The centrosomin CM2 domain is a multi-functional binding domain with distinct cell cycle roles

The centrosome serves as the main microtubule-organizing center in metazoan cells, yet despite its functional importance, little is known mechanistically about the structure and organizational principles that dictate protein organization in the centrosome. In particular, the protein-protein interact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2018-01, Vol.13 (1), p.e0190530-e0190530
Hauptverfasser: Citron, Y Rose, Fagerstrom, Carey J, Keszthelyi, Bettina, Huang, Bo, Rusan, Nasser M, Kelly, Mark J S, Agard, David A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0190530
container_issue 1
container_start_page e0190530
container_title PloS one
container_volume 13
creator Citron, Y Rose
Fagerstrom, Carey J
Keszthelyi, Bettina
Huang, Bo
Rusan, Nasser M
Kelly, Mark J S
Agard, David A
description The centrosome serves as the main microtubule-organizing center in metazoan cells, yet despite its functional importance, little is known mechanistically about the structure and organizational principles that dictate protein organization in the centrosome. In particular, the protein-protein interactions that allow for the massive structural transition between the tightly organized interphase centrosome and the highly expanded matrix-like arrangement of the mitotic centrosome have been largely uncharacterized. Among the proteins that undergo a major transition is the Drosophila melanogaster protein centrosomin that contains a conserved carboxyl terminus motif, CM2. Recent crystal structures have shown this motif to be dimeric and capable of forming an intramolecular interaction with a central region of centrosomin. Here we use a combination of in-cell microscopy and in vitro oligomer assessment to show that dimerization is not necessary for CM2 recruitment to the centrosome and that CM2 alone undergoes significant cell cycle dependent rearrangement. We use NMR binding assays to confirm this intramolecular interaction and show that residues involved in solution are consistent with the published crystal structure and identify L1137 as critical for binding. Additionally, we show for the first time an in vitro interaction of CM2 with the Drosophila pericentrin-like-protein that exploits the same set of residues as the intramolecular interaction. Furthermore, NMR experiments reveal a calcium sensitive interaction between CM2 and calmodulin. Although unexpected because of sequence divergence, this suggests that centrosomin-mediated assemblies, like the mammalian pericentrin, may be calcium regulated. From these results, we suggest an expanded model where during interphase CM2 interacts with pericentrin-like-protein to form a layer of centrosomin around the centriole wall and that at the onset of mitosis this population acts as a nucleation site of intramolecular centrosomin interactions that support the expansion into the metaphase matrix.
doi_str_mv 10.1371/journal.pone.0190530
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2390623595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A522513409</galeid><doaj_id>oai_doaj_org_article_694ab2598a494ff8bf281853da3c37b1</doaj_id><sourcerecordid>A522513409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5370-aab07ce42c9082b66387b3febc1db928bd2d0bbb4585ca3cefd05833562dd0533</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLguhFx3w0bXIjLIMfAysLunppyFfbDGkz27Tq_nvTnc4ylb2QXPSQPuc9yZtzkuQ5BCuIS_hu68e-E261851ZAcgAweBBcgoZRlmBAH54FJ8kT0LYgojQonicnCCGIcGQnSY_rxqTKtMNvQ--tV26_oJS7VsRQxtSkbajG2xWjZ0arI_1Umk7bbv6AP22Q5NqGwYbiajkXKpulDNp750JT5NHlXDBPJu_Z8n3jx-u1p-zi8tPm_X5RaYILkEmhASlMjlSDFAkiwLTUuLKSAW1ZIhKjTSQUuaEEiWwMpUGhGJMCqRjhPFZ8nKvu3M-8NmawBFmoECYMBKJzZ7QXmz5rret6G-4F5bfbvi-5qIfbDw5L1guJCKMipzlVUVlhSikBOtYGZcSRq33c7VRtkbf2ifcQnT5p7MNr_0vTsoCgHw6zJtZoPfXowkDb22YvBOd8WPgkFFGCEYQRPTVP-j9t5upWsQL2K7ysa6aRPk5QYhAnAMWqdU9VFzatFbFPqps3F8kvF0kRGYwf4ZajCHwzbev_89e_liyr4_Yxgg3NMG7cWqxsATzPahif4beVHcmQ8CnMTi4wacx4PMYxLQXxw90l3Toe_wX1T4B0g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390623595</pqid></control><display><type>article</type><title>The centrosomin CM2 domain is a multi-functional binding domain with distinct cell cycle roles</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Citron, Y Rose ; Fagerstrom, Carey J ; Keszthelyi, Bettina ; Huang, Bo ; Rusan, Nasser M ; Kelly, Mark J S ; Agard, David A</creator><contributor>Wlodawer, Alexander</contributor><creatorcontrib>Citron, Y Rose ; Fagerstrom, Carey J ; Keszthelyi, Bettina ; Huang, Bo ; Rusan, Nasser M ; Kelly, Mark J S ; Agard, David A ; Wlodawer, Alexander</creatorcontrib><description>The centrosome serves as the main microtubule-organizing center in metazoan cells, yet despite its functional importance, little is known mechanistically about the structure and organizational principles that dictate protein organization in the centrosome. In particular, the protein-protein interactions that allow for the massive structural transition between the tightly organized interphase centrosome and the highly expanded matrix-like arrangement of the mitotic centrosome have been largely uncharacterized. Among the proteins that undergo a major transition is the Drosophila melanogaster protein centrosomin that contains a conserved carboxyl terminus motif, CM2. Recent crystal structures have shown this motif to be dimeric and capable of forming an intramolecular interaction with a central region of centrosomin. Here we use a combination of in-cell microscopy and in vitro oligomer assessment to show that dimerization is not necessary for CM2 recruitment to the centrosome and that CM2 alone undergoes significant cell cycle dependent rearrangement. We use NMR binding assays to confirm this intramolecular interaction and show that residues involved in solution are consistent with the published crystal structure and identify L1137 as critical for binding. Additionally, we show for the first time an in vitro interaction of CM2 with the Drosophila pericentrin-like-protein that exploits the same set of residues as the intramolecular interaction. Furthermore, NMR experiments reveal a calcium sensitive interaction between CM2 and calmodulin. Although unexpected because of sequence divergence, this suggests that centrosomin-mediated assemblies, like the mammalian pericentrin, may be calcium regulated. From these results, we suggest an expanded model where during interphase CM2 interacts with pericentrin-like-protein to form a layer of centrosomin around the centriole wall and that at the onset of mitosis this population acts as a nucleation site of intramolecular centrosomin interactions that support the expansion into the metaphase matrix.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0190530</identifier><identifier>PMID: 29315319</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Binding ; Binding Sites ; Biochemistry ; Biology and Life Sciences ; Biophysics ; Calcium ; Calcium-binding protein ; Calmodulin ; Cell cycle ; Cell Cycle - physiology ; Centrosome ; Crystal structure ; Dimerization ; Domains ; Drosophila melanogaster ; Drosophila Proteins - metabolism ; Drosophila Proteins - physiology ; Experiments ; Fruit flies ; Homeodomain Proteins - metabolism ; Homeodomain Proteins - physiology ; Insects ; Interphase ; Metaphase ; Mitosis ; Molecular structure ; Molecular weight ; NMR ; Nuclear magnetic resonance ; Nuclear Magnetic Resonance, Biomolecular ; Nucleation ; Physical sciences ; Physiology ; Polymerase Chain Reaction ; Properties ; Protein Binding ; Protein interaction ; Proteins ; Research and Analysis Methods ; Residues ; Testing ; Two-Hybrid System Techniques</subject><ispartof>PloS one, 2018-01, Vol.13 (1), p.e0190530-e0190530</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5370-aab07ce42c9082b66387b3febc1db928bd2d0bbb4585ca3cefd05833562dd0533</citedby><cites>FETCH-LOGICAL-c5370-aab07ce42c9082b66387b3febc1db928bd2d0bbb4585ca3cefd05833562dd0533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5760045/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5760045/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2932,23875,27933,27934,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29315319$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wlodawer, Alexander</contributor><creatorcontrib>Citron, Y Rose</creatorcontrib><creatorcontrib>Fagerstrom, Carey J</creatorcontrib><creatorcontrib>Keszthelyi, Bettina</creatorcontrib><creatorcontrib>Huang, Bo</creatorcontrib><creatorcontrib>Rusan, Nasser M</creatorcontrib><creatorcontrib>Kelly, Mark J S</creatorcontrib><creatorcontrib>Agard, David A</creatorcontrib><title>The centrosomin CM2 domain is a multi-functional binding domain with distinct cell cycle roles</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The centrosome serves as the main microtubule-organizing center in metazoan cells, yet despite its functional importance, little is known mechanistically about the structure and organizational principles that dictate protein organization in the centrosome. In particular, the protein-protein interactions that allow for the massive structural transition between the tightly organized interphase centrosome and the highly expanded matrix-like arrangement of the mitotic centrosome have been largely uncharacterized. Among the proteins that undergo a major transition is the Drosophila melanogaster protein centrosomin that contains a conserved carboxyl terminus motif, CM2. Recent crystal structures have shown this motif to be dimeric and capable of forming an intramolecular interaction with a central region of centrosomin. Here we use a combination of in-cell microscopy and in vitro oligomer assessment to show that dimerization is not necessary for CM2 recruitment to the centrosome and that CM2 alone undergoes significant cell cycle dependent rearrangement. We use NMR binding assays to confirm this intramolecular interaction and show that residues involved in solution are consistent with the published crystal structure and identify L1137 as critical for binding. Additionally, we show for the first time an in vitro interaction of CM2 with the Drosophila pericentrin-like-protein that exploits the same set of residues as the intramolecular interaction. Furthermore, NMR experiments reveal a calcium sensitive interaction between CM2 and calmodulin. Although unexpected because of sequence divergence, this suggests that centrosomin-mediated assemblies, like the mammalian pericentrin, may be calcium regulated. From these results, we suggest an expanded model where during interphase CM2 interacts with pericentrin-like-protein to form a layer of centrosomin around the centriole wall and that at the onset of mitosis this population acts as a nucleation site of intramolecular centrosomin interactions that support the expansion into the metaphase matrix.</description><subject>Animals</subject><subject>Binding</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biology and Life Sciences</subject><subject>Biophysics</subject><subject>Calcium</subject><subject>Calcium-binding protein</subject><subject>Calmodulin</subject><subject>Cell cycle</subject><subject>Cell Cycle - physiology</subject><subject>Centrosome</subject><subject>Crystal structure</subject><subject>Dimerization</subject><subject>Domains</subject><subject>Drosophila melanogaster</subject><subject>Drosophila Proteins - metabolism</subject><subject>Drosophila Proteins - physiology</subject><subject>Experiments</subject><subject>Fruit flies</subject><subject>Homeodomain Proteins - metabolism</subject><subject>Homeodomain Proteins - physiology</subject><subject>Insects</subject><subject>Interphase</subject><subject>Metaphase</subject><subject>Mitosis</subject><subject>Molecular structure</subject><subject>Molecular weight</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Nucleation</subject><subject>Physical sciences</subject><subject>Physiology</subject><subject>Polymerase Chain Reaction</subject><subject>Properties</subject><subject>Protein Binding</subject><subject>Protein interaction</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Residues</subject><subject>Testing</subject><subject>Two-Hybrid System Techniques</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLguhFx3w0bXIjLIMfAysLunppyFfbDGkz27Tq_nvTnc4ylb2QXPSQPuc9yZtzkuQ5BCuIS_hu68e-E261851ZAcgAweBBcgoZRlmBAH54FJ8kT0LYgojQonicnCCGIcGQnSY_rxqTKtMNvQ--tV26_oJS7VsRQxtSkbajG2xWjZ0arI_1Umk7bbv6AP22Q5NqGwYbiajkXKpulDNp750JT5NHlXDBPJu_Z8n3jx-u1p-zi8tPm_X5RaYILkEmhASlMjlSDFAkiwLTUuLKSAW1ZIhKjTSQUuaEEiWwMpUGhGJMCqRjhPFZ8nKvu3M-8NmawBFmoECYMBKJzZ7QXmz5rret6G-4F5bfbvi-5qIfbDw5L1guJCKMipzlVUVlhSikBOtYGZcSRq33c7VRtkbf2ifcQnT5p7MNr_0vTsoCgHw6zJtZoPfXowkDb22YvBOd8WPgkFFGCEYQRPTVP-j9t5upWsQL2K7ysa6aRPk5QYhAnAMWqdU9VFzatFbFPqps3F8kvF0kRGYwf4ZajCHwzbev_89e_liyr4_Yxgg3NMG7cWqxsATzPahif4beVHcmQ8CnMTi4wacx4PMYxLQXxw90l3Toe_wX1T4B0g</recordid><startdate>20180109</startdate><enddate>20180109</enddate><creator>Citron, Y Rose</creator><creator>Fagerstrom, Carey J</creator><creator>Keszthelyi, Bettina</creator><creator>Huang, Bo</creator><creator>Rusan, Nasser M</creator><creator>Kelly, Mark J S</creator><creator>Agard, David A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20180109</creationdate><title>The centrosomin CM2 domain is a multi-functional binding domain with distinct cell cycle roles</title><author>Citron, Y Rose ; Fagerstrom, Carey J ; Keszthelyi, Bettina ; Huang, Bo ; Rusan, Nasser M ; Kelly, Mark J S ; Agard, David A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5370-aab07ce42c9082b66387b3febc1db928bd2d0bbb4585ca3cefd05833562dd0533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Binding</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biology and Life Sciences</topic><topic>Biophysics</topic><topic>Calcium</topic><topic>Calcium-binding protein</topic><topic>Calmodulin</topic><topic>Cell cycle</topic><topic>Cell Cycle - physiology</topic><topic>Centrosome</topic><topic>Crystal structure</topic><topic>Dimerization</topic><topic>Domains</topic><topic>Drosophila melanogaster</topic><topic>Drosophila Proteins - metabolism</topic><topic>Drosophila Proteins - physiology</topic><topic>Experiments</topic><topic>Fruit flies</topic><topic>Homeodomain Proteins - metabolism</topic><topic>Homeodomain Proteins - physiology</topic><topic>Insects</topic><topic>Interphase</topic><topic>Metaphase</topic><topic>Mitosis</topic><topic>Molecular structure</topic><topic>Molecular weight</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Nucleation</topic><topic>Physical sciences</topic><topic>Physiology</topic><topic>Polymerase Chain Reaction</topic><topic>Properties</topic><topic>Protein Binding</topic><topic>Protein interaction</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Residues</topic><topic>Testing</topic><topic>Two-Hybrid System Techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Citron, Y Rose</creatorcontrib><creatorcontrib>Fagerstrom, Carey J</creatorcontrib><creatorcontrib>Keszthelyi, Bettina</creatorcontrib><creatorcontrib>Huang, Bo</creatorcontrib><creatorcontrib>Rusan, Nasser M</creatorcontrib><creatorcontrib>Kelly, Mark J S</creatorcontrib><creatorcontrib>Agard, David A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Citron, Y Rose</au><au>Fagerstrom, Carey J</au><au>Keszthelyi, Bettina</au><au>Huang, Bo</au><au>Rusan, Nasser M</au><au>Kelly, Mark J S</au><au>Agard, David A</au><au>Wlodawer, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The centrosomin CM2 domain is a multi-functional binding domain with distinct cell cycle roles</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-01-09</date><risdate>2018</risdate><volume>13</volume><issue>1</issue><spage>e0190530</spage><epage>e0190530</epage><pages>e0190530-e0190530</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The centrosome serves as the main microtubule-organizing center in metazoan cells, yet despite its functional importance, little is known mechanistically about the structure and organizational principles that dictate protein organization in the centrosome. In particular, the protein-protein interactions that allow for the massive structural transition between the tightly organized interphase centrosome and the highly expanded matrix-like arrangement of the mitotic centrosome have been largely uncharacterized. Among the proteins that undergo a major transition is the Drosophila melanogaster protein centrosomin that contains a conserved carboxyl terminus motif, CM2. Recent crystal structures have shown this motif to be dimeric and capable of forming an intramolecular interaction with a central region of centrosomin. Here we use a combination of in-cell microscopy and in vitro oligomer assessment to show that dimerization is not necessary for CM2 recruitment to the centrosome and that CM2 alone undergoes significant cell cycle dependent rearrangement. We use NMR binding assays to confirm this intramolecular interaction and show that residues involved in solution are consistent with the published crystal structure and identify L1137 as critical for binding. Additionally, we show for the first time an in vitro interaction of CM2 with the Drosophila pericentrin-like-protein that exploits the same set of residues as the intramolecular interaction. Furthermore, NMR experiments reveal a calcium sensitive interaction between CM2 and calmodulin. Although unexpected because of sequence divergence, this suggests that centrosomin-mediated assemblies, like the mammalian pericentrin, may be calcium regulated. From these results, we suggest an expanded model where during interphase CM2 interacts with pericentrin-like-protein to form a layer of centrosomin around the centriole wall and that at the onset of mitosis this population acts as a nucleation site of intramolecular centrosomin interactions that support the expansion into the metaphase matrix.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29315319</pmid><doi>10.1371/journal.pone.0190530</doi><tpages>e0190530</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2018-01, Vol.13 (1), p.e0190530-e0190530
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2390623595
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry
subjects Animals
Binding
Binding Sites
Biochemistry
Biology and Life Sciences
Biophysics
Calcium
Calcium-binding protein
Calmodulin
Cell cycle
Cell Cycle - physiology
Centrosome
Crystal structure
Dimerization
Domains
Drosophila melanogaster
Drosophila Proteins - metabolism
Drosophila Proteins - physiology
Experiments
Fruit flies
Homeodomain Proteins - metabolism
Homeodomain Proteins - physiology
Insects
Interphase
Metaphase
Mitosis
Molecular structure
Molecular weight
NMR
Nuclear magnetic resonance
Nuclear Magnetic Resonance, Biomolecular
Nucleation
Physical sciences
Physiology
Polymerase Chain Reaction
Properties
Protein Binding
Protein interaction
Proteins
Research and Analysis Methods
Residues
Testing
Two-Hybrid System Techniques
title The centrosomin CM2 domain is a multi-functional binding domain with distinct cell cycle roles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T23%3A41%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20centrosomin%20CM2%20domain%20is%20a%20multi-functional%20binding%20domain%20with%20distinct%20cell%20cycle%20roles&rft.jtitle=PloS%20one&rft.au=Citron,%20Y%20Rose&rft.date=2018-01-09&rft.volume=13&rft.issue=1&rft.spage=e0190530&rft.epage=e0190530&rft.pages=e0190530-e0190530&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0190530&rft_dat=%3Cgale_plos_%3EA522513409%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2390623595&rft_id=info:pmid/29315319&rft_galeid=A522513409&rft_doaj_id=oai_doaj_org_article_694ab2598a494ff8bf281853da3c37b1&rfr_iscdi=true