Country-specific intervention strategies for top three TB burden countries using mathematical model

Tuberculosis (TB) is one of the top 10 causes of death globally and the leading cause of death by a single infectious pathogen. The World Health Organization (WHO) has declared the End TB Strategy, which targets a 90% reduction in the incidence rate by the year 2035 compared to the level in the year...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-04, Vol.15 (4), p.e0230964-e0230964
Hauptverfasser: Kim, Soyoung, de Los Reyes V, Aurelio A, Jung, Eunok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0230964
container_issue 4
container_start_page e0230964
container_title PloS one
container_volume 15
creator Kim, Soyoung
de Los Reyes V, Aurelio A
Jung, Eunok
description Tuberculosis (TB) is one of the top 10 causes of death globally and the leading cause of death by a single infectious pathogen. The World Health Organization (WHO) has declared the End TB Strategy, which targets a 90% reduction in the incidence rate by the year 2035 compared to the level in the year 2015. In this work, a TB model is considered to understand the transmission dynamics in the top three TB burden countries-India, China, and Indonesia. Country-specific epidemiological parameters were identified using data reported by the WHO. If India and Indonesia succeed in enhancing their treatment protocols and increase treatment and treatment success rate to that of China, the incidence rate could be reduced by 65.99% and 68.49%, respectively, by the end of 2035. Evidently, complementary interventions are essential to achieve the WHO target. Our analytical approach utilizes optimal control theory to obtain time-dependent nonpharmaceutical and latent case finding controls. The objective functional of the optimal control problem includes a payoff term reflecting the goal set by WHO. Appropriate combinations of control strategies are investigated. Based on the results, gradual enhancement and continuous implementation of intervention measures are recommended in each country.
doi_str_mv 10.1371/journal.pone.0230964
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2387997944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A619970135</galeid><doaj_id>oai_doaj_org_article_2a0b09e3b4fd482b8eb0a5251a53c956</doaj_id><sourcerecordid>A619970135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-3844f07850e91ad23fb73f8112c19e89c03a50cf23db909defe9013b39d267263</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7jr6D0QLgujFjPnoR3IjrIMfAwsLunob0vSkk6FtxiRd3H9vOtNdprIXUkhD8pz3JG_OSZKXGK0wLfGHnR1cL9vV3vawQoQiXmSPknPMKVkWBNHHJ_Oz5Jn3O4RyyoriaXJGCSkxQ-w8UWs79MHdLv0elNFGpaYP4G6gD8b2qQ9OBmgM-FRblwa7T8PWAaTXn9JqcDX0qToIjMTgTd-knQxbiINRsk07W0P7PHmiZevhxfRfJD-_fL5ef1teXn3drC8ul6rgJCwpyzKNSpYj4FjWhOqqpJphTBTmwLhCVOZIaULriiNegwaOMK0or0lRkoIuktdH3X1rvZj88YJQVnJe8iyLxOZI1FbuxN6ZTrpbYaURhwXrGiFdPHkLgkhUIQ60ynSdMVIxqJDMSY5lThXPx2wfp2xD1UGtomNOtjPR-U5vtqKxN6LEWcYZjgLvJgFnfw_gg-iMV9C2sgc7HM7NGC5pfNtF8uYf9OHbTVQj4wVMr23Mq0ZRcVHgCEW38kitHqDiV0NnVCwmbeL6LOD9LCAyAf6ERg7ei82P7__PXv2as29P2C3INmy9bYex8PwczI6gctZ7B_reZIzE2At3boixF8TUCzHs1ekD3QfdFT_9CwcjBJE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387997944</pqid></control><display><type>article</type><title>Country-specific intervention strategies for top three TB burden countries using mathematical model</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kim, Soyoung ; de Los Reyes V, Aurelio A ; Jung, Eunok</creator><contributor>Gerberry, David</contributor><creatorcontrib>Kim, Soyoung ; de Los Reyes V, Aurelio A ; Jung, Eunok ; Gerberry, David</creatorcontrib><description>Tuberculosis (TB) is one of the top 10 causes of death globally and the leading cause of death by a single infectious pathogen. The World Health Organization (WHO) has declared the End TB Strategy, which targets a 90% reduction in the incidence rate by the year 2035 compared to the level in the year 2015. In this work, a TB model is considered to understand the transmission dynamics in the top three TB burden countries-India, China, and Indonesia. Country-specific epidemiological parameters were identified using data reported by the WHO. If India and Indonesia succeed in enhancing their treatment protocols and increase treatment and treatment success rate to that of China, the incidence rate could be reduced by 65.99% and 68.49%, respectively, by the end of 2035. Evidently, complementary interventions are essential to achieve the WHO target. Our analytical approach utilizes optimal control theory to obtain time-dependent nonpharmaceutical and latent case finding controls. The objective functional of the optimal control problem includes a payoff term reflecting the goal set by WHO. Appropriate combinations of control strategies are investigated. Based on the results, gradual enhancement and continuous implementation of intervention measures are recommended in each country.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0230964</identifier><identifier>PMID: 32271808</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology and Life Sciences ; China - epidemiology ; Comparative analysis ; Computer and Information Sciences ; Control theory ; Death ; Disease ; Engineering and Technology ; Epidemics ; Epidemiology ; Forecasts and trends ; Humans ; India - epidemiology ; Indonesia - epidemiology ; Intervention ; Mathematical models ; Mathematics ; Medicine and Health Sciences ; Models, Theoretical ; Optimal control ; Ordinary differential equations ; Parameter identification ; People and Places ; Physical Sciences ; Population ; Public health ; Research and Analysis Methods ; Time ; Time dependence ; Tuberculosis ; Tuberculosis - epidemiology ; World Health Organization</subject><ispartof>PloS one, 2020-04, Vol.15 (4), p.e0230964-e0230964</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Kim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Kim et al 2020 Kim et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-3844f07850e91ad23fb73f8112c19e89c03a50cf23db909defe9013b39d267263</citedby><cites>FETCH-LOGICAL-c692t-3844f07850e91ad23fb73f8112c19e89c03a50cf23db909defe9013b39d267263</cites><orcidid>0000-0003-4918-1087 ; 0000-0001-5418-4579 ; 0000-0002-7411-3134</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7144981/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7144981/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32271808$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Gerberry, David</contributor><creatorcontrib>Kim, Soyoung</creatorcontrib><creatorcontrib>de Los Reyes V, Aurelio A</creatorcontrib><creatorcontrib>Jung, Eunok</creatorcontrib><title>Country-specific intervention strategies for top three TB burden countries using mathematical model</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Tuberculosis (TB) is one of the top 10 causes of death globally and the leading cause of death by a single infectious pathogen. The World Health Organization (WHO) has declared the End TB Strategy, which targets a 90% reduction in the incidence rate by the year 2035 compared to the level in the year 2015. In this work, a TB model is considered to understand the transmission dynamics in the top three TB burden countries-India, China, and Indonesia. Country-specific epidemiological parameters were identified using data reported by the WHO. If India and Indonesia succeed in enhancing their treatment protocols and increase treatment and treatment success rate to that of China, the incidence rate could be reduced by 65.99% and 68.49%, respectively, by the end of 2035. Evidently, complementary interventions are essential to achieve the WHO target. Our analytical approach utilizes optimal control theory to obtain time-dependent nonpharmaceutical and latent case finding controls. The objective functional of the optimal control problem includes a payoff term reflecting the goal set by WHO. Appropriate combinations of control strategies are investigated. Based on the results, gradual enhancement and continuous implementation of intervention measures are recommended in each country.</description><subject>Biology and Life Sciences</subject><subject>China - epidemiology</subject><subject>Comparative analysis</subject><subject>Computer and Information Sciences</subject><subject>Control theory</subject><subject>Death</subject><subject>Disease</subject><subject>Engineering and Technology</subject><subject>Epidemics</subject><subject>Epidemiology</subject><subject>Forecasts and trends</subject><subject>Humans</subject><subject>India - epidemiology</subject><subject>Indonesia - epidemiology</subject><subject>Intervention</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Medicine and Health Sciences</subject><subject>Models, Theoretical</subject><subject>Optimal control</subject><subject>Ordinary differential equations</subject><subject>Parameter identification</subject><subject>People and Places</subject><subject>Physical Sciences</subject><subject>Population</subject><subject>Public health</subject><subject>Research and Analysis Methods</subject><subject>Time</subject><subject>Time dependence</subject><subject>Tuberculosis</subject><subject>Tuberculosis - epidemiology</subject><subject>World Health Organization</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7jr6D0QLgujFjPnoR3IjrIMfAwsLunob0vSkk6FtxiRd3H9vOtNdprIXUkhD8pz3JG_OSZKXGK0wLfGHnR1cL9vV3vawQoQiXmSPknPMKVkWBNHHJ_Oz5Jn3O4RyyoriaXJGCSkxQ-w8UWs79MHdLv0elNFGpaYP4G6gD8b2qQ9OBmgM-FRblwa7T8PWAaTXn9JqcDX0qToIjMTgTd-knQxbiINRsk07W0P7PHmiZevhxfRfJD-_fL5ef1teXn3drC8ul6rgJCwpyzKNSpYj4FjWhOqqpJphTBTmwLhCVOZIaULriiNegwaOMK0or0lRkoIuktdH3X1rvZj88YJQVnJe8iyLxOZI1FbuxN6ZTrpbYaURhwXrGiFdPHkLgkhUIQ60ynSdMVIxqJDMSY5lThXPx2wfp2xD1UGtomNOtjPR-U5vtqKxN6LEWcYZjgLvJgFnfw_gg-iMV9C2sgc7HM7NGC5pfNtF8uYf9OHbTVQj4wVMr23Mq0ZRcVHgCEW38kitHqDiV0NnVCwmbeL6LOD9LCAyAf6ERg7ei82P7__PXv2as29P2C3INmy9bYex8PwczI6gctZ7B_reZIzE2At3boixF8TUCzHs1ekD3QfdFT_9CwcjBJE</recordid><startdate>20200409</startdate><enddate>20200409</enddate><creator>Kim, Soyoung</creator><creator>de Los Reyes V, Aurelio A</creator><creator>Jung, Eunok</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4918-1087</orcidid><orcidid>https://orcid.org/0000-0001-5418-4579</orcidid><orcidid>https://orcid.org/0000-0002-7411-3134</orcidid></search><sort><creationdate>20200409</creationdate><title>Country-specific intervention strategies for top three TB burden countries using mathematical model</title><author>Kim, Soyoung ; de Los Reyes V, Aurelio A ; Jung, Eunok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-3844f07850e91ad23fb73f8112c19e89c03a50cf23db909defe9013b39d267263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biology and Life Sciences</topic><topic>China - epidemiology</topic><topic>Comparative analysis</topic><topic>Computer and Information Sciences</topic><topic>Control theory</topic><topic>Death</topic><topic>Disease</topic><topic>Engineering and Technology</topic><topic>Epidemics</topic><topic>Epidemiology</topic><topic>Forecasts and trends</topic><topic>Humans</topic><topic>India - epidemiology</topic><topic>Indonesia - epidemiology</topic><topic>Intervention</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Medicine and Health Sciences</topic><topic>Models, Theoretical</topic><topic>Optimal control</topic><topic>Ordinary differential equations</topic><topic>Parameter identification</topic><topic>People and Places</topic><topic>Physical Sciences</topic><topic>Population</topic><topic>Public health</topic><topic>Research and Analysis Methods</topic><topic>Time</topic><topic>Time dependence</topic><topic>Tuberculosis</topic><topic>Tuberculosis - epidemiology</topic><topic>World Health Organization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Soyoung</creatorcontrib><creatorcontrib>de Los Reyes V, Aurelio A</creatorcontrib><creatorcontrib>Jung, Eunok</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Soyoung</au><au>de Los Reyes V, Aurelio A</au><au>Jung, Eunok</au><au>Gerberry, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Country-specific intervention strategies for top three TB burden countries using mathematical model</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-04-09</date><risdate>2020</risdate><volume>15</volume><issue>4</issue><spage>e0230964</spage><epage>e0230964</epage><pages>e0230964-e0230964</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Tuberculosis (TB) is one of the top 10 causes of death globally and the leading cause of death by a single infectious pathogen. The World Health Organization (WHO) has declared the End TB Strategy, which targets a 90% reduction in the incidence rate by the year 2035 compared to the level in the year 2015. In this work, a TB model is considered to understand the transmission dynamics in the top three TB burden countries-India, China, and Indonesia. Country-specific epidemiological parameters were identified using data reported by the WHO. If India and Indonesia succeed in enhancing their treatment protocols and increase treatment and treatment success rate to that of China, the incidence rate could be reduced by 65.99% and 68.49%, respectively, by the end of 2035. Evidently, complementary interventions are essential to achieve the WHO target. Our analytical approach utilizes optimal control theory to obtain time-dependent nonpharmaceutical and latent case finding controls. The objective functional of the optimal control problem includes a payoff term reflecting the goal set by WHO. Appropriate combinations of control strategies are investigated. Based on the results, gradual enhancement and continuous implementation of intervention measures are recommended in each country.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32271808</pmid><doi>10.1371/journal.pone.0230964</doi><tpages>e0230964</tpages><orcidid>https://orcid.org/0000-0003-4918-1087</orcidid><orcidid>https://orcid.org/0000-0001-5418-4579</orcidid><orcidid>https://orcid.org/0000-0002-7411-3134</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-04, Vol.15 (4), p.e0230964-e0230964
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2387997944
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Biology and Life Sciences
China - epidemiology
Comparative analysis
Computer and Information Sciences
Control theory
Death
Disease
Engineering and Technology
Epidemics
Epidemiology
Forecasts and trends
Humans
India - epidemiology
Indonesia - epidemiology
Intervention
Mathematical models
Mathematics
Medicine and Health Sciences
Models, Theoretical
Optimal control
Ordinary differential equations
Parameter identification
People and Places
Physical Sciences
Population
Public health
Research and Analysis Methods
Time
Time dependence
Tuberculosis
Tuberculosis - epidemiology
World Health Organization
title Country-specific intervention strategies for top three TB burden countries using mathematical model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A03%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Country-specific%20intervention%20strategies%20for%20top%20three%20TB%20burden%20countries%20using%20mathematical%20model&rft.jtitle=PloS%20one&rft.au=Kim,%20Soyoung&rft.date=2020-04-09&rft.volume=15&rft.issue=4&rft.spage=e0230964&rft.epage=e0230964&rft.pages=e0230964-e0230964&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0230964&rft_dat=%3Cgale_plos_%3EA619970135%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387997944&rft_id=info:pmid/32271808&rft_galeid=A619970135&rft_doaj_id=oai_doaj_org_article_2a0b09e3b4fd482b8eb0a5251a53c956&rfr_iscdi=true