whereas enhancement of disease resistance generally compromises crop yield. The underlying mechanisms of how plant development and disease resistance are coordinately programed remain elusive. Here, we showed that the basic Helix-Loop-Helix (bHLH) transcription factor Cucumis sativus Irregular Vasculature Patterning (CsIVP) was highly expressed in cucumber vascular tissues. Knockdown of CsIVP caused severe vasculature disorganization and abnormal organ morphogenesis. CsIVP directly binds to vascular-related regulators YABBY5 (CsYAB5), BREVIPEDICELLUS (CsBP), and AUXIN/INDOLEACETIC ACIDS4 (CsAUX4) and promotes their expression. Knockdown of CsYAB5 resulted in similar phenotypes as CsIVP-RNA interference (RNAi) plants, including disturbed vascular configuration and abnormal organ morphology. Meanwhile, CsIVP-RNAi plants were more resistant to downy mildew and accumulated more salicylic acid (SA). CsIVP physically interacts with NIM1-INTERACTING1 (CsNIMIN1), a negative regulator in the SA signaling pathway. Thus, CsIVP is a novel vasculature regulator functioning in CsYAB5-mediated organ morphogenesis and SA-mediated downy mildew resistance in cucumber.
doi_str_mv 10.1371/journal.pbio.3000671
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2390719452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A619135087</galeid><doaj_id>oai_doaj_org_article_9ed1503905784de49b6e0721c1440015</doaj_id><sourcerecordid>A619135087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c695t-2348174f1e41b896e2fde49bb9497018c3b6fecc409a262ebc6f32ae4901fefd3</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEoh_wDxBE4gKHXfyVOL4gVSs-VqooKtCr5TjjxavE3trJtv33ON206qIeQD7YGj_vO-PxZNkrjOaYcvxh7YfgVDvf1NbPKUKo5PhJdogLVsx4VRVPH5wPsqMY1wgRIkj1PDughCBaYHaYnS_i8uJ7bgane-tdzK3LtyrqoVX9ECBvYAut33Tg-ly5Jm_8lbvJO9s2cJUHiDb2ymkYZXrQQ1dDeJE9M6qN8HLaj7Nfnz_9XHydnZ59WS5OTme6FEU_I5RVmDODgeG6EiUQ0wATdS2Y4AhXmtalAa0ZEoqUBGpdGkpUQhA2YBp6nL3Z-W5aH-XUjigJFYhjwQqSiOWOaLxay02wnQo30isrbwM-rKQKvdUtSAENLlCSFrxit3WUgDjBGjOGEC6S18cp21B30OjUkKDaPdP9G2d_y5XfSo4x53w0eDcZBH85QOxlZ6OGtlUO_DDWXZEyZUc8oW__Qh9_3UStVHqAdcanvHo0lSclFpgWqBq95o9QaTXQWe0dGJvie4L3e4LE9HDdr9QQo1z-OP8P9tu_s2cX-yzbsTr4GAOY-z5jJMfpv2uIHKdfTtOfZK8f_tG96G7c6R8Ji_5p</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390719452</pqid></control><display><type>article</type><title>CsIVP functions in vasculature development and downy mildew resistance in cucumber</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Yan, Shuangshuang ; Ning, Kang ; Wang, Zhongyi ; Liu, Xiaofeng ; Zhong, Yanting ; Ding, Lian ; Zi, Hailing ; Cheng, Zhihua ; Li, Xuexian ; Shan, Hongyan ; Lv, Qingyang ; Luo, Laixin ; Liu, Renyi ; Yan, Liying ; Zhou, Zhaoyang ; Lucas, William John ; Zhang, Xiaolan</creator><creatorcontrib>Yan, Shuangshuang ; Ning, Kang ; Wang, Zhongyi ; Liu, Xiaofeng ; Zhong, Yanting ; Ding, Lian ; Zi, Hailing ; Cheng, Zhihua ; Li, Xuexian ; Shan, Hongyan ; Lv, Qingyang ; Luo, Laixin ; Liu, Renyi ; Yan, Liying ; Zhou, Zhaoyang ; Lucas, William John ; Zhang, Xiaolan</creatorcontrib><description>Domesticated crops with high yield and quality are frequently susceptible to pathogen attack, whereas enhancement of disease resistance generally compromises crop yield. The underlying mechanisms of how plant development and disease resistance are coordinately programed remain elusive. Here, we showed that the basic Helix-Loop-Helix (bHLH) transcription factor Cucumis sativus Irregular Vasculature Patterning (CsIVP) was highly expressed in cucumber vascular tissues. Knockdown of CsIVP caused severe vasculature disorganization and abnormal organ morphogenesis. CsIVP directly binds to vascular-related regulators YABBY5 (CsYAB5), BREVIPEDICELLUS (CsBP), and AUXIN/INDOLEACETIC ACIDS4 (CsAUX4) and promotes their expression. Knockdown of CsYAB5 resulted in similar phenotypes as CsIVP-RNA interference (RNAi) plants, including disturbed vascular configuration and abnormal organ morphology. Meanwhile, CsIVP-RNAi plants were more resistant to downy mildew and accumulated more salicylic acid (SA). CsIVP physically interacts with NIM1-INTERACTING1 (CsNIMIN1), a negative regulator in the SA signaling pathway. Thus, CsIVP is a novel vasculature regulator functioning in CsYAB5-mediated organ morphogenesis and SA-mediated downy mildew resistance in cucumber.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.3000671</identifier><identifier>PMID: 32203514</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agriculture ; Airborne microorganisms ; Biology ; Biology and Life Sciences ; Crop diseases ; Crop yield ; Crop yields ; Crops ; Disease resistance ; Domestication ; Downy mildew ; Drug resistance in microorganisms ; Engineering and Technology ; Flowers &amp; plants ; Funding ; Gene expression ; Helix-loop-helix proteins ; Helix-loop-helix proteins (basic) ; Horticulture ; International cooperation ; Laboratories ; Morphogenesis ; Morphology ; Pathogenesis ; Pathogens ; Phenotypes ; Phylogenetics ; Plant diseases ; Plant pathology ; Plant sciences ; Plant tissues ; Regulators ; RNA ; RNA-mediated interference ; Salicylic acid ; Signal transduction ; Transcription factors ; Vascular tissue</subject><ispartof>PLoS biology, 2020-03, Vol.18 (3), p.e3000671-e3000671</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Yan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Yan et al 2020 Yan et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c695t-2348174f1e41b896e2fde49bb9497018c3b6fecc409a262ebc6f32ae4901fefd3</citedby><cites>FETCH-LOGICAL-c695t-2348174f1e41b896e2fde49bb9497018c3b6fecc409a262ebc6f32ae4901fefd3</cites><orcidid>0000-0002-8432-2220 ; 0000-0002-6343-3116 ; 0000-0002-2534-4171</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7117775/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7117775/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32203514$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Shuangshuang</creatorcontrib><creatorcontrib>Ning, Kang</creatorcontrib><creatorcontrib>Wang, Zhongyi</creatorcontrib><creatorcontrib>Liu, Xiaofeng</creatorcontrib><creatorcontrib>Zhong, Yanting</creatorcontrib><creatorcontrib>Ding, Lian</creatorcontrib><creatorcontrib>Zi, Hailing</creatorcontrib><creatorcontrib>Cheng, Zhihua</creatorcontrib><creatorcontrib>Li, Xuexian</creatorcontrib><creatorcontrib>Shan, Hongyan</creatorcontrib><creatorcontrib>Lv, Qingyang</creatorcontrib><creatorcontrib>Luo, Laixin</creatorcontrib><creatorcontrib>Liu, Renyi</creatorcontrib><creatorcontrib>Yan, Liying</creatorcontrib><creatorcontrib>Zhou, Zhaoyang</creatorcontrib><creatorcontrib>Lucas, William John</creatorcontrib><creatorcontrib>Zhang, Xiaolan</creatorcontrib><title>CsIVP functions in vasculature development and downy mildew resistance in cucumber</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Domesticated crops with high yield and quality are frequently susceptible to pathogen attack, whereas enhancement of disease resistance generally compromises crop yield. The underlying mechanisms of how plant development and disease resistance are coordinately programed remain elusive. Here, we showed that the basic Helix-Loop-Helix (bHLH) transcription factor Cucumis sativus Irregular Vasculature Patterning (CsIVP) was highly expressed in cucumber vascular tissues. Knockdown of CsIVP caused severe vasculature disorganization and abnormal organ morphogenesis. CsIVP directly binds to vascular-related regulators YABBY5 (CsYAB5), BREVIPEDICELLUS (CsBP), and AUXIN/INDOLEACETIC ACIDS4 (CsAUX4) and promotes their expression. Knockdown of CsYAB5 resulted in similar phenotypes as CsIVP-RNA interference (RNAi) plants, including disturbed vascular configuration and abnormal organ morphology. Meanwhile, CsIVP-RNAi plants were more resistant to downy mildew and accumulated more salicylic acid (SA). CsIVP physically interacts with NIM1-INTERACTING1 (CsNIMIN1), a negative regulator in the SA signaling pathway. Thus, CsIVP is a novel vasculature regulator functioning in CsYAB5-mediated organ morphogenesis and SA-mediated downy mildew resistance in cucumber.</description><subject>Agriculture</subject><subject>Airborne microorganisms</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Crop diseases</subject><subject>Crop yield</subject><subject>Crop yields</subject><subject>Crops</subject><subject>Disease resistance</subject><subject>Domestication</subject><subject>Downy mildew</subject><subject>Drug resistance in microorganisms</subject><subject>Engineering and Technology</subject><subject>Flowers &amp; plants</subject><subject>Funding</subject><subject>Gene expression</subject><subject>Helix-loop-helix proteins</subject><subject>Helix-loop-helix proteins (basic)</subject><subject>Horticulture</subject><subject>International cooperation</subject><subject>Laboratories</subject><subject>Morphogenesis</subject><subject>Morphology</subject><subject>Pathogenesis</subject><subject>Pathogens</subject><subject>Phenotypes</subject><subject>Phylogenetics</subject><subject>Plant diseases</subject><subject>Plant pathology</subject><subject>Plant sciences</subject><subject>Plant tissues</subject><subject>Regulators</subject><subject>RNA</subject><subject>RNA-mediated interference</subject><subject>Salicylic acid</subject><subject>Signal transduction</subject><subject>Transcription factors</subject><subject>Vascular tissue</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEoh_wDxBE4gKHXfyVOL4gVSs-VqooKtCr5TjjxavE3trJtv33ON206qIeQD7YGj_vO-PxZNkrjOaYcvxh7YfgVDvf1NbPKUKo5PhJdogLVsx4VRVPH5wPsqMY1wgRIkj1PDughCBaYHaYnS_i8uJ7bgane-tdzK3LtyrqoVX9ECBvYAut33Tg-ly5Jm_8lbvJO9s2cJUHiDb2ymkYZXrQQ1dDeJE9M6qN8HLaj7Nfnz_9XHydnZ59WS5OTme6FEU_I5RVmDODgeG6EiUQ0wATdS2Y4AhXmtalAa0ZEoqUBGpdGkpUQhA2YBp6nL3Z-W5aH-XUjigJFYhjwQqSiOWOaLxay02wnQo30isrbwM-rKQKvdUtSAENLlCSFrxit3WUgDjBGjOGEC6S18cp21B30OjUkKDaPdP9G2d_y5XfSo4x53w0eDcZBH85QOxlZ6OGtlUO_DDWXZEyZUc8oW__Qh9_3UStVHqAdcanvHo0lSclFpgWqBq95o9QaTXQWe0dGJvie4L3e4LE9HDdr9QQo1z-OP8P9tu_s2cX-yzbsTr4GAOY-z5jJMfpv2uIHKdfTtOfZK8f_tG96G7c6R8Ji_5p</recordid><startdate>20200323</startdate><enddate>20200323</enddate><creator>Yan, Shuangshuang</creator><creator>Ning, Kang</creator><creator>Wang, Zhongyi</creator><creator>Liu, Xiaofeng</creator><creator>Zhong, Yanting</creator><creator>Ding, Lian</creator><creator>Zi, Hailing</creator><creator>Cheng, Zhihua</creator><creator>Li, Xuexian</creator><creator>Shan, Hongyan</creator><creator>Lv, Qingyang</creator><creator>Luo, Laixin</creator><creator>Liu, Renyi</creator><creator>Yan, Liying</creator><creator>Zhou, Zhaoyang</creator><creator>Lucas, William John</creator><creator>Zhang, Xiaolan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0002-8432-2220</orcidid><orcidid>https://orcid.org/0000-0002-6343-3116</orcidid><orcidid>https://orcid.org/0000-0002-2534-4171</orcidid></search><sort><creationdate>20200323</creationdate><title>CsIVP functions in vasculature development and downy mildew resistance in cucumber</title><author>Yan, Shuangshuang ; Ning, Kang ; Wang, Zhongyi ; Liu, Xiaofeng ; Zhong, Yanting ; Ding, Lian ; Zi, Hailing ; Cheng, Zhihua ; Li, Xuexian ; Shan, Hongyan ; Lv, Qingyang ; Luo, Laixin ; Liu, Renyi ; Yan, Liying ; Zhou, Zhaoyang ; Lucas, William John ; Zhang, Xiaolan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c695t-2348174f1e41b896e2fde49bb9497018c3b6fecc409a262ebc6f32ae4901fefd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agriculture</topic><topic>Airborne microorganisms</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Crop diseases</topic><topic>Crop yield</topic><topic>Crop yields</topic><topic>Crops</topic><topic>Disease resistance</topic><topic>Domestication</topic><topic>Downy mildew</topic><topic>Drug resistance in microorganisms</topic><topic>Engineering and Technology</topic><topic>Flowers &amp; plants</topic><topic>Funding</topic><topic>Gene expression</topic><topic>Helix-loop-helix proteins</topic><topic>Helix-loop-helix proteins (basic)</topic><topic>Horticulture</topic><topic>International cooperation</topic><topic>Laboratories</topic><topic>Morphogenesis</topic><topic>Morphology</topic><topic>Pathogenesis</topic><topic>Pathogens</topic><topic>Phenotypes</topic><topic>Phylogenetics</topic><topic>Plant diseases</topic><topic>Plant pathology</topic><topic>Plant sciences</topic><topic>Plant tissues</topic><topic>Regulators</topic><topic>RNA</topic><topic>RNA-mediated interference</topic><topic>Salicylic acid</topic><topic>Signal transduction</topic><topic>Transcription factors</topic><topic>Vascular tissue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Shuangshuang</creatorcontrib><creatorcontrib>Ning, Kang</creatorcontrib><creatorcontrib>Wang, Zhongyi</creatorcontrib><creatorcontrib>Liu, Xiaofeng</creatorcontrib><creatorcontrib>Zhong, Yanting</creatorcontrib><creatorcontrib>Ding, Lian</creatorcontrib><creatorcontrib>Zi, Hailing</creatorcontrib><creatorcontrib>Cheng, Zhihua</creatorcontrib><creatorcontrib>Li, Xuexian</creatorcontrib><creatorcontrib>Shan, Hongyan</creatorcontrib><creatorcontrib>Lv, Qingyang</creatorcontrib><creatorcontrib>Luo, Laixin</creatorcontrib><creatorcontrib>Liu, Renyi</creatorcontrib><creatorcontrib>Yan, Liying</creatorcontrib><creatorcontrib>Zhou, Zhaoyang</creatorcontrib><creatorcontrib>Lucas, William John</creatorcontrib><creatorcontrib>Zhang, Xiaolan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Shuangshuang</au><au>Ning, Kang</au><au>Wang, Zhongyi</au><au>Liu, Xiaofeng</au><au>Zhong, Yanting</au><au>Ding, Lian</au><au>Zi, Hailing</au><au>Cheng, Zhihua</au><au>Li, Xuexian</au><au>Shan, Hongyan</au><au>Lv, Qingyang</au><au>Luo, Laixin</au><au>Liu, Renyi</au><au>Yan, Liying</au><au>Zhou, Zhaoyang</au><au>Lucas, William John</au><au>Zhang, Xiaolan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CsIVP functions in vasculature development and downy mildew resistance in cucumber</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2020-03-23</date><risdate>2020</risdate><volume>18</volume><issue>3</issue><spage>e3000671</spage><epage>e3000671</epage><pages>e3000671-e3000671</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Domesticated crops with high yield and quality are frequently susceptible to pathogen attack, whereas enhancement of disease resistance generally compromises crop yield. The underlying mechanisms of how plant development and disease resistance are coordinately programed remain elusive. Here, we showed that the basic Helix-Loop-Helix (bHLH) transcription factor Cucumis sativus Irregular Vasculature Patterning (CsIVP) was highly expressed in cucumber vascular tissues. Knockdown of CsIVP caused severe vasculature disorganization and abnormal organ morphogenesis. CsIVP directly binds to vascular-related regulators YABBY5 (CsYAB5), BREVIPEDICELLUS (CsBP), and AUXIN/INDOLEACETIC ACIDS4 (CsAUX4) and promotes their expression. Knockdown of CsYAB5 resulted in similar phenotypes as CsIVP-RNA interference (RNAi) plants, including disturbed vascular configuration and abnormal organ morphology. Meanwhile, CsIVP-RNAi plants were more resistant to downy mildew and accumulated more salicylic acid (SA). CsIVP physically interacts with NIM1-INTERACTING1 (CsNIMIN1), a negative regulator in the SA signaling pathway. Thus, CsIVP is a novel vasculature regulator functioning in CsYAB5-mediated organ morphogenesis and SA-mediated downy mildew resistance in cucumber.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32203514</pmid><doi>10.1371/journal.pbio.3000671</doi><orcidid>https://orcid.org/0000-0002-8432-2220</orcidid><orcidid>https://orcid.org/0000-0002-6343-3116</orcidid><orcidid>https://orcid.org/0000-0002-2534-4171</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-7885
ispartof PLoS biology, 2020-03, Vol.18 (3), p.e3000671-e3000671
issn 1545-7885
1544-9173
1545-7885
language eng
recordid cdi_plos_journals_2390719452
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Public Library of Science (PLoS)
subjects Agriculture
Airborne microorganisms
Biology
Biology and Life Sciences
Crop diseases
Crop yield
Crop yields
Crops
Disease resistance
Domestication
Downy mildew
Drug resistance in microorganisms
Engineering and Technology
Flowers & plants
Funding
Gene expression
Helix-loop-helix proteins
Helix-loop-helix proteins (basic)
Horticulture
International cooperation
Laboratories
Morphogenesis
Morphology
Pathogenesis
Pathogens
Phenotypes
Phylogenetics
Plant diseases
Plant pathology
Plant sciences
Plant tissues
Regulators
RNA
RNA-mediated interference
Salicylic acid
Signal transduction
Transcription factors
Vascular tissue
title CsIVP functions in vasculature development and downy mildew resistance in cucumber
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A55%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CsIVP%20functions%20in%20vasculature%20development%20and%20downy%20mildew%20resistance%20in%20cucumber&rft.jtitle=PLoS%20biology&rft.au=Yan,%20Shuangshuang&rft.date=2020-03-23&rft.volume=18&rft.issue=3&rft.spage=e3000671&rft.epage=e3000671&rft.pages=e3000671-e3000671&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.3000671&rft_dat=%3Cgale_plos_%3EA619135087%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2390719452&rft_id=info:pmid/32203514&rft_galeid=A619135087&rft_doaj_id=oai_doaj_org_article_9ed1503905784de49b6e0721c1440015&rfr_iscdi=true