How exogenous nitric oxide regulates nitrogen assimilation in wheat seedlings under different nitrogen sources and levels

Nitrogen (N) is one of the most important nutrients for plants and nitric oxide (NO) as a signaling plant growth regulator involved in nitrogen assimilation. Understanding the influence of exogenous NO on nitrogen metabolism at the gene expression and enzyme activity levels under different sources o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2018-01, Vol.13 (1), p.e0190269-e0190269
Hauptverfasser: Balotf, Sadegh, Islam, Shahidul, Kavoosi, Gholamreza, Kholdebarin, Bahman, Juhasz, Angela, Ma, Wujun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0190269
container_issue 1
container_start_page e0190269
container_title PloS one
container_volume 13
creator Balotf, Sadegh
Islam, Shahidul
Kavoosi, Gholamreza
Kholdebarin, Bahman
Juhasz, Angela
Ma, Wujun
description Nitrogen (N) is one of the most important nutrients for plants and nitric oxide (NO) as a signaling plant growth regulator involved in nitrogen assimilation. Understanding the influence of exogenous NO on nitrogen metabolism at the gene expression and enzyme activity levels under different sources of nitrogen is vitally important for increasing nitrogen use efficiency (NUE). This study investigated the expression of key genes and enzymes in relation to nitrogen assimilation in two Australian wheat cultivars, a popular high NUE cv. Spitfire and a normal NUE cv. Westonia, under different combinations of nitrogen and sodium nitroprusside (SNP) as the NO donor. Application of NO increased the gene expressions and activities of nitrogen assimilation pathway enzymes in both cultivars at low levels of nitrogen. At high nitrogen supplies, the expressions and activities of N assimilation genes increased in response to exogenous NO only in cv. Spitfire but not in cv. Westonia. Exogenous NO caused an increase in leaf NO content at low N supplies in both cultivars, while under high nitrogen treatments, cv. Spitfire showed an increase under ammonium nitrate (NH4NO3) treatment but cv. Westonia was not affected. N assimilation gene expression and enzyme activity showed a clear relationship between exogenous NO, N concentration and N forms in primary plant nitrogen assimilation. Results reveal the possible role of NO and different nitrogen sources on nitrogen assimilation in Triticum aestivum plants.
doi_str_mv 10.1371/journal.pone.0190269
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2390626026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A522513341</galeid><doaj_id>oai_doaj_org_article_2647bc6287e444c98628c5bee1b4c9b5</doaj_id><sourcerecordid>A522513341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-59646b45dec8c85df55f721c055511301c18d076c871c90592bac87ef0b9b573</originalsourceid><addsrcrecordid>eNqNk01v1DAQhiMEoqXwDxBEQkJw2MV2Yie-IFUV0JUqVYKKq-U4k6xXXnuxk378e2bZtOyiHlAOmYyfeR2_nsmy15TMaVHRT6swRq_dfBM8zAmVhAn5JDumsmAzwUjxdC8-yl6ktCKEF7UQz7MjhguEM3mc3Z2HmxxuQw8-jCn3dojW5OHWtpBH6EenB9ilt0iuU7Jri0kbfG59frMEPeQJoHXW9ykffQsxb23XQQQ__C1M-LcGlbRvcwfX4NLL7FmnXYJX0_sku_r65ersfHZx-W1xdnoxM0KyYcalKEVT8hZMbWredpx3FaOGcM4pLQg1tG5JJUxdUSMJl6zRGENHGtnwqjjJ3u5kNy4kNZmWFCskEUygaUgsdkQb9Eptol3reKeCtupPIsRe6ThY40AxUVaNEQz1y7I0ssbQ8AaANvjVcNT6PO02NmtoDXoQtTsQPVzxdqn6cK14JWhdFyjwYRKI4dcIaVBrmww4pz3gBSkqa8kFZyVB9N0_6OOnm6he4wGs7wLua7ai6pQzxmlRlBSp-SMUPi2srcEO6yzmDwo-HhQgM8Dt0OsxJbX48f3_2cufh-z7PRa7yw3LFNy4bbh0CJY70MSQUoTuwWRK1HZA7t1Q2wFR04Bg2Zv9C3ooup-I4jfDiQxZ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390626026</pqid></control><display><type>article</type><title>How exogenous nitric oxide regulates nitrogen assimilation in wheat seedlings under different nitrogen sources and levels</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Balotf, Sadegh ; Islam, Shahidul ; Kavoosi, Gholamreza ; Kholdebarin, Bahman ; Juhasz, Angela ; Ma, Wujun</creator><creatorcontrib>Balotf, Sadegh ; Islam, Shahidul ; Kavoosi, Gholamreza ; Kholdebarin, Bahman ; Juhasz, Angela ; Ma, Wujun</creatorcontrib><description>Nitrogen (N) is one of the most important nutrients for plants and nitric oxide (NO) as a signaling plant growth regulator involved in nitrogen assimilation. Understanding the influence of exogenous NO on nitrogen metabolism at the gene expression and enzyme activity levels under different sources of nitrogen is vitally important for increasing nitrogen use efficiency (NUE). This study investigated the expression of key genes and enzymes in relation to nitrogen assimilation in two Australian wheat cultivars, a popular high NUE cv. Spitfire and a normal NUE cv. Westonia, under different combinations of nitrogen and sodium nitroprusside (SNP) as the NO donor. Application of NO increased the gene expressions and activities of nitrogen assimilation pathway enzymes in both cultivars at low levels of nitrogen. At high nitrogen supplies, the expressions and activities of N assimilation genes increased in response to exogenous NO only in cv. Spitfire but not in cv. Westonia. Exogenous NO caused an increase in leaf NO content at low N supplies in both cultivars, while under high nitrogen treatments, cv. Spitfire showed an increase under ammonium nitrate (NH4NO3) treatment but cv. Westonia was not affected. N assimilation gene expression and enzyme activity showed a clear relationship between exogenous NO, N concentration and N forms in primary plant nitrogen assimilation. Results reveal the possible role of NO and different nitrogen sources on nitrogen assimilation in Triticum aestivum plants.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0190269</identifier><identifier>PMID: 29320529</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agricultural production ; Ammonium ; Ammonium nitrate ; Assimilation ; Australia ; Biological assimilation ; Biology and Life Sciences ; Crops ; Cultivars ; Efficiency ; Enzymatic activity ; Enzyme activity ; Enzymes ; Gene expression ; Gene Expression Regulation, Plant ; Genes ; Genes, Plant ; Glutamate-Ammonia Ligase - metabolism ; Glycerol ; Growth regulators ; Health aspects ; Levels ; Life sciences ; Metabolism ; Nitrate Reductase - metabolism ; Nitrates ; Nitric oxide ; Nitric Oxide - pharmacology ; Nitrogen ; Nitrogen - metabolism ; Nitrogen sources ; Nutrients ; Physical Sciences ; Physiology ; Plant growth ; Plant Leaves - metabolism ; Plants (Organisms) ; Polymorphism, Single Nucleotide ; Seedlings ; Seedlings - drug effects ; Seedlings - metabolism ; Single-nucleotide polymorphism ; Sodium nitroprusside ; Triticum - enzymology ; Triticum - genetics ; Triticum - growth &amp; development ; Triticum aestivum ; Wheat</subject><ispartof>PloS one, 2018-01, Vol.13 (1), p.e0190269-e0190269</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Balotf et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Balotf et al 2018 Balotf et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-59646b45dec8c85df55f721c055511301c18d076c871c90592bac87ef0b9b573</citedby><cites>FETCH-LOGICAL-c692t-59646b45dec8c85df55f721c055511301c18d076c871c90592bac87ef0b9b573</cites><orcidid>0000-0002-1264-866X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5761883/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5761883/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29320529$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Balotf, Sadegh</creatorcontrib><creatorcontrib>Islam, Shahidul</creatorcontrib><creatorcontrib>Kavoosi, Gholamreza</creatorcontrib><creatorcontrib>Kholdebarin, Bahman</creatorcontrib><creatorcontrib>Juhasz, Angela</creatorcontrib><creatorcontrib>Ma, Wujun</creatorcontrib><title>How exogenous nitric oxide regulates nitrogen assimilation in wheat seedlings under different nitrogen sources and levels</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Nitrogen (N) is one of the most important nutrients for plants and nitric oxide (NO) as a signaling plant growth regulator involved in nitrogen assimilation. Understanding the influence of exogenous NO on nitrogen metabolism at the gene expression and enzyme activity levels under different sources of nitrogen is vitally important for increasing nitrogen use efficiency (NUE). This study investigated the expression of key genes and enzymes in relation to nitrogen assimilation in two Australian wheat cultivars, a popular high NUE cv. Spitfire and a normal NUE cv. Westonia, under different combinations of nitrogen and sodium nitroprusside (SNP) as the NO donor. Application of NO increased the gene expressions and activities of nitrogen assimilation pathway enzymes in both cultivars at low levels of nitrogen. At high nitrogen supplies, the expressions and activities of N assimilation genes increased in response to exogenous NO only in cv. Spitfire but not in cv. Westonia. Exogenous NO caused an increase in leaf NO content at low N supplies in both cultivars, while under high nitrogen treatments, cv. Spitfire showed an increase under ammonium nitrate (NH4NO3) treatment but cv. Westonia was not affected. N assimilation gene expression and enzyme activity showed a clear relationship between exogenous NO, N concentration and N forms in primary plant nitrogen assimilation. Results reveal the possible role of NO and different nitrogen sources on nitrogen assimilation in Triticum aestivum plants.</description><subject>Agricultural production</subject><subject>Ammonium</subject><subject>Ammonium nitrate</subject><subject>Assimilation</subject><subject>Australia</subject><subject>Biological assimilation</subject><subject>Biology and Life Sciences</subject><subject>Crops</subject><subject>Cultivars</subject><subject>Efficiency</subject><subject>Enzymatic activity</subject><subject>Enzyme activity</subject><subject>Enzymes</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Genes, Plant</subject><subject>Glutamate-Ammonia Ligase - metabolism</subject><subject>Glycerol</subject><subject>Growth regulators</subject><subject>Health aspects</subject><subject>Levels</subject><subject>Life sciences</subject><subject>Metabolism</subject><subject>Nitrate Reductase - metabolism</subject><subject>Nitrates</subject><subject>Nitric oxide</subject><subject>Nitric Oxide - pharmacology</subject><subject>Nitrogen</subject><subject>Nitrogen - metabolism</subject><subject>Nitrogen sources</subject><subject>Nutrients</subject><subject>Physical Sciences</subject><subject>Physiology</subject><subject>Plant growth</subject><subject>Plant Leaves - metabolism</subject><subject>Plants (Organisms)</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Seedlings</subject><subject>Seedlings - drug effects</subject><subject>Seedlings - metabolism</subject><subject>Single-nucleotide polymorphism</subject><subject>Sodium nitroprusside</subject><subject>Triticum - enzymology</subject><subject>Triticum - genetics</subject><subject>Triticum - growth &amp; development</subject><subject>Triticum aestivum</subject><subject>Wheat</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk01v1DAQhiMEoqXwDxBEQkJw2MV2Yie-IFUV0JUqVYKKq-U4k6xXXnuxk378e2bZtOyiHlAOmYyfeR2_nsmy15TMaVHRT6swRq_dfBM8zAmVhAn5JDumsmAzwUjxdC8-yl6ktCKEF7UQz7MjhguEM3mc3Z2HmxxuQw8-jCn3dojW5OHWtpBH6EenB9ilt0iuU7Jri0kbfG59frMEPeQJoHXW9ykffQsxb23XQQQ__C1M-LcGlbRvcwfX4NLL7FmnXYJX0_sku_r65ersfHZx-W1xdnoxM0KyYcalKEVT8hZMbWredpx3FaOGcM4pLQg1tG5JJUxdUSMJl6zRGENHGtnwqjjJ3u5kNy4kNZmWFCskEUygaUgsdkQb9Eptol3reKeCtupPIsRe6ThY40AxUVaNEQz1y7I0ssbQ8AaANvjVcNT6PO02NmtoDXoQtTsQPVzxdqn6cK14JWhdFyjwYRKI4dcIaVBrmww4pz3gBSkqa8kFZyVB9N0_6OOnm6he4wGs7wLua7ai6pQzxmlRlBSp-SMUPi2srcEO6yzmDwo-HhQgM8Dt0OsxJbX48f3_2cufh-z7PRa7yw3LFNy4bbh0CJY70MSQUoTuwWRK1HZA7t1Q2wFR04Bg2Zv9C3ooup-I4jfDiQxZ</recordid><startdate>20180110</startdate><enddate>20180110</enddate><creator>Balotf, Sadegh</creator><creator>Islam, Shahidul</creator><creator>Kavoosi, Gholamreza</creator><creator>Kholdebarin, Bahman</creator><creator>Juhasz, Angela</creator><creator>Ma, Wujun</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1264-866X</orcidid></search><sort><creationdate>20180110</creationdate><title>How exogenous nitric oxide regulates nitrogen assimilation in wheat seedlings under different nitrogen sources and levels</title><author>Balotf, Sadegh ; Islam, Shahidul ; Kavoosi, Gholamreza ; Kholdebarin, Bahman ; Juhasz, Angela ; Ma, Wujun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-59646b45dec8c85df55f721c055511301c18d076c871c90592bac87ef0b9b573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agricultural production</topic><topic>Ammonium</topic><topic>Ammonium nitrate</topic><topic>Assimilation</topic><topic>Australia</topic><topic>Biological assimilation</topic><topic>Biology and Life Sciences</topic><topic>Crops</topic><topic>Cultivars</topic><topic>Efficiency</topic><topic>Enzymatic activity</topic><topic>Enzyme activity</topic><topic>Enzymes</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Genes, Plant</topic><topic>Glutamate-Ammonia Ligase - metabolism</topic><topic>Glycerol</topic><topic>Growth regulators</topic><topic>Health aspects</topic><topic>Levels</topic><topic>Life sciences</topic><topic>Metabolism</topic><topic>Nitrate Reductase - metabolism</topic><topic>Nitrates</topic><topic>Nitric oxide</topic><topic>Nitric Oxide - pharmacology</topic><topic>Nitrogen</topic><topic>Nitrogen - metabolism</topic><topic>Nitrogen sources</topic><topic>Nutrients</topic><topic>Physical Sciences</topic><topic>Physiology</topic><topic>Plant growth</topic><topic>Plant Leaves - metabolism</topic><topic>Plants (Organisms)</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Seedlings</topic><topic>Seedlings - drug effects</topic><topic>Seedlings - metabolism</topic><topic>Single-nucleotide polymorphism</topic><topic>Sodium nitroprusside</topic><topic>Triticum - enzymology</topic><topic>Triticum - genetics</topic><topic>Triticum - growth &amp; development</topic><topic>Triticum aestivum</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balotf, Sadegh</creatorcontrib><creatorcontrib>Islam, Shahidul</creatorcontrib><creatorcontrib>Kavoosi, Gholamreza</creatorcontrib><creatorcontrib>Kholdebarin, Bahman</creatorcontrib><creatorcontrib>Juhasz, Angela</creatorcontrib><creatorcontrib>Ma, Wujun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balotf, Sadegh</au><au>Islam, Shahidul</au><au>Kavoosi, Gholamreza</au><au>Kholdebarin, Bahman</au><au>Juhasz, Angela</au><au>Ma, Wujun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How exogenous nitric oxide regulates nitrogen assimilation in wheat seedlings under different nitrogen sources and levels</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-01-10</date><risdate>2018</risdate><volume>13</volume><issue>1</issue><spage>e0190269</spage><epage>e0190269</epage><pages>e0190269-e0190269</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Nitrogen (N) is one of the most important nutrients for plants and nitric oxide (NO) as a signaling plant growth regulator involved in nitrogen assimilation. Understanding the influence of exogenous NO on nitrogen metabolism at the gene expression and enzyme activity levels under different sources of nitrogen is vitally important for increasing nitrogen use efficiency (NUE). This study investigated the expression of key genes and enzymes in relation to nitrogen assimilation in two Australian wheat cultivars, a popular high NUE cv. Spitfire and a normal NUE cv. Westonia, under different combinations of nitrogen and sodium nitroprusside (SNP) as the NO donor. Application of NO increased the gene expressions and activities of nitrogen assimilation pathway enzymes in both cultivars at low levels of nitrogen. At high nitrogen supplies, the expressions and activities of N assimilation genes increased in response to exogenous NO only in cv. Spitfire but not in cv. Westonia. Exogenous NO caused an increase in leaf NO content at low N supplies in both cultivars, while under high nitrogen treatments, cv. Spitfire showed an increase under ammonium nitrate (NH4NO3) treatment but cv. Westonia was not affected. N assimilation gene expression and enzyme activity showed a clear relationship between exogenous NO, N concentration and N forms in primary plant nitrogen assimilation. Results reveal the possible role of NO and different nitrogen sources on nitrogen assimilation in Triticum aestivum plants.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29320529</pmid><doi>10.1371/journal.pone.0190269</doi><tpages>e0190269</tpages><orcidid>https://orcid.org/0000-0002-1264-866X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2018-01, Vol.13 (1), p.e0190269-e0190269
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2390626026
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Agricultural production
Ammonium
Ammonium nitrate
Assimilation
Australia
Biological assimilation
Biology and Life Sciences
Crops
Cultivars
Efficiency
Enzymatic activity
Enzyme activity
Enzymes
Gene expression
Gene Expression Regulation, Plant
Genes
Genes, Plant
Glutamate-Ammonia Ligase - metabolism
Glycerol
Growth regulators
Health aspects
Levels
Life sciences
Metabolism
Nitrate Reductase - metabolism
Nitrates
Nitric oxide
Nitric Oxide - pharmacology
Nitrogen
Nitrogen - metabolism
Nitrogen sources
Nutrients
Physical Sciences
Physiology
Plant growth
Plant Leaves - metabolism
Plants (Organisms)
Polymorphism, Single Nucleotide
Seedlings
Seedlings - drug effects
Seedlings - metabolism
Single-nucleotide polymorphism
Sodium nitroprusside
Triticum - enzymology
Triticum - genetics
Triticum - growth & development
Triticum aestivum
Wheat
title How exogenous nitric oxide regulates nitrogen assimilation in wheat seedlings under different nitrogen sources and levels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T16%3A49%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20exogenous%20nitric%20oxide%20regulates%20nitrogen%20assimilation%20in%20wheat%20seedlings%20under%20different%20nitrogen%20sources%20and%20levels&rft.jtitle=PloS%20one&rft.au=Balotf,%20Sadegh&rft.date=2018-01-10&rft.volume=13&rft.issue=1&rft.spage=e0190269&rft.epage=e0190269&rft.pages=e0190269-e0190269&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0190269&rft_dat=%3Cgale_plos_%3EA522513341%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2390626026&rft_id=info:pmid/29320529&rft_galeid=A522513341&rft_doaj_id=oai_doaj_org_article_2647bc6287e444c98628c5bee1b4c9b5&rfr_iscdi=true