Context-dependent genetic architecture of Drosophila life span

Understanding the genetic basis of variation in life span is a major challenge that is difficult to address in human populations. Evolutionary theory predicts that alleles affecting natural variation in life span will have properties that enable them to persist in populations at intermediate frequen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS biology 2020-03, Vol.18 (3), p.e3000645-e3000645
Hauptverfasser: Huang, Wen, Campbell, Terry, Carbone, Mary Anna, Jones, W Elizabeth, Unselt, Desiree, Anholt, Robert R H, Mackay, Trudy F C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e3000645
container_issue 3
container_start_page e3000645
container_title PLoS biology
container_volume 18
creator Huang, Wen
Campbell, Terry
Carbone, Mary Anna
Jones, W Elizabeth
Unselt, Desiree
Anholt, Robert R H
Mackay, Trudy F C
description Understanding the genetic basis of variation in life span is a major challenge that is difficult to address in human populations. Evolutionary theory predicts that alleles affecting natural variation in life span will have properties that enable them to persist in populations at intermediate frequencies, such as late-life-specific deleterious effects, antagonistic pleiotropic effects on early and late-age fitness components, and/or sex- and environment-specific or antagonistic effects. Here, we quantified variation in life span in males and females reared in 3 thermal environments for the sequenced, inbred lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) and an advanced intercross outbred population derived from a subset of DGRP lines. Quantitative genetic analyses of life span and the micro-environmental variance of life span in the DGRP revealed significant genetic variance for both traits within each sex and environment, as well as significant genotype-by-sex interaction (GSI) and genotype-by-environment interaction (GEI). Genome-wide association (GWA) mapping in both populations implicates over 2,000 candidate genes with sex- and environment-specific or antagonistic pleiotropic allelic effects. Over 1,000 of these genes are associated with variation in life span in other D. melanogaster populations. We functionally assessed the effects of 15 candidate genes using RNA interference (RNAi): all affected life span and/or micro-environmental variance of life span in at least one sex and environment and exhibited sex-and environment-specific effects. Our results implicate novel candidate genes affecting life span and suggest that variation for life span may be maintained by variable allelic effects in heterogeneous environments.
doi_str_mv 10.1371/journal.pbio.3000645
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2390718275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A619136455</galeid><doaj_id>oai_doaj_org_article_b23b6afa757842ea9088617d7dc048c5</doaj_id><sourcerecordid>A619136455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c746t-ad846b6e83388079c7dd40a3aa47a6545d576f6107602e1d4faad1d5553cacad3</originalsourceid><addsrcrecordid>eNqVkstu1DAUhiMEoqXwBggisYFFBju-ZlOpGm4jVVTitrVObGfGo0wc7ATB2-MwadWgLmBly_7Of25_lj3FaIWJwK_3fgwdtKu-dn5FEEKcsnvZKWaUFUJKdv_W_SR7FOMeobKsSvkwOyElJrTC_DQ7X_tusD-HwtjedsZ2Q761nR2cziHonRusHsZgc9_kb4KPvt-5FvLWNTaPPXSPswcNtNE-mc-z7Ou7t1_WH4rLq_eb9cVloQXlQwFGUl5zKwmREolKC2MoAgJABfBUpWGCNxwjwVFpsaENgMGGMUY0aDDkLHt-1O1bH9XcelQlqZDAshQsEZsjYTzsVR_cAcIv5cGpPw8-bBWE1FZrVV2SmkMDgglJSwsVkpJjYYTRiEo9aZ3P2cb6YI1OUwnQLkSXP53bqa3_oQQSQooqCbycBYL_Pto4qIOL2rYtdNaPU92CEiYRlwl98Rd6d3cztYXUgOsan_LqSVRdcFxhkpY_Uas7qGmA9uC072zj0vsi4NUiQB_NsIUxRrX5_Ok_2I__zl59W7L0yOrkrxhsczNnjNTk9OuBqMnpanZ6Cnt2e0c3QdfWJr8B8VL3fA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390718275</pqid></control><display><type>article</type><title>Context-dependent genetic architecture of Drosophila life span</title><source>PubMed Central Free</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Huang, Wen ; Campbell, Terry ; Carbone, Mary Anna ; Jones, W Elizabeth ; Unselt, Desiree ; Anholt, Robert R H ; Mackay, Trudy F C</creator><contributor>Barton, Nick H.</contributor><creatorcontrib>Huang, Wen ; Campbell, Terry ; Carbone, Mary Anna ; Jones, W Elizabeth ; Unselt, Desiree ; Anholt, Robert R H ; Mackay, Trudy F C ; Barton, Nick H.</creatorcontrib><description>Understanding the genetic basis of variation in life span is a major challenge that is difficult to address in human populations. Evolutionary theory predicts that alleles affecting natural variation in life span will have properties that enable them to persist in populations at intermediate frequencies, such as late-life-specific deleterious effects, antagonistic pleiotropic effects on early and late-age fitness components, and/or sex- and environment-specific or antagonistic effects. Here, we quantified variation in life span in males and females reared in 3 thermal environments for the sequenced, inbred lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) and an advanced intercross outbred population derived from a subset of DGRP lines. Quantitative genetic analyses of life span and the micro-environmental variance of life span in the DGRP revealed significant genetic variance for both traits within each sex and environment, as well as significant genotype-by-sex interaction (GSI) and genotype-by-environment interaction (GEI). Genome-wide association (GWA) mapping in both populations implicates over 2,000 candidate genes with sex- and environment-specific or antagonistic pleiotropic allelic effects. Over 1,000 of these genes are associated with variation in life span in other D. melanogaster populations. We functionally assessed the effects of 15 candidate genes using RNA interference (RNAi): all affected life span and/or micro-environmental variance of life span in at least one sex and environment and exhibited sex-and environment-specific effects. Our results implicate novel candidate genes affecting life span and suggest that variation for life span may be maintained by variable allelic effects in heterogeneous environments.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.3000645</identifier><identifier>PMID: 32134916</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Age ; Analysis ; Animals ; Biochemistry ; Biology ; Biology and Life Sciences ; Drosophila ; Drosophila melanogaster - genetics ; Drosophila melanogaster - physiology ; Drosophila Proteins - genetics ; Environmental effects ; Evolution ; Female ; Gene expression ; Gene mapping ; Gene-Environment Interaction ; Genes ; Genetic analysis ; Genetic aspects ; Genetic diversity ; Genetic research ; Genetic variance ; Genetic Variation ; Genome-Wide Association Study ; Genomes ; Genomics ; Genotype &amp; phenotype ; Genotype-environment interactions ; Genotypes ; Human populations ; Inbreeding ; Life span ; Longevity - genetics ; Male ; Mapping ; Mutation ; Population genetics ; Populations ; Quantitative genetics ; Research and Analysis Methods ; RNA Interference ; RNA-mediated interference ; Sex ; Sexes ; Temperature ; Thermal environments ; Variance ; Variation</subject><ispartof>PLoS biology, 2020-03, Vol.18 (3), p.e3000645-e3000645</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Huang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Huang et al 2020 Huang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c746t-ad846b6e83388079c7dd40a3aa47a6545d576f6107602e1d4faad1d5553cacad3</citedby><cites>FETCH-LOGICAL-c746t-ad846b6e83388079c7dd40a3aa47a6545d576f6107602e1d4faad1d5553cacad3</cites><orcidid>0000-0002-2312-7245 ; 0000-0003-2134-0787 ; 0000-0003-1489-8854</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7077879/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7077879/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32134916$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Barton, Nick H.</contributor><creatorcontrib>Huang, Wen</creatorcontrib><creatorcontrib>Campbell, Terry</creatorcontrib><creatorcontrib>Carbone, Mary Anna</creatorcontrib><creatorcontrib>Jones, W Elizabeth</creatorcontrib><creatorcontrib>Unselt, Desiree</creatorcontrib><creatorcontrib>Anholt, Robert R H</creatorcontrib><creatorcontrib>Mackay, Trudy F C</creatorcontrib><title>Context-dependent genetic architecture of Drosophila life span</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Understanding the genetic basis of variation in life span is a major challenge that is difficult to address in human populations. Evolutionary theory predicts that alleles affecting natural variation in life span will have properties that enable them to persist in populations at intermediate frequencies, such as late-life-specific deleterious effects, antagonistic pleiotropic effects on early and late-age fitness components, and/or sex- and environment-specific or antagonistic effects. Here, we quantified variation in life span in males and females reared in 3 thermal environments for the sequenced, inbred lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) and an advanced intercross outbred population derived from a subset of DGRP lines. Quantitative genetic analyses of life span and the micro-environmental variance of life span in the DGRP revealed significant genetic variance for both traits within each sex and environment, as well as significant genotype-by-sex interaction (GSI) and genotype-by-environment interaction (GEI). Genome-wide association (GWA) mapping in both populations implicates over 2,000 candidate genes with sex- and environment-specific or antagonistic pleiotropic allelic effects. Over 1,000 of these genes are associated with variation in life span in other D. melanogaster populations. We functionally assessed the effects of 15 candidate genes using RNA interference (RNAi): all affected life span and/or micro-environmental variance of life span in at least one sex and environment and exhibited sex-and environment-specific effects. Our results implicate novel candidate genes affecting life span and suggest that variation for life span may be maintained by variable allelic effects in heterogeneous environments.</description><subject>Age</subject><subject>Analysis</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Drosophila</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - physiology</subject><subject>Drosophila Proteins - genetics</subject><subject>Environmental effects</subject><subject>Evolution</subject><subject>Female</subject><subject>Gene expression</subject><subject>Gene mapping</subject><subject>Gene-Environment Interaction</subject><subject>Genes</subject><subject>Genetic analysis</subject><subject>Genetic aspects</subject><subject>Genetic diversity</subject><subject>Genetic research</subject><subject>Genetic variance</subject><subject>Genetic Variation</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotype &amp; phenotype</subject><subject>Genotype-environment interactions</subject><subject>Genotypes</subject><subject>Human populations</subject><subject>Inbreeding</subject><subject>Life span</subject><subject>Longevity - genetics</subject><subject>Male</subject><subject>Mapping</subject><subject>Mutation</subject><subject>Population genetics</subject><subject>Populations</subject><subject>Quantitative genetics</subject><subject>Research and Analysis Methods</subject><subject>RNA Interference</subject><subject>RNA-mediated interference</subject><subject>Sex</subject><subject>Sexes</subject><subject>Temperature</subject><subject>Thermal environments</subject><subject>Variance</subject><subject>Variation</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkstu1DAUhiMEoqXwBggisYFFBju-ZlOpGm4jVVTitrVObGfGo0wc7ATB2-MwadWgLmBly_7Of25_lj3FaIWJwK_3fgwdtKu-dn5FEEKcsnvZKWaUFUJKdv_W_SR7FOMeobKsSvkwOyElJrTC_DQ7X_tusD-HwtjedsZ2Q761nR2cziHonRusHsZgc9_kb4KPvt-5FvLWNTaPPXSPswcNtNE-mc-z7Ou7t1_WH4rLq_eb9cVloQXlQwFGUl5zKwmREolKC2MoAgJABfBUpWGCNxwjwVFpsaENgMGGMUY0aDDkLHt-1O1bH9XcelQlqZDAshQsEZsjYTzsVR_cAcIv5cGpPw8-bBWE1FZrVV2SmkMDgglJSwsVkpJjYYTRiEo9aZ3P2cb6YI1OUwnQLkSXP53bqa3_oQQSQooqCbycBYL_Pto4qIOL2rYtdNaPU92CEiYRlwl98Rd6d3cztYXUgOsan_LqSVRdcFxhkpY_Uas7qGmA9uC072zj0vsi4NUiQB_NsIUxRrX5_Ok_2I__zl59W7L0yOrkrxhsczNnjNTk9OuBqMnpanZ6Cnt2e0c3QdfWJr8B8VL3fA</recordid><startdate>20200305</startdate><enddate>20200305</enddate><creator>Huang, Wen</creator><creator>Campbell, Terry</creator><creator>Carbone, Mary Anna</creator><creator>Jones, W Elizabeth</creator><creator>Unselt, Desiree</creator><creator>Anholt, Robert R H</creator><creator>Mackay, Trudy F C</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0002-2312-7245</orcidid><orcidid>https://orcid.org/0000-0003-2134-0787</orcidid><orcidid>https://orcid.org/0000-0003-1489-8854</orcidid></search><sort><creationdate>20200305</creationdate><title>Context-dependent genetic architecture of Drosophila life span</title><author>Huang, Wen ; Campbell, Terry ; Carbone, Mary Anna ; Jones, W Elizabeth ; Unselt, Desiree ; Anholt, Robert R H ; Mackay, Trudy F C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c746t-ad846b6e83388079c7dd40a3aa47a6545d576f6107602e1d4faad1d5553cacad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Age</topic><topic>Analysis</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Drosophila</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - physiology</topic><topic>Drosophila Proteins - genetics</topic><topic>Environmental effects</topic><topic>Evolution</topic><topic>Female</topic><topic>Gene expression</topic><topic>Gene mapping</topic><topic>Gene-Environment Interaction</topic><topic>Genes</topic><topic>Genetic analysis</topic><topic>Genetic aspects</topic><topic>Genetic diversity</topic><topic>Genetic research</topic><topic>Genetic variance</topic><topic>Genetic Variation</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotype &amp; phenotype</topic><topic>Genotype-environment interactions</topic><topic>Genotypes</topic><topic>Human populations</topic><topic>Inbreeding</topic><topic>Life span</topic><topic>Longevity - genetics</topic><topic>Male</topic><topic>Mapping</topic><topic>Mutation</topic><topic>Population genetics</topic><topic>Populations</topic><topic>Quantitative genetics</topic><topic>Research and Analysis Methods</topic><topic>RNA Interference</topic><topic>RNA-mediated interference</topic><topic>Sex</topic><topic>Sexes</topic><topic>Temperature</topic><topic>Thermal environments</topic><topic>Variance</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Wen</creatorcontrib><creatorcontrib>Campbell, Terry</creatorcontrib><creatorcontrib>Carbone, Mary Anna</creatorcontrib><creatorcontrib>Jones, W Elizabeth</creatorcontrib><creatorcontrib>Unselt, Desiree</creatorcontrib><creatorcontrib>Anholt, Robert R H</creatorcontrib><creatorcontrib>Mackay, Trudy F C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Wen</au><au>Campbell, Terry</au><au>Carbone, Mary Anna</au><au>Jones, W Elizabeth</au><au>Unselt, Desiree</au><au>Anholt, Robert R H</au><au>Mackay, Trudy F C</au><au>Barton, Nick H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Context-dependent genetic architecture of Drosophila life span</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2020-03-05</date><risdate>2020</risdate><volume>18</volume><issue>3</issue><spage>e3000645</spage><epage>e3000645</epage><pages>e3000645-e3000645</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Understanding the genetic basis of variation in life span is a major challenge that is difficult to address in human populations. Evolutionary theory predicts that alleles affecting natural variation in life span will have properties that enable them to persist in populations at intermediate frequencies, such as late-life-specific deleterious effects, antagonistic pleiotropic effects on early and late-age fitness components, and/or sex- and environment-specific or antagonistic effects. Here, we quantified variation in life span in males and females reared in 3 thermal environments for the sequenced, inbred lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) and an advanced intercross outbred population derived from a subset of DGRP lines. Quantitative genetic analyses of life span and the micro-environmental variance of life span in the DGRP revealed significant genetic variance for both traits within each sex and environment, as well as significant genotype-by-sex interaction (GSI) and genotype-by-environment interaction (GEI). Genome-wide association (GWA) mapping in both populations implicates over 2,000 candidate genes with sex- and environment-specific or antagonistic pleiotropic allelic effects. Over 1,000 of these genes are associated with variation in life span in other D. melanogaster populations. We functionally assessed the effects of 15 candidate genes using RNA interference (RNAi): all affected life span and/or micro-environmental variance of life span in at least one sex and environment and exhibited sex-and environment-specific effects. Our results implicate novel candidate genes affecting life span and suggest that variation for life span may be maintained by variable allelic effects in heterogeneous environments.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32134916</pmid><doi>10.1371/journal.pbio.3000645</doi><orcidid>https://orcid.org/0000-0002-2312-7245</orcidid><orcidid>https://orcid.org/0000-0003-2134-0787</orcidid><orcidid>https://orcid.org/0000-0003-1489-8854</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-7885
ispartof PLoS biology, 2020-03, Vol.18 (3), p.e3000645-e3000645
issn 1545-7885
1544-9173
1545-7885
language eng
recordid cdi_plos_journals_2390718275
source PubMed Central Free; MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals
subjects Age
Analysis
Animals
Biochemistry
Biology
Biology and Life Sciences
Drosophila
Drosophila melanogaster - genetics
Drosophila melanogaster - physiology
Drosophila Proteins - genetics
Environmental effects
Evolution
Female
Gene expression
Gene mapping
Gene-Environment Interaction
Genes
Genetic analysis
Genetic aspects
Genetic diversity
Genetic research
Genetic variance
Genetic Variation
Genome-Wide Association Study
Genomes
Genomics
Genotype & phenotype
Genotype-environment interactions
Genotypes
Human populations
Inbreeding
Life span
Longevity - genetics
Male
Mapping
Mutation
Population genetics
Populations
Quantitative genetics
Research and Analysis Methods
RNA Interference
RNA-mediated interference
Sex
Sexes
Temperature
Thermal environments
Variance
Variation
title Context-dependent genetic architecture of Drosophila life span
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A48%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Context-dependent%20genetic%20architecture%20of%20Drosophila%20life%20span&rft.jtitle=PLoS%20biology&rft.au=Huang,%20Wen&rft.date=2020-03-05&rft.volume=18&rft.issue=3&rft.spage=e3000645&rft.epage=e3000645&rft.pages=e3000645-e3000645&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.3000645&rft_dat=%3Cgale_plos_%3EA619136455%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2390718275&rft_id=info:pmid/32134916&rft_galeid=A619136455&rft_doaj_id=oai_doaj_org_article_b23b6afa757842ea9088617d7dc048c5&rfr_iscdi=true