Biological functions of the autophagy-related proteins Atg4 and Atg8 in Cryptococcus neoformans
Autophagy is a mechanism responsible for intracellular degradation and recycling of macromolecules and organelles, essential for cell survival in adverse conditions. More than 40 autophagy-related (ATG) genes have been identified and characterized in fungi, among them ATG4 and ATG8. ATG4 encodes a c...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-04, Vol.15 (4), p.e0230981-e0230981 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0230981 |
---|---|
container_issue | 4 |
container_start_page | e0230981 |
container_title | PloS one |
container_volume | 15 |
creator | Roberto, Thiago Nunes Lima, Ricardo Ferreira Pascon, Renata Castiglioni Idnurm, Alexander Vallim, Marcelo Afonso |
description | Autophagy is a mechanism responsible for intracellular degradation and recycling of macromolecules and organelles, essential for cell survival in adverse conditions. More than 40 autophagy-related (ATG) genes have been identified and characterized in fungi, among them ATG4 and ATG8. ATG4 encodes a cysteine protease (Atg4) that plays an important role in autophagy by initially processing Atg8 at its C-terminus region. Atg8 is a ubiquitin-like protein essential for the synthesis of the double-layer membrane that constitutes the autophagosome vesicle, responsible for delivering the cargo from the cytoplasm to the vacuole lumen. The contributions of Atg-related proteins in the pathogenic yeast in the genus Cryptococcus remain to be explored, to elucidate the molecular basis of the autophagy pathway. In this context, we aimed to investigate the role of autophagy-related proteins 4 and 8 (Atg4 and Atg8) during autophagy induction and their contribution with non-autophagic events in C. neoformans. We found that Atg4 and Atg8 are conserved proteins and that they interact physically with each other. ATG gene deletions resulted in cells sensitive to nitrogen starvation. ATG4 gene disruption affects Atg8 degradation and its translocation to the vacuole lumen, after autophagy induction. Both atg4 and atg8 mutants are more resistant to oxidative stress, have an impaired growth in the presence of the cell wall-perturbing agent Congo Red, and are sensitive to the proteasome inhibitor bortezomib (BTZ). By that, we conclude that in C. neoformans the autophagy-related proteins Atg4 and Atg8 play an important role in the autophagy pathway; which are required for autophagy regulation, maintenance of amino acid levels and cell adaptation to stressful conditions. |
doi_str_mv | 10.1371/journal.pone.0230981 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2386848840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A619584407</galeid><doaj_id>oai_doaj_org_article_72c2c14ff15a4886bf88f68c6f047ee5</doaj_id><sourcerecordid>A619584407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-306bcb308293f45693b7d0ca6c628f3712fea89c14a897dfc20554b4ad440c323</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLgujFjPlqmt4I4-DHwMKCX7chTZNOhkxTk1Scf286012mshdSSEP6nPfkPT0ny55DsIS4hO92bvCdsMvedWoJEAYVgw-yS1hhtKAI4Idn-4vsSQg7AArMKH2cXWCECkgYu8z4B-Osa40UNtdDJ6NxXcidzuNW5WKIrt-K9rDwyoqomrz3LiqTiFVsSS66Ztyw3HT52h_66KSTcgh5p5x2fi-68DR7pIUN6tn0vsp-fPr4ff1lcX3zebNeXS8krVBcYEBrWWPAUIU1KWiF67IBUlBJEdPJLtJKsEpCktay0RKBoiA1EQ0hQGKEr7KXJ93eusCn2gSOkmGWjBKQiM2JaJzY8d6bvfAH7oThxwPnWy58NNIqXiKJUiqtYSFSMK01Y5oySTUgpVJF0no_ZRvqvWqk6qIXdiY6_9KZLW_db15CXKCySgJvJgHvfg0qRL43QSprRSrdcLx3iSgo6ejs1T_o_e4mqhXJgOm0S3nlKMpXFFYFS3UqE7W8h0pPo_ZGpkbSJp3PAt7OAhIT1Z_YiiEEvvn29f_Zm59z9vUZu1XCxm1wdji23xwkJ1B6F4JX-q7IEPBxDm6rwcc54NMcpLAX5z_oLui28fFfHX4CZQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386848840</pqid></control><display><type>article</type><title>Biological functions of the autophagy-related proteins Atg4 and Atg8 in Cryptococcus neoformans</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Roberto, Thiago Nunes ; Lima, Ricardo Ferreira ; Pascon, Renata Castiglioni ; Idnurm, Alexander ; Vallim, Marcelo Afonso</creator><contributor>Trajkovic, Vladimir</contributor><creatorcontrib>Roberto, Thiago Nunes ; Lima, Ricardo Ferreira ; Pascon, Renata Castiglioni ; Idnurm, Alexander ; Vallim, Marcelo Afonso ; Trajkovic, Vladimir</creatorcontrib><description>Autophagy is a mechanism responsible for intracellular degradation and recycling of macromolecules and organelles, essential for cell survival in adverse conditions. More than 40 autophagy-related (ATG) genes have been identified and characterized in fungi, among them ATG4 and ATG8. ATG4 encodes a cysteine protease (Atg4) that plays an important role in autophagy by initially processing Atg8 at its C-terminus region. Atg8 is a ubiquitin-like protein essential for the synthesis of the double-layer membrane that constitutes the autophagosome vesicle, responsible for delivering the cargo from the cytoplasm to the vacuole lumen. The contributions of Atg-related proteins in the pathogenic yeast in the genus Cryptococcus remain to be explored, to elucidate the molecular basis of the autophagy pathway. In this context, we aimed to investigate the role of autophagy-related proteins 4 and 8 (Atg4 and Atg8) during autophagy induction and their contribution with non-autophagic events in C. neoformans. We found that Atg4 and Atg8 are conserved proteins and that they interact physically with each other. ATG gene deletions resulted in cells sensitive to nitrogen starvation. ATG4 gene disruption affects Atg8 degradation and its translocation to the vacuole lumen, after autophagy induction. Both atg4 and atg8 mutants are more resistant to oxidative stress, have an impaired growth in the presence of the cell wall-perturbing agent Congo Red, and are sensitive to the proteasome inhibitor bortezomib (BTZ). By that, we conclude that in C. neoformans the autophagy-related proteins Atg4 and Atg8 play an important role in the autophagy pathway; which are required for autophagy regulation, maintenance of amino acid levels and cell adaptation to stressful conditions.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0230981</identifier><identifier>PMID: 32251488</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino acids ; Autophagy ; Biodegradation ; Biology and Life Sciences ; Bortezomib ; C-Terminus ; Cell death ; Cell survival ; Cell walls ; Cryptococcus neoformans ; Cysteine ; Cysteine proteinase ; Cystine ; Cytoplasm ; Degradation ; Disruption ; Fungal infections ; Fungi ; Gene disruption ; Genes ; Genetic engineering ; Macromolecules ; Medicine and Health Sciences ; Mutants ; Nitrogen ; Organelles ; Oxidation resistance ; Oxidative stress ; Pathogenesis ; Pathogens ; Phagocytosis ; Proteases ; Proteasome inhibitors ; Protein biosynthesis ; Proteins ; Research and Analysis Methods ; Starvation ; Translocation ; Ubiquitin ; Yeast ; Yeasts</subject><ispartof>PloS one, 2020-04, Vol.15 (4), p.e0230981-e0230981</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Roberto et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Roberto et al 2020 Roberto et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-306bcb308293f45693b7d0ca6c628f3712fea89c14a897dfc20554b4ad440c323</citedby><cites>FETCH-LOGICAL-c692t-306bcb308293f45693b7d0ca6c628f3712fea89c14a897dfc20554b4ad440c323</cites><orcidid>0000-0002-6929-0566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7135279/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7135279/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32251488$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Trajkovic, Vladimir</contributor><creatorcontrib>Roberto, Thiago Nunes</creatorcontrib><creatorcontrib>Lima, Ricardo Ferreira</creatorcontrib><creatorcontrib>Pascon, Renata Castiglioni</creatorcontrib><creatorcontrib>Idnurm, Alexander</creatorcontrib><creatorcontrib>Vallim, Marcelo Afonso</creatorcontrib><title>Biological functions of the autophagy-related proteins Atg4 and Atg8 in Cryptococcus neoformans</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Autophagy is a mechanism responsible for intracellular degradation and recycling of macromolecules and organelles, essential for cell survival in adverse conditions. More than 40 autophagy-related (ATG) genes have been identified and characterized in fungi, among them ATG4 and ATG8. ATG4 encodes a cysteine protease (Atg4) that plays an important role in autophagy by initially processing Atg8 at its C-terminus region. Atg8 is a ubiquitin-like protein essential for the synthesis of the double-layer membrane that constitutes the autophagosome vesicle, responsible for delivering the cargo from the cytoplasm to the vacuole lumen. The contributions of Atg-related proteins in the pathogenic yeast in the genus Cryptococcus remain to be explored, to elucidate the molecular basis of the autophagy pathway. In this context, we aimed to investigate the role of autophagy-related proteins 4 and 8 (Atg4 and Atg8) during autophagy induction and their contribution with non-autophagic events in C. neoformans. We found that Atg4 and Atg8 are conserved proteins and that they interact physically with each other. ATG gene deletions resulted in cells sensitive to nitrogen starvation. ATG4 gene disruption affects Atg8 degradation and its translocation to the vacuole lumen, after autophagy induction. Both atg4 and atg8 mutants are more resistant to oxidative stress, have an impaired growth in the presence of the cell wall-perturbing agent Congo Red, and are sensitive to the proteasome inhibitor bortezomib (BTZ). By that, we conclude that in C. neoformans the autophagy-related proteins Atg4 and Atg8 play an important role in the autophagy pathway; which are required for autophagy regulation, maintenance of amino acid levels and cell adaptation to stressful conditions.</description><subject>Amino acids</subject><subject>Autophagy</subject><subject>Biodegradation</subject><subject>Biology and Life Sciences</subject><subject>Bortezomib</subject><subject>C-Terminus</subject><subject>Cell death</subject><subject>Cell survival</subject><subject>Cell walls</subject><subject>Cryptococcus neoformans</subject><subject>Cysteine</subject><subject>Cysteine proteinase</subject><subject>Cystine</subject><subject>Cytoplasm</subject><subject>Degradation</subject><subject>Disruption</subject><subject>Fungal infections</subject><subject>Fungi</subject><subject>Gene disruption</subject><subject>Genes</subject><subject>Genetic engineering</subject><subject>Macromolecules</subject><subject>Medicine and Health Sciences</subject><subject>Mutants</subject><subject>Nitrogen</subject><subject>Organelles</subject><subject>Oxidation resistance</subject><subject>Oxidative stress</subject><subject>Pathogenesis</subject><subject>Pathogens</subject><subject>Phagocytosis</subject><subject>Proteases</subject><subject>Proteasome inhibitors</subject><subject>Protein biosynthesis</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Starvation</subject><subject>Translocation</subject><subject>Ubiquitin</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLgujFjPlqmt4I4-DHwMKCX7chTZNOhkxTk1Scf286012mshdSSEP6nPfkPT0ny55DsIS4hO92bvCdsMvedWoJEAYVgw-yS1hhtKAI4Idn-4vsSQg7AArMKH2cXWCECkgYu8z4B-Osa40UNtdDJ6NxXcidzuNW5WKIrt-K9rDwyoqomrz3LiqTiFVsSS66Ztyw3HT52h_66KSTcgh5p5x2fi-68DR7pIUN6tn0vsp-fPr4ff1lcX3zebNeXS8krVBcYEBrWWPAUIU1KWiF67IBUlBJEdPJLtJKsEpCktay0RKBoiA1EQ0hQGKEr7KXJ93eusCn2gSOkmGWjBKQiM2JaJzY8d6bvfAH7oThxwPnWy58NNIqXiKJUiqtYSFSMK01Y5oySTUgpVJF0no_ZRvqvWqk6qIXdiY6_9KZLW_db15CXKCySgJvJgHvfg0qRL43QSprRSrdcLx3iSgo6ejs1T_o_e4mqhXJgOm0S3nlKMpXFFYFS3UqE7W8h0pPo_ZGpkbSJp3PAt7OAhIT1Z_YiiEEvvn29f_Zm59z9vUZu1XCxm1wdji23xwkJ1B6F4JX-q7IEPBxDm6rwcc54NMcpLAX5z_oLui28fFfHX4CZQ</recordid><startdate>20200406</startdate><enddate>20200406</enddate><creator>Roberto, Thiago Nunes</creator><creator>Lima, Ricardo Ferreira</creator><creator>Pascon, Renata Castiglioni</creator><creator>Idnurm, Alexander</creator><creator>Vallim, Marcelo Afonso</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6929-0566</orcidid></search><sort><creationdate>20200406</creationdate><title>Biological functions of the autophagy-related proteins Atg4 and Atg8 in Cryptococcus neoformans</title><author>Roberto, Thiago Nunes ; Lima, Ricardo Ferreira ; Pascon, Renata Castiglioni ; Idnurm, Alexander ; Vallim, Marcelo Afonso</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-306bcb308293f45693b7d0ca6c628f3712fea89c14a897dfc20554b4ad440c323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amino acids</topic><topic>Autophagy</topic><topic>Biodegradation</topic><topic>Biology and Life Sciences</topic><topic>Bortezomib</topic><topic>C-Terminus</topic><topic>Cell death</topic><topic>Cell survival</topic><topic>Cell walls</topic><topic>Cryptococcus neoformans</topic><topic>Cysteine</topic><topic>Cysteine proteinase</topic><topic>Cystine</topic><topic>Cytoplasm</topic><topic>Degradation</topic><topic>Disruption</topic><topic>Fungal infections</topic><topic>Fungi</topic><topic>Gene disruption</topic><topic>Genes</topic><topic>Genetic engineering</topic><topic>Macromolecules</topic><topic>Medicine and Health Sciences</topic><topic>Mutants</topic><topic>Nitrogen</topic><topic>Organelles</topic><topic>Oxidation resistance</topic><topic>Oxidative stress</topic><topic>Pathogenesis</topic><topic>Pathogens</topic><topic>Phagocytosis</topic><topic>Proteases</topic><topic>Proteasome inhibitors</topic><topic>Protein biosynthesis</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Starvation</topic><topic>Translocation</topic><topic>Ubiquitin</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roberto, Thiago Nunes</creatorcontrib><creatorcontrib>Lima, Ricardo Ferreira</creatorcontrib><creatorcontrib>Pascon, Renata Castiglioni</creatorcontrib><creatorcontrib>Idnurm, Alexander</creatorcontrib><creatorcontrib>Vallim, Marcelo Afonso</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roberto, Thiago Nunes</au><au>Lima, Ricardo Ferreira</au><au>Pascon, Renata Castiglioni</au><au>Idnurm, Alexander</au><au>Vallim, Marcelo Afonso</au><au>Trajkovic, Vladimir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biological functions of the autophagy-related proteins Atg4 and Atg8 in Cryptococcus neoformans</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-04-06</date><risdate>2020</risdate><volume>15</volume><issue>4</issue><spage>e0230981</spage><epage>e0230981</epage><pages>e0230981-e0230981</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Autophagy is a mechanism responsible for intracellular degradation and recycling of macromolecules and organelles, essential for cell survival in adverse conditions. More than 40 autophagy-related (ATG) genes have been identified and characterized in fungi, among them ATG4 and ATG8. ATG4 encodes a cysteine protease (Atg4) that plays an important role in autophagy by initially processing Atg8 at its C-terminus region. Atg8 is a ubiquitin-like protein essential for the synthesis of the double-layer membrane that constitutes the autophagosome vesicle, responsible for delivering the cargo from the cytoplasm to the vacuole lumen. The contributions of Atg-related proteins in the pathogenic yeast in the genus Cryptococcus remain to be explored, to elucidate the molecular basis of the autophagy pathway. In this context, we aimed to investigate the role of autophagy-related proteins 4 and 8 (Atg4 and Atg8) during autophagy induction and their contribution with non-autophagic events in C. neoformans. We found that Atg4 and Atg8 are conserved proteins and that they interact physically with each other. ATG gene deletions resulted in cells sensitive to nitrogen starvation. ATG4 gene disruption affects Atg8 degradation and its translocation to the vacuole lumen, after autophagy induction. Both atg4 and atg8 mutants are more resistant to oxidative stress, have an impaired growth in the presence of the cell wall-perturbing agent Congo Red, and are sensitive to the proteasome inhibitor bortezomib (BTZ). By that, we conclude that in C. neoformans the autophagy-related proteins Atg4 and Atg8 play an important role in the autophagy pathway; which are required for autophagy regulation, maintenance of amino acid levels and cell adaptation to stressful conditions.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32251488</pmid><doi>10.1371/journal.pone.0230981</doi><tpages>e0230981</tpages><orcidid>https://orcid.org/0000-0002-6929-0566</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-04, Vol.15 (4), p.e0230981-e0230981 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2386848840 |
source | DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Amino acids Autophagy Biodegradation Biology and Life Sciences Bortezomib C-Terminus Cell death Cell survival Cell walls Cryptococcus neoformans Cysteine Cysteine proteinase Cystine Cytoplasm Degradation Disruption Fungal infections Fungi Gene disruption Genes Genetic engineering Macromolecules Medicine and Health Sciences Mutants Nitrogen Organelles Oxidation resistance Oxidative stress Pathogenesis Pathogens Phagocytosis Proteases Proteasome inhibitors Protein biosynthesis Proteins Research and Analysis Methods Starvation Translocation Ubiquitin Yeast Yeasts |
title | Biological functions of the autophagy-related proteins Atg4 and Atg8 in Cryptococcus neoformans |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A58%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biological%20functions%20of%20the%20autophagy-related%20proteins%20Atg4%20and%20Atg8%20in%20Cryptococcus%20neoformans&rft.jtitle=PloS%20one&rft.au=Roberto,%20Thiago%20Nunes&rft.date=2020-04-06&rft.volume=15&rft.issue=4&rft.spage=e0230981&rft.epage=e0230981&rft.pages=e0230981-e0230981&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0230981&rft_dat=%3Cgale_plos_%3EA619584407%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2386848840&rft_id=info:pmid/32251488&rft_galeid=A619584407&rft_doaj_id=oai_doaj_org_article_72c2c14ff15a4886bf88f68c6f047ee5&rfr_iscdi=true |