Identification of QTL conferring resistance to stripe rust (Puccinia striiformis f. sp. hordei) and leaf rust (Puccinia hordei) in barley using nested association mapping (NAM)
The biotrophic rust fungi Puccinia hordei and Puccinia striiformis are important barley pathogens with the potential to cause high yield losses through an epidemic spread. The identification of QTL conferring resistance to these pathogens is the basis for targeted breeding approaches aiming to impro...
Gespeichert in:
Veröffentlicht in: | PloS one 2018-01, Vol.13 (1), p.e0191666-e0191666 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0191666 |
---|---|
container_issue | 1 |
container_start_page | e0191666 |
container_title | PloS one |
container_volume | 13 |
creator | Vatter, Thomas Maurer, Andreas Perovic, Dragan Kopahnke, Doris Pillen, Klaus Ordon, Frank |
description | The biotrophic rust fungi Puccinia hordei and Puccinia striiformis are important barley pathogens with the potential to cause high yield losses through an epidemic spread. The identification of QTL conferring resistance to these pathogens is the basis for targeted breeding approaches aiming to improve stripe rust and leaf rust resistance of modern cultivars. Exploiting the allelic richness of wild barley accessions proved to be a valuable tool to broaden the genetic base of resistance of barley cultivars. In this study, SNP-based nested association mapping (NAM) was performed to map stripe rust and leaf rust resistance QTL in the barley NAM population HEB-25, comprising 1,420 lines derived from BC1S3 generation. By scoring the percentage of infected leaf area, followed by calculation of the area under the disease progress curve and the average ordinate during a two-year field trial, a large variability of resistance across and within HEB-25 families was observed. NAM based on 5,715 informative SNPs resulted in the identification of twelve and eleven robust QTL for resistance against stripe rust and leaf rust, respectively. Out of these, eight QTL for stripe rust and two QTL for leaf rust are considered novel showing no overlap with previously reported resistance QTL. Overall, resistance to both pathogens in HEB-25 is most likely due to the accumulation of numerous small effect loci. In addition, the NAM results indicate that the 25 wild donor QTL alleles present in HEB-25 strongly differ in regard to their individual effect on rust resistance. In future, the NAM concept will allow to select and combine individual wild barley alleles from different HEB parents to increase rust resistance in barley. The HEB-25 results will support to unravel the genetic basis of rust resistance in barley, and to improve resistance against stripe rust and leaf rust of modern barley cultivars. |
doi_str_mv | 10.1371/journal.pone.0191666 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2390633968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_29a0cc302f304a2fb7d8ca81d29e8580</doaj_id><sourcerecordid>1992003615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-409781ffedb70b7f3bdd92d2470e6876ed7ca64dbe0eb0ab72ec1e69430aa4db3</originalsourceid><addsrcrecordid>eNptUstuEzEUHSEQLYU_QGCJTbpI8GPiGW-QqopHpPCSytq6Y1-njib2YM8g9a_4RCbNpGorVrbuPefc1ymK14wumKjY-20cUoB20cWAC8oUk1I-KU6ZEnwuORVP7_1Pihc5byldilrK58UJV6KiXPDT4u_KYui98wZ6HwOJjvy8WhMTg8OUfNiQhNnnHoJB0keS--Q7JGnIPZn9GIzxwcNt1LuYdj4TtyC5W5DrmCz6cwLBkhbBPaYc8z6QBlKLN2TI-3IBc4-WQM7R-ENPO-i6fWr27eLr-cvimYM246vpPSt-ffp4dfllvv7-eXV5sZ6bJZf9vKSqqplzaJuKNpUTjbWKW15WFGVdSbSVAVnaBik2FJqKo2EoVSkowBgWZ8Xbg27XxqynZWfNhaJSCCXrEbE6IGyEre6S30G60RG8vg3EtNGQem9a1FwBNUZQ7gQtgbumsrWBmlmusF7WdNT6MFUbmh1aM94kQftA9GEm-Gu9iX_0sqpLVcpRYDYJpPh7GHeox1sYbFsIGIesmVKcUiHZcoS-ewT9_3TlAWVSzDmhu2uGUb034JGl9wbUkwFH2pv7g9yRjo4T_wDVLNyl</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390633968</pqid></control><display><type>article</type><title>Identification of QTL conferring resistance to stripe rust (Puccinia striiformis f. sp. hordei) and leaf rust (Puccinia hordei) in barley using nested association mapping (NAM)</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Vatter, Thomas ; Maurer, Andreas ; Perovic, Dragan ; Kopahnke, Doris ; Pillen, Klaus ; Ordon, Frank</creator><contributor>Li, Chengdao</contributor><creatorcontrib>Vatter, Thomas ; Maurer, Andreas ; Perovic, Dragan ; Kopahnke, Doris ; Pillen, Klaus ; Ordon, Frank ; Li, Chengdao</creatorcontrib><description>The biotrophic rust fungi Puccinia hordei and Puccinia striiformis are important barley pathogens with the potential to cause high yield losses through an epidemic spread. The identification of QTL conferring resistance to these pathogens is the basis for targeted breeding approaches aiming to improve stripe rust and leaf rust resistance of modern cultivars. Exploiting the allelic richness of wild barley accessions proved to be a valuable tool to broaden the genetic base of resistance of barley cultivars. In this study, SNP-based nested association mapping (NAM) was performed to map stripe rust and leaf rust resistance QTL in the barley NAM population HEB-25, comprising 1,420 lines derived from BC1S3 generation. By scoring the percentage of infected leaf area, followed by calculation of the area under the disease progress curve and the average ordinate during a two-year field trial, a large variability of resistance across and within HEB-25 families was observed. NAM based on 5,715 informative SNPs resulted in the identification of twelve and eleven robust QTL for resistance against stripe rust and leaf rust, respectively. Out of these, eight QTL for stripe rust and two QTL for leaf rust are considered novel showing no overlap with previously reported resistance QTL. Overall, resistance to both pathogens in HEB-25 is most likely due to the accumulation of numerous small effect loci. In addition, the NAM results indicate that the 25 wild donor QTL alleles present in HEB-25 strongly differ in regard to their individual effect on rust resistance. In future, the NAM concept will allow to select and combine individual wild barley alleles from different HEB parents to increase rust resistance in barley. The HEB-25 results will support to unravel the genetic basis of rust resistance in barley, and to improve resistance against stripe rust and leaf rust of modern barley cultivars.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0191666</identifier><identifier>PMID: 29370232</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Alleles ; Barley ; Basidiomycota - genetics ; Biology and Life Sciences ; Breeding ; Chromosome Mapping ; Chromosomes, Plant ; Cultivars ; Disease resistance ; Disease Resistance - genetics ; Epidemics ; Flowers & plants ; Fungi ; Gene mapping ; Genes, Plant - genetics ; Genetic Association Studies ; Genotype ; Genotype & phenotype ; Hordeum - genetics ; Hordeum - microbiology ; Identification ; Leaf area ; Leaf rust ; Mapping ; Medicine and Health Sciences ; Pathogens ; Phenotype ; Plant breeding ; Plant Diseases - microbiology ; Polymerase Chain Reaction - methods ; Polymorphism, Single Nucleotide - genetics ; Population ; Puccinia hordei ; Puccinia striiformis ; Quantitative trait loci ; Quantitative Trait Loci - genetics ; Research and Analysis Methods ; Rust fungi ; Single-nucleotide polymorphism ; Stripe rust ; Studies</subject><ispartof>PloS one, 2018-01, Vol.13 (1), p.e0191666-e0191666</ispartof><rights>2018 Vatter et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Vatter et al 2018 Vatter et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-409781ffedb70b7f3bdd92d2470e6876ed7ca64dbe0eb0ab72ec1e69430aa4db3</citedby><cites>FETCH-LOGICAL-c526t-409781ffedb70b7f3bdd92d2470e6876ed7ca64dbe0eb0ab72ec1e69430aa4db3</cites><orcidid>0000-0002-1695-6395</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5784946/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5784946/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29370232$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Li, Chengdao</contributor><creatorcontrib>Vatter, Thomas</creatorcontrib><creatorcontrib>Maurer, Andreas</creatorcontrib><creatorcontrib>Perovic, Dragan</creatorcontrib><creatorcontrib>Kopahnke, Doris</creatorcontrib><creatorcontrib>Pillen, Klaus</creatorcontrib><creatorcontrib>Ordon, Frank</creatorcontrib><title>Identification of QTL conferring resistance to stripe rust (Puccinia striiformis f. sp. hordei) and leaf rust (Puccinia hordei) in barley using nested association mapping (NAM)</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The biotrophic rust fungi Puccinia hordei and Puccinia striiformis are important barley pathogens with the potential to cause high yield losses through an epidemic spread. The identification of QTL conferring resistance to these pathogens is the basis for targeted breeding approaches aiming to improve stripe rust and leaf rust resistance of modern cultivars. Exploiting the allelic richness of wild barley accessions proved to be a valuable tool to broaden the genetic base of resistance of barley cultivars. In this study, SNP-based nested association mapping (NAM) was performed to map stripe rust and leaf rust resistance QTL in the barley NAM population HEB-25, comprising 1,420 lines derived from BC1S3 generation. By scoring the percentage of infected leaf area, followed by calculation of the area under the disease progress curve and the average ordinate during a two-year field trial, a large variability of resistance across and within HEB-25 families was observed. NAM based on 5,715 informative SNPs resulted in the identification of twelve and eleven robust QTL for resistance against stripe rust and leaf rust, respectively. Out of these, eight QTL for stripe rust and two QTL for leaf rust are considered novel showing no overlap with previously reported resistance QTL. Overall, resistance to both pathogens in HEB-25 is most likely due to the accumulation of numerous small effect loci. In addition, the NAM results indicate that the 25 wild donor QTL alleles present in HEB-25 strongly differ in regard to their individual effect on rust resistance. In future, the NAM concept will allow to select and combine individual wild barley alleles from different HEB parents to increase rust resistance in barley. The HEB-25 results will support to unravel the genetic basis of rust resistance in barley, and to improve resistance against stripe rust and leaf rust of modern barley cultivars.</description><subject>Alleles</subject><subject>Barley</subject><subject>Basidiomycota - genetics</subject><subject>Biology and Life Sciences</subject><subject>Breeding</subject><subject>Chromosome Mapping</subject><subject>Chromosomes, Plant</subject><subject>Cultivars</subject><subject>Disease resistance</subject><subject>Disease Resistance - genetics</subject><subject>Epidemics</subject><subject>Flowers & plants</subject><subject>Fungi</subject><subject>Gene mapping</subject><subject>Genes, Plant - genetics</subject><subject>Genetic Association Studies</subject><subject>Genotype</subject><subject>Genotype & phenotype</subject><subject>Hordeum - genetics</subject><subject>Hordeum - microbiology</subject><subject>Identification</subject><subject>Leaf area</subject><subject>Leaf rust</subject><subject>Mapping</subject><subject>Medicine and Health Sciences</subject><subject>Pathogens</subject><subject>Phenotype</subject><subject>Plant breeding</subject><subject>Plant Diseases - microbiology</subject><subject>Polymerase Chain Reaction - methods</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Population</subject><subject>Puccinia hordei</subject><subject>Puccinia striiformis</subject><subject>Quantitative trait loci</subject><subject>Quantitative Trait Loci - genetics</subject><subject>Research and Analysis Methods</subject><subject>Rust fungi</subject><subject>Single-nucleotide polymorphism</subject><subject>Stripe rust</subject><subject>Studies</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptUstuEzEUHSEQLYU_QGCJTbpI8GPiGW-QqopHpPCSytq6Y1-njib2YM8g9a_4RCbNpGorVrbuPefc1ymK14wumKjY-20cUoB20cWAC8oUk1I-KU6ZEnwuORVP7_1Pihc5byldilrK58UJV6KiXPDT4u_KYui98wZ6HwOJjvy8WhMTg8OUfNiQhNnnHoJB0keS--Q7JGnIPZn9GIzxwcNt1LuYdj4TtyC5W5DrmCz6cwLBkhbBPaYc8z6QBlKLN2TI-3IBc4-WQM7R-ENPO-i6fWr27eLr-cvimYM246vpPSt-ffp4dfllvv7-eXV5sZ6bJZf9vKSqqplzaJuKNpUTjbWKW15WFGVdSbSVAVnaBik2FJqKo2EoVSkowBgWZ8Xbg27XxqynZWfNhaJSCCXrEbE6IGyEre6S30G60RG8vg3EtNGQem9a1FwBNUZQ7gQtgbumsrWBmlmusF7WdNT6MFUbmh1aM94kQftA9GEm-Gu9iX_0sqpLVcpRYDYJpPh7GHeox1sYbFsIGIesmVKcUiHZcoS-ewT9_3TlAWVSzDmhu2uGUb034JGl9wbUkwFH2pv7g9yRjo4T_wDVLNyl</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Vatter, Thomas</creator><creator>Maurer, Andreas</creator><creator>Perovic, Dragan</creator><creator>Kopahnke, Doris</creator><creator>Pillen, Klaus</creator><creator>Ordon, Frank</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1695-6395</orcidid></search><sort><creationdate>20180101</creationdate><title>Identification of QTL conferring resistance to stripe rust (Puccinia striiformis f. sp. hordei) and leaf rust (Puccinia hordei) in barley using nested association mapping (NAM)</title><author>Vatter, Thomas ; Maurer, Andreas ; Perovic, Dragan ; Kopahnke, Doris ; Pillen, Klaus ; Ordon, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-409781ffedb70b7f3bdd92d2470e6876ed7ca64dbe0eb0ab72ec1e69430aa4db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alleles</topic><topic>Barley</topic><topic>Basidiomycota - genetics</topic><topic>Biology and Life Sciences</topic><topic>Breeding</topic><topic>Chromosome Mapping</topic><topic>Chromosomes, Plant</topic><topic>Cultivars</topic><topic>Disease resistance</topic><topic>Disease Resistance - genetics</topic><topic>Epidemics</topic><topic>Flowers & plants</topic><topic>Fungi</topic><topic>Gene mapping</topic><topic>Genes, Plant - genetics</topic><topic>Genetic Association Studies</topic><topic>Genotype</topic><topic>Genotype & phenotype</topic><topic>Hordeum - genetics</topic><topic>Hordeum - microbiology</topic><topic>Identification</topic><topic>Leaf area</topic><topic>Leaf rust</topic><topic>Mapping</topic><topic>Medicine and Health Sciences</topic><topic>Pathogens</topic><topic>Phenotype</topic><topic>Plant breeding</topic><topic>Plant Diseases - microbiology</topic><topic>Polymerase Chain Reaction - methods</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Population</topic><topic>Puccinia hordei</topic><topic>Puccinia striiformis</topic><topic>Quantitative trait loci</topic><topic>Quantitative Trait Loci - genetics</topic><topic>Research and Analysis Methods</topic><topic>Rust fungi</topic><topic>Single-nucleotide polymorphism</topic><topic>Stripe rust</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vatter, Thomas</creatorcontrib><creatorcontrib>Maurer, Andreas</creatorcontrib><creatorcontrib>Perovic, Dragan</creatorcontrib><creatorcontrib>Kopahnke, Doris</creatorcontrib><creatorcontrib>Pillen, Klaus</creatorcontrib><creatorcontrib>Ordon, Frank</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>PHMC-Proquest健康医学期刊库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vatter, Thomas</au><au>Maurer, Andreas</au><au>Perovic, Dragan</au><au>Kopahnke, Doris</au><au>Pillen, Klaus</au><au>Ordon, Frank</au><au>Li, Chengdao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of QTL conferring resistance to stripe rust (Puccinia striiformis f. sp. hordei) and leaf rust (Puccinia hordei) in barley using nested association mapping (NAM)</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>13</volume><issue>1</issue><spage>e0191666</spage><epage>e0191666</epage><pages>e0191666-e0191666</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The biotrophic rust fungi Puccinia hordei and Puccinia striiformis are important barley pathogens with the potential to cause high yield losses through an epidemic spread. The identification of QTL conferring resistance to these pathogens is the basis for targeted breeding approaches aiming to improve stripe rust and leaf rust resistance of modern cultivars. Exploiting the allelic richness of wild barley accessions proved to be a valuable tool to broaden the genetic base of resistance of barley cultivars. In this study, SNP-based nested association mapping (NAM) was performed to map stripe rust and leaf rust resistance QTL in the barley NAM population HEB-25, comprising 1,420 lines derived from BC1S3 generation. By scoring the percentage of infected leaf area, followed by calculation of the area under the disease progress curve and the average ordinate during a two-year field trial, a large variability of resistance across and within HEB-25 families was observed. NAM based on 5,715 informative SNPs resulted in the identification of twelve and eleven robust QTL for resistance against stripe rust and leaf rust, respectively. Out of these, eight QTL for stripe rust and two QTL for leaf rust are considered novel showing no overlap with previously reported resistance QTL. Overall, resistance to both pathogens in HEB-25 is most likely due to the accumulation of numerous small effect loci. In addition, the NAM results indicate that the 25 wild donor QTL alleles present in HEB-25 strongly differ in regard to their individual effect on rust resistance. In future, the NAM concept will allow to select and combine individual wild barley alleles from different HEB parents to increase rust resistance in barley. The HEB-25 results will support to unravel the genetic basis of rust resistance in barley, and to improve resistance against stripe rust and leaf rust of modern barley cultivars.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29370232</pmid><doi>10.1371/journal.pone.0191666</doi><orcidid>https://orcid.org/0000-0002-1695-6395</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2018-01, Vol.13 (1), p.e0191666-e0191666 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2390633968 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library |
subjects | Alleles Barley Basidiomycota - genetics Biology and Life Sciences Breeding Chromosome Mapping Chromosomes, Plant Cultivars Disease resistance Disease Resistance - genetics Epidemics Flowers & plants Fungi Gene mapping Genes, Plant - genetics Genetic Association Studies Genotype Genotype & phenotype Hordeum - genetics Hordeum - microbiology Identification Leaf area Leaf rust Mapping Medicine and Health Sciences Pathogens Phenotype Plant breeding Plant Diseases - microbiology Polymerase Chain Reaction - methods Polymorphism, Single Nucleotide - genetics Population Puccinia hordei Puccinia striiformis Quantitative trait loci Quantitative Trait Loci - genetics Research and Analysis Methods Rust fungi Single-nucleotide polymorphism Stripe rust Studies |
title | Identification of QTL conferring resistance to stripe rust (Puccinia striiformis f. sp. hordei) and leaf rust (Puccinia hordei) in barley using nested association mapping (NAM) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T09%3A07%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20QTL%20conferring%20resistance%20to%20stripe%20rust%20(Puccinia%20striiformis%20f.%20sp.%20hordei)%20and%20leaf%20rust%20(Puccinia%20hordei)%20in%20barley%20using%20nested%20association%20mapping%20(NAM)&rft.jtitle=PloS%20one&rft.au=Vatter,%20Thomas&rft.date=2018-01-01&rft.volume=13&rft.issue=1&rft.spage=e0191666&rft.epage=e0191666&rft.pages=e0191666-e0191666&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0191666&rft_dat=%3Cproquest_plos_%3E1992003615%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2390633968&rft_id=info:pmid/29370232&rft_doaj_id=oai_doaj_org_article_29a0cc302f304a2fb7d8ca81d29e8580&rfr_iscdi=true |